
1

Author’s Post-Print (final draft post-refereeing)

NOTICE: this is the author’s version of a work that was accepted for publication in the
Journal of Supercomputing. Changes resulting from the publishing process, such as peer
review, editing, corrections, structural formatting, and other quality control mechanisms
may not be reflected in this document. Changes may have been made to this work since
it was submitted for publication.

A definitive version was subsequently published in the Journal of Supercomputing
(2018), pp.1-20. https://link.springer.com/article/10.1007%2Fs11227-018- 2494-3

CWBound: boundary node detection algorithm for complex non-
convex mobile ad hoc networks

Se-Hang Cheong · Yain-Whar Si

Received: date / Accepted: date

Abstract Efficient message forwarding in mobile ad hoc network in disaster scenarios is
challenging because location information on the boundary and interior nodes is often
unavailable. Information related to boundary nodes can be used to design efficient
routing protocols as well as to prolong the battery power of devices along the boundary
of an ad hoc network. In this article, we developed an algorithm, CWBound, which
discovers boundary nodes in a complex non-convex mobile ad hoc (CNCAH) networks.
Experiments show that the CWBound algorithm is at least 3 times faster than other state-
of-the-art algorithms, and up to 400 times faster than classical force-directed algorithms.
The experiments also con- firmed that the CWBound algorithm achieved the highest
accuracy (above 97% for 3 out of the 4 types of CNCAH networks) and sensitivity (90%)
among the algorithms evaluated.

Keywords Mobile ad hoc network · Force-directed algorithm · Boundary node
detection · Complex non-convex ad hoc network

1 Introduction

Applications of mobile ad hoc networks for disaster scenarios have been reported in
recent years. These applications include earthquake and tsunami monitoring [1], tracking
pedestrians and emergency message forwarding [2, 3, 4]. Due to their decentralized and
self-organizing nature, mobile ad hoc networks are useful for instantly forming a
temporary emergency network when cellular networks are over- loaded or damaged. For
example, when a person is trapped under debris after an

Se-Hang Cheong
Department of Computer and Information Science, University of Macau, Avenida Da Universidade, Taipa,
Macau, China.
E-mail: dit.dhc@lostcity-studio.com

Yain-Whar Si
Corresponding author, Department of Computer and Information Science, University of Macau, Avenida Da
Universidade, Taipa, Macau, China.
E-mail: fstasp@umac.mo

Noname manuscript No.

(will be inserted by the editor)

mailto:dit.dhc@lostcity-studio.com
mailto:fstasp@umac.mo

Title Suppressed Due to Excessive Length 3

Fig. 1: A scenario for forwarding emergency messages.

earthquake, and has no cellular signal to make a call, he/she can send the messages to an
emergency station via a mobile ad hoc network as illustrated in Figure 1. Search and
rescue operation can be launched after the approximate location of the victim is known.
Although Global Positioning System (GPS) receivers may be embedded in modern mobile
phones, they are ineffective in indoor environments. Therefore, mobile ad hoc networks
can be considered as a more practical solution for disaster scenarios. Mobile ad hoc
networks can be formed with the Wi-Fi signals from mobile phones of the victims or battery
powered wireless routers mounted in parks or residential areas where disasters are likely
to occur [2]. However, mobile phones have only limited battery life and the consumption
of battery power can be high when they are designed to forward the messages to nearby
devices.

In the aftermath of disasters, rescuers may not be able to immediately reach the centre
of the collapsed buildings or the affected areas. In these situations, boundary nodes of an ad
hoc network are the kind of nodes which are more likely to establish a connection to an
external emergency station or to a Wi-Fi enabled device maintained by a rescuer who is in
the vicinity of the affected area. Therefore, it is essential to prolong the battery power of
boundary nodes by using efficient routing protocols which maximize their throughput to
store or forward messages from the inner nodes. However, location information about the
boundary and interior nodes of mobile ad hoc networks is often unavailable in mobile ad
hoc networks. If the boundary nodes can be identified from these networks, we can
formulate strategies to prolong the battery life of these nodes by using efficient message
routing protocols [5]. Moreover, with the information of boundary nodes, the location of
non-boundary nodes can be estimated by using the topology information [6]. De-

4 Se-Hang Cheong, Yain-Whar Si

(a) (b)

Fig. 2: (a) Illustration of boundary nodes, (b) illustration of nodes stacked on the border of
a canvas.

spite their potential use in disaster scenarios, boundary node detection problem in
mobile ad hoc networks still poses a significant challenge for researchers.

