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Abstract Efficient message forwarding in mobile ad hoc network in disaster scenarios is 
challenging because location information on the boundary and interior nodes is often 
unavailable. Information related to boundary nodes can be used to design efficient 
routing protocols as well as to prolong the battery power of devices along the boundary 
of an ad hoc network. In this article, we developed an algorithm, CWBound, which 
discovers boundary nodes in a complex non-convex mobile ad hoc (CNCAH) networks. 
Experiments show that the CWBound algorithm is at least 3 times faster than other state-
of-the-art algorithms, and up to 400 times faster than classical force-directed algorithms. 
The experiments also con- firmed that the CWBound algorithm achieved the highest 
accuracy (above 97% for 3 out of the 4 types of CNCAH networks) and sensitivity (90%) 
among the algorithms evaluated. 

Keywords Mobile ad hoc network · Force-directed algorithm · Boundary node 
detection · Complex non-convex ad hoc network 

 
1 Introduction 

 

Applications of mobile ad hoc networks for disaster scenarios have been reported in 
recent years. These applications include earthquake and tsunami monitoring [1], tracking 
pedestrians and emergency message forwarding [2, 3, 4]. Due to their decentralized and 
self-organizing nature, mobile ad hoc networks are useful for instantly forming a 
temporary emergency network when cellular networks are over- loaded or damaged. For 
example, when a person is trapped under debris after an 
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Fig. 1: A scenario for forwarding emergency messages. 
 
 

earthquake, and has no cellular signal to make a call, he/she can send the messages to an 
emergency station via a mobile ad hoc network as illustrated in Figure 1. Search and 
rescue operation can be launched after the approximate location of the victim is known. 
Although Global Positioning System (GPS) receivers may be embedded in modern mobile 
phones, they are ineffective in indoor environments. Therefore, mobile ad hoc networks 
can be considered as a more practical solution for disaster scenarios. Mobile ad hoc 
networks can be formed with the Wi-Fi signals from mobile phones of the victims or battery 
powered wireless routers mounted in parks or residential areas where disasters are likely 
to occur [2]. However, mobile phones have only limited battery life and the consumption 
of battery power can be high when they are designed to forward the messages to nearby 
devices. 

In the aftermath of disasters, rescuers may not be able to immediately reach the centre 
of the collapsed buildings or the affected areas. In these situations, boundary nodes of an ad 
hoc network are the kind of nodes which are more likely to establish a connection to an 
external emergency station or to a Wi-Fi enabled device maintained by a rescuer who is in 
the vicinity of the affected area. Therefore, it is essential to prolong the battery power of 
boundary nodes by using efficient routing protocols which maximize their throughput to 
store or forward messages from the inner nodes. However, location information about the 
boundary and interior nodes of mobile ad hoc networks is often unavailable in mobile ad 
hoc networks. If the boundary nodes can be identified from these networks, we can 
formulate strategies to prolong the battery life of these nodes by using efficient message 
routing protocols [5]. Moreover, with the information of boundary nodes, the location of 
non-boundary nodes can be estimated by using the topology information [6]. De- 



4 Se-Hang Cheong, Yain-Whar Si 
 

 

  
(a) (b) 

 

Fig. 2: (a) Illustration of boundary nodes, (b) illustration of nodes stacked on the border of 
a canvas. 

 
 

spite their potential use in disaster scenarios, boundary node detection problem in 
mobile ad hoc networks still poses a significant challenge for researchers. 