The boundary nodes of a mobile ad hoc network are the outer nodes of a graph
(network) [7]. Therefore, the boundary detection problem of a mobile ad hoc network
can be reformulated as a problem of visualising the topology of the respective graph.
However, the definition of boundary nodes in mobile ad hoc networks varies depending
on the application of the network [8, 9, 10, 11]. In this study, we used the Mandatory
Boundary Nodes [9] definition of boundary nodes. These boundary nodes are found
exactly on the border of the network. Conversely, Optional Boundary Nodes are defined as
nodes that are not located exactly on the border, but are positioned at a certain distance
from a point or located within a defined communication range [9]. In our study, we did not
consider Optional Boundary Nodes and boundary nodes of inner regions as boundary
nodes. That is, we attempt to find boundary nodes exactly located on the boundary so
that they have higher chance to connect to external devices deployed by rescue teams.
Examples of different kinds of boundary nodes are illustrated in Figure 2(a). The red
outline indicates the boundary of the network topology. Nodes u and v (yellow) are
Optional Boundary Nodes, and purple nodes are the Mandatory Boundary Nodes
considered herein. We did not consider Optional Boundary Nodes (i.e. nodes u and v) as
boundary nodes in this study.

Boundary node detection problem can be formulated as a problem of topology
visualising [7]. In this paper, we use force-directed algorithms because they are widely
used for the visualisation and can be used to generate a visualisation based purely on the
topology information. For example, classical force-directed al- gorithms such as
Fruchterman Reingold (FR) algorithm [12], the Kamada-Kawai (KK) algorithm [13] and the
Davidson Harel (DH) algorithm [14] have been used for many visualisation problems.
Force-directed algorithms reply on the spring force exerted on nodes and edges, which is
proportional to the length of edges in

Title Suppressed Due to Excessive Length 5

the network topology. Although force-directed algorithms can be used in visual- ising the
topology, several problems exist with these algorithms which, in some situations, prevent
them from producing acceptable results.

In this article, we address the boundary node detection problems of complex non-
convex mobile ad hoc networks (CNCAH) in which nodes are randomly dis- tributed, and
only connection information is available. A CNCAH is comprised of convex and non-convex
polygons, inner holes and intersecting edges. These net- works are usually non-convex in
the visualisations of their topologies [15]. CNCAH networks from previous studies [7], [16]
were also used in our experiments. In this article, we propose an algorithm, CWBound,
which exhibits high sensitivity in generating a visualisation of the topologies of CNCAH
networks. The CWBound algorithm uses a clustering based method to improve the
position assignments and adjusts the forces acting on the nodes. The visualisations
generated by the CWBound algorithm are then used for boundary node detection.

The rest of this article is organized as follows. In Section 2, we review related work on
boundary node detection using force-directed algorithms. In Section 3, we propose
CWBound algorithm for boundary node detection. In Section 4, we com- pare the
CWBound algorithm with existing force-directed algorithms in solving the boundary node
detection problem. In Section 5, we conclude the paper with future work.

2 Related Work

Boundary node detection in mobile ad hoc network has been reported in recent studies.
For example, Huang et al. [17] suggested a heuristic algorithm to check if a node is
suspected to be on the boundary of mobile ad hoc network in which the communication
network is a d-quasi unit disk graph model (d-QUDG). Here, d is the longest Euclidean
distance across which two nodes can communicate. In [18], Wang et al. used topological
information for boundary node and inner hole detection. The algorithm proposed by
Want et al. builds the shortest path tree by flooding the network from an arbitrary root
node upon initialisation. They assumed that the shortest paths selected from the shortest
path tree are more similar to straight lines if there is no hole between the nodes within the
shortest path tree. Otherwise, the shortest paths are curved. In addition to the heuristic
approaches, topological based approaches were also used in boundary node detection.
For ex- ample, in [19], Zhang et al. used Voronoi diagram [20] (a geometric data structure)
for boundary node detection. In [21] and [22], geographical location data is used to
identify boundary nodes and holes.

Furthermore, several extensions to force-directed algorithms have been pro- posed
to solve the localisation problems of mobile ad hoc networks. For example, FRR algorithm
[7] follows the approach of the classical FR algorithm, but it in- corporates information on
the lengths of edges in the generation of the graph. The length information is often
obtained from the signal strength of the sensors. Afzal and Beigy [23] proposed a
distributed algorithm for sensor localisation based on SVM (Support Vector Machine). In
their approach, each node estimates the locations according to RSS (Received Signal
Strength) data and the prediction model built in SVM. The estimated locations are then
sent to the sink nodes which later update the location of nodes by broadcasting to the
whole network. In addition,

6 Se-Hang Cheong, Yain-Whar Si

[24] proposed a method for tracking the position of nodes using a force-directed
algorithm based on the signal strength and changes in the movement of the sen- sors. In
their approach, a built-in accelerometer is used to collect information from the sensors on
their movements. In [25], Park et al. proposed a method to deter- mine the position of
sensors based on the measured angles and distances. They assumed that each sensor can
measure the distance (e.g. by using received signal strength) and the angle (e.g. by using
angle of arrival (AoA) measurement) of nearby sensors.