The boundary nodes of a mobile ad hoc network are the outer nodes of a graph 
(network) [7]. Therefore, the boundary detection problem of a mobile ad hoc network 
can be reformulated as a problem of visualising the topology of the respective graph. 
However, the definition of boundary nodes in mobile ad hoc networks varies depending 
on the application of the network [8, 9, 10, 11]. In this study, we used the Mandatory 
Boundary Nodes [9] definition of boundary nodes. These boundary nodes are found 
exactly on the border of the network. Conversely, Optional Boundary Nodes are defined as 
nodes that are not located exactly on the border, but are positioned at a certain distance 
from a point or located within a defined communication range [9]. In our study, we did not 
consider Optional Boundary Nodes and boundary nodes of inner regions as boundary 
nodes. That is, we attempt to find boundary nodes exactly located on the boundary so 
that they have higher chance to connect to external devices deployed by rescue teams. 
Examples of different kinds of boundary nodes are illustrated in Figure 2(a). The red 
outline indicates the boundary of the network topology. Nodes u and v (yellow) are 
Optional Boundary Nodes, and purple nodes are the Mandatory Boundary Nodes 
considered herein. We did not consider Optional Boundary Nodes (i.e. nodes u and v) as 
boundary nodes in this study. 

Boundary node detection problem can be formulated as a problem of topology 
visualising [7]. In this paper, we use force-directed algorithms because they are widely 
used for the visualisation and can be used to generate a visualisation based purely on the 
topology information. For example, classical force-directed al- gorithms such as 
Fruchterman Reingold (FR) algorithm [12], the Kamada-Kawai (KK) algorithm [13] and the 
Davidson Harel (DH) algorithm [14] have been used for many visualisation problems. 
Force-directed algorithms reply on the spring force exerted on nodes and edges, which is 
proportional to the length of edges in 
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the network topology. Although force-directed algorithms can be used in visual- ising the 
topology, several problems exist with these algorithms which, in some situations, prevent 
them from producing acceptable results. 

In this article, we address the boundary node detection problems of complex non-
convex mobile ad hoc networks (CNCAH) in which nodes are randomly dis- tributed, and 
only connection information is available. A CNCAH is comprised of convex and non-convex 
polygons, inner holes and intersecting edges. These net- works are usually non-convex in 
the visualisations of their topologies [15]. CNCAH networks from previous studies [7], [16] 
were also used in our experiments. In this article, we propose an algorithm, CWBound, 
which exhibits high sensitivity in generating a visualisation of the topologies of CNCAH 
networks. The CWBound algorithm uses a clustering based method to improve the 
position assignments and adjusts the forces acting on the nodes. The visualisations 
generated by the CWBound algorithm are then used for boundary node detection. 

The rest of this article is organized as follows. In Section 2, we review related work on 
boundary node detection using force-directed algorithms. In Section 3, we propose 
CWBound algorithm for boundary node detection. In Section 4, we com- pare the 
CWBound algorithm with existing force-directed algorithms in solving the boundary node 
detection problem. In Section 5, we conclude the paper with future work. 

 
 

2 Related Work 
 

Boundary node detection in mobile ad hoc network has been reported in recent studies. 
For example, Huang et al. [17] suggested a heuristic algorithm to check if a node is 
suspected to be on the boundary of mobile ad hoc network in which the communication 
network is a d-quasi unit disk graph model (d-QUDG). Here, d is the longest Euclidean 
distance across which two nodes can communicate. In [18], Wang et al. used topological 
information for boundary node and inner hole detection. The algorithm proposed by 
Want et al. builds the shortest path tree by flooding the network from an arbitrary root 
node upon initialisation. They assumed that the shortest paths selected from the shortest 
path tree are more similar to straight lines if there is no hole between the nodes within the 
shortest path tree. Otherwise, the shortest paths are curved. In addition to the heuristic 
approaches, topological based approaches were also used in boundary node detection. 
For ex- ample, in [19], Zhang et al. used Voronoi diagram [20] (a geometric data structure) 
for boundary node detection. In [21] and [22], geographical location data is used to 
identify boundary nodes and holes. 