Although force-directed algorithms can be used for boundary node detection, they
suffer from high computational cost. Force-directed algorithms may not be able to
generate visualisations of network topologies of acceptable quality for large- scale networks,
networks with complex topologies, and networks with high average degrees [26]. In
addition, sensitivity and specificity cannot be further improved when these algorithms
become trapped in local minima. In addition, as we lack information about the anchor
points and the coarse topology of the network, randomised coordinates are often
assigned to nodes on initialisation [27]. This ran- domised position assignment causes the
nodes and edges to collapse and stack against each other during the initialisation phase.
Clustering based methods are useful for position assignment in initialisation phase
because adjacent nodes in a mobile ad hoc network usually have similar data [28].
Therefore, in this article, we propose an algorithm called CWBound for improving the
position assignments in complex networks using a clustering based method.

To evaluate the performance of the CWBound algorithm, we compare it against the KK,
DH, FR, FRR, FA2 [29], and KK-MS-DS [8] algorithms. In these experiments, we measured
four performance metrics: the sensitivity, specificity, accuracy, and execution time with
respect to a varying number of nodes and average degrees. Experimental results showed
that the CWBound algorithm shortened the processing time significantly. Specifically, we
found that the CWBound algorithm was at least 3 times faster than the current state-of-
the-art force-directed algorithms (for example, KK-MS-DS), and up to 400 times faster than
classical force-directed algorithms (such as the KK algorithm). In most cases, the
CWBound algorithm achieved 90% sensitivity, significantly greater than that of the other
algorithms tested.

3 CWBound algorithm for boundary node detection

Force-directed algorithms can produce visualisations based purely on the structure
(topology) of a network (graph) itself, and do not require additional informa- tion about
the network to generate a visualisation of its topology. The classical FR algorithm models
two forces on each node (attraction and repulsion). Recall that computational speed is
one of the problems of classical force-directed algorithms for visualising large-scale
complex networks. Moreover, nodes and edges are often collapsed, especially on the
initialisation of the algorithm. Hence classical force-directed algorithms are difficult to
achieve an acceptable visualisation quality within a short time. Sensitivity and specificity
cannot be further improved when there are local minima. According to the evaluation
conducted in [8], the sensitivity and specificity of the classical force-directed algorithm
(e.g. FR) are poor, even if the number of nodes is fewer than 1000. To alleviate these
prob-

Title Suppressed Due to Excessive Length 7

.

lems, we developed an algorithm, CWBound, which combines the clustering based schema
and improved force models for boundary node detection. The combined forces in a given
iteration of the CWBound algorithm can be defined as follows:

F = Fa + Fr + Fg (1)

To avoid nodes and edges being stacked at the border of the canvas (Fig- ure 2(b)),
we adopted a modified version of the ideal pairwise distance from the FR algorithm. If
the size of the canvas is limited, then the network has no space for expansion. Therefore,
the constant of ideal pairwise distance for both the at- traction (fa) and repulsion forces
(fr) is defined in CWBound as follows:

k =
m × a

n + 1
(2)

where m is an expansion multiplier for the diffusion of the nodes, a is the size of canvas
and n is the total number of nodes in the network topology. Next, we added a
gravitational force model to compensate for the repulsion of nodes that are far from the
centre of the canvas. Gravitational forces attract nodes towards the centre of the canvas.
This attraction can also improve node spreading so that nodes do not stack on each other.
The revised gravitational force is defined as follows:

Fg(n) = k × G × d(n) (3)

where G is the gravitation coefficient, d(n) is a distance function which represents the
distance between the centre of the canvas and the node n, and k is the ideal pairwise
distance, as defined in Equation 2.

One of the drawbacks of force-directed algorithms is the large number of iterations
needed in visualisation [8]. That is because force-directed algorithms usually assign
random positions to nodes at the first iteration. Although some algorithms, such as FRR,
use estimated distances instead of random positions, nodes are still moved according to
the forces defined in these algorithms. Sensitivity and specificity are often reduced
because most of these algorithms use almost half of their execution time to construct a
coarse visualisation of the topology. Therefore, a useful initialisation schema could
significantly increase an algorithm’s performance. Existing studies used graph partitioning
[30, 31] and multilevel algorithms [32, 33] that create a coarse visualisation of network
topologies. However, these algorithms depend on force-directed algorithms, to project
the results of partitioning onto a canvas. The time complexity is high because we need to
employ force-directed algorithms twice in which force-directed algorithms used to create
a coarse visualisation and the final visualisation of network topologies.