Furthermore, several extensions to force-directed algorithms have been pro- posed 
to solve the localisation problems of mobile ad hoc networks. For example, FRR algorithm 
[7] follows the approach of the classical FR algorithm, but it in- corporates information on 
the lengths of edges in the generation of the graph. The length information is often 
obtained from the signal strength of the sensors. Afzal and Beigy [23] proposed a 
distributed algorithm for sensor localisation based on SVM (Support Vector Machine). In 
their approach, each node estimates the locations according to RSS (Received Signal 
Strength) data and the prediction model built in SVM. The estimated locations are then 
sent to the sink nodes which later update the location of nodes by broadcasting to the 
whole network. In addition, 
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[24] proposed a method for tracking the position of nodes using a force-directed 
algorithm based on the signal strength and changes in the movement of the sen- sors. In 
their approach, a built-in accelerometer is used to collect information from the sensors on 
their movements. In [25], Park et al. proposed a method to deter- mine the position of 
sensors based on the measured angles and distances. They assumed that each sensor can 
measure the distance (e.g. by using received signal strength) and the angle (e.g. by using 
angle of arrival (AoA) measurement) of nearby sensors. 

Although force-directed algorithms can be used for boundary node detection, they 
suffer from high computational cost. Force-directed algorithms may not be able to 
generate visualisations of network topologies of acceptable quality for large- scale networks, 
networks with complex topologies, and networks with high average degrees [26]. In 
addition, sensitivity and specificity cannot be further improved when these algorithms 
become trapped in local minima. In addition, as we lack information about the anchor 
points and the coarse topology of the network, randomised coordinates are often 
assigned to nodes on initialisation [27]. This ran- domised position assignment causes the 
nodes and edges to collapse and stack against each other during the initialisation phase. 
Clustering based methods are useful for position assignment in initialisation phase 
because adjacent nodes in a mobile ad hoc network usually have similar data [28]. 
Therefore, in this article, we propose an algorithm called CWBound for improving the 
position assignments in complex networks using a clustering based method. 

To evaluate the performance of the CWBound algorithm, we compare it against the KK, 
DH, FR, FRR, FA2 [29], and KK-MS-DS [8] algorithms. In these experiments, we measured 
four performance metrics: the sensitivity, specificity, accuracy, and execution time with 
respect to a varying number of nodes and average degrees. Experimental results showed 
that the CWBound algorithm shortened the processing time significantly. Specifically, we 
found that the CWBound algorithm was at least 3 times faster than the current state-of-
the-art force-directed algorithms (for example, KK-MS-DS), and up to 400 times faster than 
classical force-directed algorithms (such as the KK algorithm). In most cases, the 
CWBound algorithm achieved 90% sensitivity, significantly greater than that of the other 
algorithms tested. 

 
 

3 CWBound algorithm for boundary node detection 
 

Force-directed algorithms can produce visualisations based purely on the structure 
(topology) of a network (graph) itself, and do not require additional informa- tion about 
the network to generate a visualisation of its topology. The classical FR algorithm models 
two forces on each node (attraction and repulsion). Recall that computational speed is 
one of the problems of classical force-directed algorithms for visualising large-scale 
complex networks. Moreover, nodes and edges are often collapsed, especially on the 
initialisation of the algorithm. Hence classical force-directed algorithms are difficult to 
achieve an acceptable visualisation quality within a short time. Sensitivity and specificity 
cannot be further improved when there are local minima. According to the evaluation 
conducted in [8], the sensitivity and specificity of the classical force-directed algorithm 
(e.g. FR) are poor, even if the number of nodes is fewer than 1000. To alleviate these 
prob- 
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lems, we developed an algorithm, CWBound, which combines the clustering based schema 
and improved force models for boundary node detection. The combined forces in a given 
iteration of the CWBound algorithm can be defined as follows: 

 

F = Fa + Fr + Fg (1) 
 

To avoid nodes and edges being stacked at the border of the canvas (Fig- ure 2(b)), 
we adopted a modified version of the ideal pairwise distance from the FR algorithm. If 
the size of the canvas is limited, then the network has no space for expansion. Therefore, 
the constant of ideal pairwise distance for both the at- traction (fa) and repulsion forces 
(fr) is defined in CWBound as follows: 

 
 

k = 
m × a 

n + 1 
(2) 

 

where m is an expansion multiplier for the diffusion of the nodes, a  is the size  of canvas 
and n is the total number of nodes in the network topology. Next, we added a 
gravitational force model to compensate for the repulsion of nodes that are far from the 
centre of the canvas. Gravitational forces attract nodes towards the centre of the canvas. 
This attraction can also improve node spreading so that nodes do not stack on each other. 
The revised gravitational force is defined as follows: 

Fg(n) = k × G × d(n) (3) 

where G is the gravitation coefficient, d(n) is a distance function which represents the 
distance between the centre of the canvas and the node n, and k is the ideal pairwise 
distance, as defined in Equation 2. 

One of the drawbacks of force-directed algorithms is the large number of iterations 
needed in visualisation [8]. That is because force-directed algorithms usually assign 
random positions to nodes at the first iteration. Although some algorithms, such as FRR, 
use estimated distances instead of random positions, nodes are still moved according to 
the forces defined in these algorithms. Sensitivity and specificity are often reduced 
because most of these algorithms use almost half of their execution time to construct a 
coarse visualisation of the topology. Therefore, a useful initialisation schema could 
significantly increase an algorithm’s performance. Existing studies used graph partitioning 
[30, 31] and multilevel algorithms [32, 33] that create a coarse visualisation of network 
topologies. However, these algorithms depend on force-directed algorithms, to project 
the results of partitioning onto a canvas. The time complexity is high because we need to 
employ force-directed algorithms twice in which force-directed algorithms used to create 
a coarse visualisation and the final visualisation of network topologies. 

Therefore, we proposed an initialisation scheme for nodes using a fast cluster- ing 
algorithm with a suitable level of accuracy. The aim of our approach is to apply a force-
directed algorithm to result of clustering results to compensate for node placement. We 
used clustering algorithm performs partitioning based on information regarding the nodes, 
edges and the weights of the edges. In our approach, we defined the estimated distance, 
estdist(n1, n2), based on the free-space path loss (FSPL) assumption. This was used to 
calculate the estimated distances based on the signal strengths of the nodes. FSPL is a 
term used in telecommunications to denote the loss in signal strength of an 
electromagnetic wave in a line-of-sight 
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path. The estimated distance is also used as the weight of the edges in the clustering 
algorithm. We assumed an ideal situation in our study; that there were no obstacles 
nearby to cause diffraction or reflection. The estimated distance (in meters) can be 
calculated for FSPL as follows: 

 

d = 10 
27.55−20×log(f )−s 

20 (4) 
 

where f is the signal frequency in MHz and s is the signal strength. 

 
Algorithm 1: Pseudo code of CWBound algorithm 

 

Input : network topology G = (V, E) maximum 
number of execute time s 

Output: a visual drawing of G 

1 initialise the timer t = 0 ; 

2 initialise an associated array of class C = Clustering Algorithm(G) ; 

3 while s > it and not converged do 
// Clustering information 

4  Let vpart be the partition result in C ; 

5  Let vcentroid be the list of centroid in C ; 

6 if distance of nodes in vcentroid is proportional to G then 
7 C ← Clustering Algorithm(G); 
8 vpart   ← thepartitionresultinC; 
9 vcentroid  ← thelistofcentroidinC 

10 end 

// Algorithm 2 
11 CalForces( V, E ); 

// Update the elaspsed time 
12 t ← t + elapsedtime; 

13 end 

 
We defined a modified LinLog model as an extension of attraction force in CWBound 

algorithm. This force is designed to tighten the clusters so that nodes belonging to the 
same cluster do not separate. The idea is adopted from the FA2 algorithm. The LinLog 
model was proposed by [34]. The LinLog model emphasises the visualisation of clusters in a 
network, and tightens those clusters. A cluster may have a high number of internal edges 
with nodes in the same cluster, but may contain few edges with nodes outside the cluster 
[35]. The modified attraction force is defined as follows: 