Therefore, we proposed an initialisation scheme for nodes using a fast cluster- ing
algorithm with a suitable level of accuracy. The aim of our approach is to apply a force-
directed algorithm to result of clustering results to compensate for node placement. We
used clustering algorithm performs partitioning based on information regarding the nodes,
edges and the weights of the edges. In our approach, we defined the estimated distance,
estdist(n1, n2), based on the free-space path loss (FSPL) assumption. This was used to
calculate the estimated distances based on the signal strengths of the nodes. FSPL is a
term used in telecommunications to denote the loss in signal strength of an
electromagnetic wave in a line-of-sight

8 Se-Hang Cheong, Yain-Whar Si

×r 1

 2

path. The estimated distance is also used as the weight of the edges in the clustering
algorithm. We assumed an ideal situation in our study; that there were no obstacles
nearby to cause diffraction or reflection. The estimated distance (in meters) can be
calculated for FSPL as follows:

d = 10
27.55−20×log(f)−s

20 (4)

where f is the signal frequency in MHz and s is the signal strength.

Algorithm 1: Pseudo code of CWBound algorithm

Input : network topology G = (V, E) maximum
number of execute time s

Output: a visual drawing of G

1 initialise the timer t = 0 ;

2 initialise an associated array of class C = Clustering Algorithm(G) ;

3 while s > it and not converged do
// Clustering information

4 Let vpart be the partition result in C ;

5 Let vcentroid be the list of centroid in C ;

6 if distance of nodes in vcentroid is proportional to G then
7 C ← Clustering Algorithm(G);
8 vpart ← thepartitionresultinC;
9 vcentroid ← thelistofcentroidinC

10 end

// Algorithm 2
11 CalForces(V, E);

// Update the elaspsed time
12 t ← t + elapsedtime;

13 end

We defined a modified LinLog model as an extension of attraction force in CWBound

algorithm. This force is designed to tighten the clusters so that nodes belonging to the
same cluster do not separate. The idea is adopted from the FA2 algorithm. The LinLog
model was proposed by [34]. The LinLog model emphasises the visualisation of clusters in a
network, and tightens those clusters. A cluster may have a high number of internal edges
with nodes in the same cluster, but may contain few edges with nodes outside the cluster
[35]. The modified attraction force is defined as follows:

Fa(n1, n2) = log(1 + d(n1, n2) × w) (5)

where w is the sum of the weight values if both n1 and n2 belong to the same class. d is the
distance between n1 and n2; the initial value of d is set to estdist(n1, n2). Furthermore,
Equation 6 defines a new repulsion force that acts more strongly on nodes that do not
belong to the same cluster, thus reducing node stacking. The repulsion force of CWBound
algorithm is defined as follows:

F (n , n) = k
max(C(n1)) × max(C(n2))

d(n1, n2)

(6)

Title Suppressed Due to Excessive Length 9

√

∈

∆

∆

∆

∆

Σ

Algorithm 2: Pseudo code of forces calculation CalForces()
// Calculate the displacement by repulsion force

1 foreach u ∈ V do
2 foreach v ∈ V and u ƒ= v do
3 u.x ← u.x + Fr (u, v);
4 u.y ← u.x + Fr (u, v);

5 end

6 end

// Calculate the displacement by attraction force
7 foreach e E do
8 Let u, v be the end nodes of e;
9 ∆ ← (e.ux − e.vx)2 + (e.uy − e.vy)2;

10 e.ux ← e.ux − ux−vx × Fa(u, v);

11 e.uy ← e.uy − uy−vy × Fa(u, v);

12 e.vx ← e.vx + ux−vx × Fa(u, v);

13 e.vy ← e.vy +
uy−vy × Fa(u, v);

14 end

// Calculate the displacement by gravity force
15 foreach ,v ∈ V do

17 vx ← vx − ux/∆ × Fg ;
18 vy ← vy − vy/∆ × Fg ;

19 end

The workflow of proposed CWBound algorithm is shown in Figure 3. On initialisation,

the clustering algorithm is used to find clusters. The clustering algorithm input contains
the nodes and the length of the edges. In our experiments, the lengths of the edges are
randomly generated. In real-world applications, the length of an edge is an estimated
distance between two nodes, and can be derived from the signal strengths of the nodes.