Fa(n1, n2) = log(1 + d(n1, n2) × w) (5) 

where w is the sum of the weight values if both n1 and n2 belong to the same class. d is the 
distance between n1 and n2; the initial value of d is set to estdist(n1, n2). Furthermore, 
Equation 6 defines a new repulsion force that acts more strongly on nodes that do not 
belong to the same cluster, thus reducing node stacking. The repulsion force of CWBound 
algorithm is defined as follows: 

F (n , n )  = k 
max(C(n1)) × max(C(n2)) 

d(n1, n2) 

 

(6) 
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Algorithm 2: Pseudo code of forces calculation CalForces() 
// Calculate the displacement by repulsion force 

1 foreach u ∈ V do 
2 foreach v ∈ V and u ƒ= v do 
3 u.x ← u.x + Fr (u, v); 
4 u.y ← u.x + Fr (u, v); 

5 end 

6 end 

// Calculate the displacement by attraction force 
7 foreach e E do 
8 Let u, v be the end nodes of e; 
9 ∆ ← (e.ux − e.vx)2 + (e.uy − e.vy )2; 

10 e.ux  ← e.ux − ux−vx  × Fa(u, v); 

11 e.uy  ← e.uy  − uy−vy × Fa(u, v); 

12 e.vx  ← e.vx  + ux−vx  × Fa(u, v); 

13 e.vy  ← e.vy + 
uy−vy  × Fa(u, v); 

14 end 

// Calculate the displacement by gravity force 
15  foreach ,v ∈ V    do 

 
    

17 vx ← vx − ux/∆ × Fg ; 
18 vy ← vy − vy/∆ × Fg ; 

19 end 

 
The workflow of proposed CWBound algorithm is shown in Figure 3. On initialisation, 

the clustering algorithm is used to find clusters. The clustering algorithm input contains 
the nodes and the length of the edges. In our experiments, the lengths of the edges are 
randomly generated. In real-world applications, the length of an edge is an estimated 
distance between two nodes, and can be derived from the signal strengths of the nodes. 

The next step in the CWBound algorithm is to find the centre node (medoid) of every 
cluster. However, at this point, none of the nodes in the network topology have positions, 
because they have not yet been projected onto the canvas. Therefore, the potential 
centre nodes can only be determined using the estimated distance. The centre node of a 
cluster is the node that has the shortest distances to the other nodes in the same cluster 
which is defined in Equation 7. 

 

n 

xcentre  = argminy∈{x1,x2,...xn} d (y, xi) (7) 
i=1 

 

where x1, x2, ..., xn are the nodes which belong to a cluster. d(y, xi) is the distance function. 
Once the centre node of a cluster is identified, the network topology is projected onto a 

canvas by assigning randomised initial positions to nodes. Examples of the centre nodes, 
centroids and the distances between centre nodes are illustrated in Figure 4. The position 
of the centre node is then input into Equation 3. Next, the CWBound algorithm calculates 
the attraction, repulsion and gravitational forces using Equation 3, Equation 5 and 
Equation 6. The positions of the nodes are then 

; 2 
displacementY + v 2 

displacementX 
v ∆ 

← 
16 
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Fig. 3: The proposed CWBound algorithm. 
 
 

updated iteratively. This procedure is repeated until the distances between the centre 
nodes are proportional to their estimated distances. 

When the distances between the centre nodes on the canvas and the estimated 
distances between the centre nodes are proportional, it implies that the clusters are suitably 
spread out and the nodes will not be stacked together, as in Figure 2(b). When this 
situation is detected, the following procedure is used to enhance the coarse visualisation 
of the topology. First, the length of the edges on the canvas are input into the clustering 
algorithm, instead of the estimated distances calcu- lated from the signal strength. 
Second, the CWBound algorithm uses Equation 8 and the centroids of the clusters to 
calculate the gravitational forces, rather than Equation 3. Centroids are not nodes; rather 
they are the positions of the centres of the clusters. The position of the centroid of a 
cluster is used in Equation 8. Figure 4 shows examples of centroids. We can define the 
gravitational forces used in this procedure as follows: 

 

Fg
J (n) = k × G × dJ(n) (8) 
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Fig. 4: Examples of centre nodes, centroids and the distances between centre nodes. 
 