The next step in the CWBound algorithm is to find the centre node (medoid) of every
cluster. However, at this point, none of the nodes in the network topology have positions,
because they have not yet been projected onto the canvas. Therefore, the potential
centre nodes can only be determined using the estimated distance. The centre node of a
cluster is the node that has the shortest distances to the other nodes in the same cluster
which is defined in Equation 7.

n

xcentre = argminy∈{x1,x2,...xn} d (y, xi) (7)
i=1

where x1, x2, ..., xn are the nodes which belong to a cluster. d(y, xi) is the distance function.
Once the centre node of a cluster is identified, the network topology is projected onto a

canvas by assigning randomised initial positions to nodes. Examples of the centre nodes,
centroids and the distances between centre nodes are illustrated in Figure 4. The position
of the centre node is then input into Equation 3. Next, the CWBound algorithm calculates
the attraction, repulsion and gravitational forces using Equation 3, Equation 5 and
Equation 6. The positions of the nodes are then

; 2
displacementY + v 2

displacementX
v ∆

←
16

10 Se-Hang Cheong, Yain-Whar Si

Fig. 3: The proposed CWBound algorithm.

updated iteratively. This procedure is repeated until the distances between the centre
nodes are proportional to their estimated distances.

When the distances between the centre nodes on the canvas and the estimated
distances between the centre nodes are proportional, it implies that the clusters are suitably
spread out and the nodes will not be stacked together, as in Figure 2(b). When this
situation is detected, the following procedure is used to enhance the coarse visualisation
of the topology. First, the length of the edges on the canvas are input into the clustering
algorithm, instead of the estimated distances calcu- lated from the signal strength.
Second, the CWBound algorithm uses Equation 8 and the centroids of the clusters to
calculate the gravitational forces, rather than Equation 3. Centroids are not nodes; rather
they are the positions of the centres of the clusters. The position of the centroid of a
cluster is used in Equation 8. Figure 4 shows examples of centroids. We can define the
gravitational forces used in this procedure as follows:

Fg
J (n) = k × G × dJ(n) (8)

Title Suppressed Due to Excessive Length 11

Fig. 4: Examples of centre nodes, centroids and the distances between centre nodes.

where G is the gravitation coefficient, dJ(n) is a distance function used to calculate the
distance between the centroid of a cluster and a node, n, within that cluster, and k is the
ideal pairwise distance stated in Equation 2. Finally, the CWBound algorithm repeatedly
executes the clustering algorithm to recalculate the centroids of the clusters and update
the positions of the nodes on the canvas, until the termination condition is met. The
pseudo code for the CWBound algorithm, forces calculation function and the weight
calculation function are given in Algorithm 1, Algorithm 2 and Algorithm 3 respectively.

Algorithm 3: Pseudo code of weight calculation function CalWeight().

Input : network topology G = (V, E)

Output: Weights W

1 initialise the associate array of class weight W = ∅ ;
2 foreach v ∈ V and hopcount(u, v) = 1 do
3 W [C[v]] ← 0;

4 end

5 initialise the sum of class weight sumw = 0 ;
6 foreach v ∈ V and hopcount(u, v) = 1 do
7 W [C[v]] ← W [C[v]] + estdist(u, v);
8 sumw ← W [C[v]] + sumw;

9 end

// Find a class which has maximum sum of weight.
10 Let Wmax be the maximum value of weight in W ;
11 Let Cmax be the class which has highest value in W ;
12 if Wmax/sumw > δ then
13 C[u] ← Cmax;

14 end

15 return W ;

12 Se-Hang Cheong, Yain-Whar Si

(a) (b) (c) (d)

Fig. 5: Samples of CNCAH networks generated for the experiments.

4 Experiments

In this section, we compare the performance of the proposed CWBound algorithm on
CNCAH networks with the KK, FR, DH, FRR, KK-MS-DS and FA2 algorithms. These
experiments were performed on a computer with an Intel Core i5 processor, 8 GB of
memory, and Windows 7 64 bit. The node counts and aver- age degrees of these
networks were set to 1000 and 8, respectively. Four irregular CNCAH networks were used
in these benchmark topologies. Figure 5 illustrates the samples of the CNCAH networks
generated for the experiments. The dataset used in our experiments can be downloaded
from 1. Besides, we have also de- veloped the CNCAHNetGenerator2 for generating CNCAH
networks of arbitrary node and edge types. In the experiments, we measured four
performance metrics: the sensitivity, specificity, accuracy and execution time with respect
to varying numbers of sensors and different average degrees. Definitions of these metrics
are given in Table 1.

Table 1: Performance evaluation metrics.

Metrics Description Result

Sensitivity/True
positive rate

Specificity/True
negative rate

Accuracy

Boundary nodes on the initial network
topology correctly identified as boundary

nodes by algorithms

Non-boundary nodes on the initial
network topology correctly identified as

non-boundary nodes by algorithms

The sum of the true positive count (i.e.,
boundary nodes correctly identified as
boundary nodes) and the true negative

count (i.e.,
non-boundary correctly identified as

non-boundary nodes) divided by the total
number of nodes examined

The higher the
better

The higher the

better

The higher the
better

Execution time Total amount of execution time that
the algorithm ran in seconds

The lower the better

1 http://www.cis.umac.mo/~fstasp/tools/CWBound-Dataset.7z
2 http://www.cis.umac.mo/~fstasp/profile eric.html

http://www.cis.umac.mo/~fstasp/tools/CWBound-Dataset.7z
http://www.cis.umac.mo/~fstasp/profile

Title Suppressed Due to Excessive Length 13

4.1 Evaluation of sensitivity, specificity, and accuracy in boundary node detection

We compared the sensitivity, specificity and accuracy of the CWBound algorithm in CNCAH
networks with the KK, FR, DH, KK-MS-DS, FRR and FA algorithms. In this experiment, all of
the algorithms were executed for 60 time units. As the results illustrated in Figure 6 show,
the CWBound algorithm achieved results of at least 90% on all three measures
(sensitivity, specificity and accuracy), for all of the CNCAH networks tested in the
experiment. The KK-MS-DS algorithm achieved around 70% sensitivity for all of the CNCAH
networks, and the remain- ing algorithms had lower sensitivities than both the CWBound
and KK-MS-DS algorithms.

(a) (b)

(c) (d)

Fig. 6: Algorithm performances with (a) U-Shape, (b) Doughnut, (c) Smile and

(d) Star networks.

4.2 Evaluation of execution time for detecting boundary nodes

In this section, we compare the total time spent for the algorithms to achieve 90%
sensitivity in the visualisations of the CNCAH networks. Two stopping criteria were set in
this experiment. Either an algorithm will stop when it achieves 90% sensitivity, or the
sensitivity of the algorithm remains unchanged up to certain iterations. We used 100
iterations in our experiments. Figure 7, 8, 9 and 10 sum- marise the results of our
experiments. The horizontal axis of figures denotes the execution time for each network.
From the experiments, we found that most of the algorithms did not achieve 90%
sensitivity. The average sensitivity of the FR

14 Se-Hang Cheong, Yain-Whar Si

and FA2 algorithms was between 40% and 50% for all of the CNCAH networks evaluated.

Fig. 7: Evaluation of the execution time for Doughnut CNCAH network.

Title Suppressed Due to Excessive Length 15

Fig. 8: Evaluation of the execution time for Smile CNCAH network.

16 Se-Hang Cheong, Yain-Whar Si

Fig. 9: Evaluation of the execution time for Star CNCAH network.

Title Suppressed Due to Excessive Length 17

Fig. 10: Evaluation of the execution time for U-shape CNCAH network.

We also found that the DH algorithm did not reach 90% sensitivity, but remained
constant at around 10%. The FRR algorithm achieved 70 to 80% sensitivity for all of the
CNCAH networks evaluated. Both the KK and KK-MS-DS algorithms achieved 90%
sensitivity; however, the KK algorithm exhibited the longest execution time to reach that
sensitivity. From the experimental results, it is evident that the proposed CWBound
algorithm reached 90% sensitivity in the shortest time.

18 Se-Hang Cheong, Yain-Whar Si

5 Conclusion

The use of mobile ad hoc network in disaster scenarios has been extensively studied in
recent years. By locating boundary nodes, we can design energy-efficient messaging
schedules in which interior nodes can be turned off occasionally to increase the
throughput. Therefore, boundary node detection is one of the crucial steps in prolonging
the battery life of devices in mobile ad hoc networks for emergency situations. In this
article, we proposed a novel boundary node detection algorithm called CWBound for
CNCAH networks. The CWBound algorithm was evaluated against the KK, DH, FR, FRR, FA2
and KK-MS-DS algorithms. Our experimen- tal results show that the CWBound algorithm
achieved the highest sensitivity of these algorithms in all benchmark CNCAH networks.
The CWBound algorithm also required significantly shorter processing times. The
CWBound algorithm is 3 to 5 times faster than the KK-MS-DS algorithm, and 60 to 400
times faster than the original KK algorithm in achieving 90% sensitivity in the four type of
CNCAH networks (u-shape, smile, star, and doughnut) we evaluated. Our experiments also
revealed that the remaining algorithms were unable to achieve 90% sensitivity. In
addition, the CWBound algorithm achieved at least 95% specificity for all of the CNCAH
networks evaluated, higher than any other algorithm. Con- versely, the FA2 algorithm
achieved 60% specificity for u-shape, and around 50% specificity for the smile, star and
doughnut CNCAH networks, which were the lowest specificities of the algorithms tested.
The experiments also demonstrated that the CWBound algorithm achieved the highest
accuracy (above 97% for 3 of the 4 CNCAH networks) of the algorithms evaluated.

In our future work, we plan to develop a distributed version of the proposed
CWBound algorithm. The distributed version will be based on graph partitioning
algorithms that separate input networks into multiple zones using soft partitioning [33, 31],
and multi-level algorithms [32, 36]. In this future version, force-directed algorithms will
simultaneously process every zone to produce independent visualisations of the graph
topologies of each zone. These visualisations can then be aggregated into a final
visualisation of a graph’s topology, using the correlation information from the soft
partitioning.

Acknowledgements This research was funded by the Research Committee of University of Macau, grants
MYRG2016-00148-FST and MYRG2017-00029-FST.

References

1. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, IEEE Communica- tions
magazine 40(8), 102 (2002)

2. G. Solmaz, D. Turgut, Journal of Network and Computer Applications 84, 55 (2017)
3. A. Mart´ıN-Campillo, J. Crowcroft, E. Yoneki, R. Mart́ ı, Journal of Network and

Computer Applications 36(2), 870 (2013)
4. S.H. Cheong, K.I. Lee, Y.W. Si, et al., in Computational Intelligence and Security (CIS),

2011 Seventh International Conference on (IEEE, 2011), pp. 283–289
5. M. Mauve, J. Widmer, H. Hartenstein, IEEE network 15(6), 30 (2001)

Title Suppressed Due to Excessive Length 19

6. P. Phoummavong, K. Utsu, C.O. Chow, H. Ishii, The Journal of Supercom- puting 72(3),
1201 (2016)

7. A. Efrat, D. Forrester, A. Iyer, S.G. Kobourov, C. Erten, O. Kilic, ACM Transactions on
Sensor Networks (TOSN) 7(3), 27 (2010)

8. S.H. Cheong, Y.W. Si, ACM Transactions on Sensor Networks (TOSN) 13(1), 3 (2016)
9. D. Schieferdecker, An Algorithmic View on Sensor Networks: Surveillance,

Localization, and Communication (epubli, 2014)
10. A. Rafiei, M. Abolhasan, D. Franklin, F. Safaei, in Local Computer Networks (LCN), 2011

IEEE 36th Conference on (IEEE, 2011), pp. 251–254
11. P.K. Sahoo, K.Y. Hsieh, J.P. Sheu, in Wireless and Optical Communications Networks,

2007. WOCN’07. IFIP International Conference on (IEEE, 2007), pp. 1–5
12. T.M. Fruchterman, E.M. Reingold, Software: Practice and experience 21(11), 1129

(1991)
13. T. Kamada, S. Kawai, Information processing letters 31(1), 7 (1989)
14. R. Davidson, D. Harel, ACM Transactions on Graphics (TOG) 15(4), 301 (1996)
15. J. Bresenham, R. Earnshaw, M. Pitteway, Fundamental Algorithms for Computer

Graphics (Springer-Verlag Berlin Heidelberg, 1991)
16. O. Saukh, R. Sauter, M. Gauger, P.J. Marrón, ACM Transactions on Sensor Networks

(TOSN) 6(3), 20 (2010)
17. B. Huang, W. Wu, G. Gao, T. Zhang, International Journal of Distributed Sensor

Networks 10(7), 897039 (2014)
18. Y. Wang, J. Gao, J.S. Mitchell, in Proceedings of the 12th annual international conference

on Mobile computing and networking (ACm, 2006), pp. 122–133
19. C. Zhang, Y. Zhang, Y. Fang, in Networking, Sensing and Control, 2006. ICNSC’06.

Proceedings of the 2006 IEEE International Conference on (IEEE, 2006), pp. 868–873
20. F. Aurenhammer, ACM Computing Surveys (CSUR) 23(3), 345 (1991)
21. L.H. Zhao, W. Liu, H. Lei, R. Zhang, Q. Tan, Mobile Information Systems

2016 (2016)
22. R. Beghdad, A. Lamraoui, Journal of Innovation in Digital Ecosystems 3(1), 1 (2016)
23. S. Afzal, H. Beigy, The Journal of Supercomputing 69(1), 98 (2014)
24. M. Völker, D. Wagner, J. Schmid, T. Gadeke, K. Müller-Glaser, in Localization and GNSS

(ICL-GNSS), 2012 International Conference on (IEEE, 2012), pp. 1–8
25. J.W. Park, D.H. Park, C. Lee, The Journal of Supercomputing 64(2), 507 (2013)
26. W. De Nooy, A. Mrvar, V. Batagelj, Exploratory social network analysis with Pajek, vol.

27 (Cambridge University Press, 2011)
27. M. Chimani, C. Gutwenger, M. Jünger, G.W. Klau, K. Klein, P. Mutzel, Hand- book of

Graph Drawing and Visualization 2011, 543 (2013)
28. K.A. Darabkh, W.Y. Albtoush, I.F. Jafar, The Journal of Supercomputing

73(5), 1952 (2017)
29. M. Jacomy, T. Venturini, S. Heymann, M. Bastian, PloS one 9(6), e98679 (2014)

20 Se-Hang Cheong, Yain-Whar Si

30. P.O. Fjällström, Algorithms for graph partitioning: A survey, vol. 3 (Linköping University
Electronic Press Linköping, 1998)

31. K. Schloegel, G. Karypis, V. Kumar, (Morgan Kaufmann Publish- ers Inc., San
Francisco, CA, USA, 2003), chap. Graph Partition- ing for High-performance
Scientific Simulations, pp. 491–541. URL
http://dl.acm.org/citation.cfm?id=941480.941499

32. B. Hendrickson, R.W. Leland, SC 95(28) (1995). DOI 10.1145/224170.224228
33. I. Safro, P. Sanders, C. Schulz, Journal of Experimental Algorithmics (JEA)

19, 2 (2015)
34. A. Noack, Unified quality measures for clusterings, layouts, and orderings of graphs,

and their application as software design criteria. Ph.D. thesis, Bran- denburg
University of Technology, Cottbus-Senftenberg, Germany (2007)

35. J.D. Enderle, J.D. Bronzino, Introduction to biomedical engineering (Aca- demic press,
2012)

36. P. Gajer, M.T. Goodrich, S.G. Kobourov, Computational Geometry 29(1), 3 (2004)
37. C. Biemann, in Proceedings of the first workshop on graph based methods for

natural language processing (Association for Computational Linguistics, 2006), pp.
73–80

38. D.B. Bracewell, M.T. Tomlinson, M. Mohler, in International Conference on
Intelligent Text Processing and Computational Linguistics, ed. by A. Gelbukh (Springer,
2013), pp. 487–500

http://dl.acm.org/citation.cfm?id=941480.941499
http://dl.acm.org/citation.cfm?id=941480.941499

Title Suppressed Due to Excessive Length 21

×

∈
←

∈

←

A Appendix - Chinese Whispers algorithm

We used the Chinese Whispers algorithm for clustering which is proposed by [37]. The algo- rithm
partitions the nodes of a graph into clusters. The Chinese Whispers algorithm is able to good clustering
results on large networks within an acceptable number of iterations [38]. The time complexity of the
Chinese Whispers algorithm is O(n E), where n is the number of nodes and E is the number of edges in
the network. This algorithm uses the following steps to partition the nodes into clusters. On initialisation,
every node is labelled with a random, unique, class (cluster). For example, node-1 is labelled as class #1,
node-2 is labelled as class #2 and so on. In each iteration, a randomly selected node is assigned to a class
in its local neighbourhood. The class selected to be assigned is the one with the highest total edge weight of
all classes in the neighbourhood of the node. Step 2 is repeated until the class assigned to the nodes
remains the same for a specified number (f) of iterations (i.e. a local minimum is reached). However, the
algorithm may not always be able to converge to a local minimum. In that case, a stopping criterion is used
to terminate the iterations. The pseudo code for the Chinese Whispers algorithm is given in Algorithm 4.

Algorithm 4: Pseudo code of Chinese Whispers algorithm

Input : network topology G = (V, E) a voting
threshold δ
maximum number of iterations s

Output: Clusters in G

1 initialise the iteration count it=0 ;

2 initialise an associated array of class C = ∅ ;

// Step 1 - initialization of labeling.
3 initialise the id of class x = 1 ;
4 foreach v ∈ V do
5 C[v] ← x;
6 x ← x + 1;

7 end

8 while s > it and not converged do
// Step 2 - select nodes in a random order.

9 Let vlist be the list of nodes v V ;
10 vlist list shuffle(vlist); // randomizes the order of the elements in vlist

11 foreach u V do
// Step 2.1 - Calcualte the weight of every class, the pseudo code is shown in Algorithm 3.

12 CalWeight();

13 end

// Step 3 - Wait until termination condition met.
14 if C does not change up to certain iteration then
15 The algorithm is marked as converged and end of iteration.
16 end
17 else
18 it it + 1;
19 end

20 end