 
 

where G is the gravitation coefficient, dJ(n) is a distance function used to calculate the 
distance between the centroid of a cluster and a node, n, within that cluster, and k  is the 
ideal pairwise distance stated in Equation 2. Finally, the CWBound algorithm repeatedly 
executes the clustering algorithm to recalculate the centroids of the clusters and update 
the positions of the nodes on the canvas, until the termination condition is met. The 
pseudo code for the CWBound algorithm, forces calculation function and the weight 
calculation function are given in Algorithm 1, Algorithm 2 and Algorithm 3 respectively. 

 

Algorithm 3: Pseudo code of weight calculation function CalWeight(). 
 

Input : network topology G = (V, E) 

Output: Weights W 

1 initialise the associate array of class weight W = ∅ ; 
2 foreach v ∈ V and hopcount(u, v) = 1 do 
3 W [C[v]] ← 0; 

4 end 

5 initialise the sum of class weight sumw = 0 ; 
6 foreach v ∈ V and hopcount(u, v) = 1 do 
7 W [C[v]] ← W [C[v]] + estdist(u, v); 
8 sumw ← W [C[v]] + sumw; 

9 end 

// Find a class which has maximum sum of weight. 
10 Let Wmax be the maximum value of weight in W ; 
11 Let Cmax be the class which has highest value in W ; 
12 if Wmax/sumw > δ then 
13 C[u] ← Cmax; 

14 end 

15 return W ; 
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Fig. 5: Samples of CNCAH networks generated for the experiments. 
 
 

4 Experiments 
 

In this section, we compare the performance of the proposed CWBound algorithm on 
CNCAH networks with the KK, FR, DH, FRR, KK-MS-DS and FA2 algorithms. These 
experiments were performed on a computer with an Intel Core i5 processor, 8 GB of 
memory, and Windows 7 64 bit. The node counts and aver- age degrees of these 
networks were set to 1000 and 8, respectively. Four irregular CNCAH networks were used 
in these benchmark topologies. Figure 5 illustrates the samples of the CNCAH networks 
generated for the experiments. The dataset used in our experiments can be downloaded 
from 1. Besides, we have also de- veloped the CNCAHNetGenerator2 for generating CNCAH 
networks of arbitrary node and edge types. In the experiments, we measured four 
performance metrics: the sensitivity, specificity, accuracy and execution time with respect 
to varying numbers of sensors and different average degrees. Definitions of these metrics 
are given in Table 1. 

 
 

Table 1: Performance evaluation metrics. 
 

Metrics Description Result 
 

Sensitivity/True 
positive rate 

 
Specificity/True 
negative rate 

 
 

 
Accuracy 

Boundary nodes on the initial network 
topology correctly identified as boundary 

nodes by algorithms 

Non-boundary nodes on the initial 
network topology correctly identified as 

non-boundary nodes by algorithms 

The sum of the true positive count (i.e., 
boundary nodes correctly identified as 
boundary nodes) and the true negative 

count (i.e., 
non-boundary correctly identified as 

non-boundary nodes) divided by the total 
number of nodes examined 

 

The higher the 
better 

 
The higher the 

better 
 
 
 

The higher the 
better 

Execution time Total amount of execution time that 
the algorithm ran in seconds 

 

The lower the better 
 

 

 

1 http://www.cis.umac.mo/~fstasp/tools/CWBound-Dataset.7z 
2 http://www.cis.umac.mo/~fstasp/profile eric.html 

http://www.cis.umac.mo/~fstasp/tools/CWBound-Dataset.7z
http://www.cis.umac.mo/~fstasp/profile
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4.1 Evaluation of sensitivity, specificity, and accuracy in boundary node detection 
 

We compared the sensitivity, specificity and accuracy of the CWBound algorithm in CNCAH 
networks with the KK, FR, DH, KK-MS-DS, FRR and FA algorithms. In this experiment, all of 
the algorithms were executed for 60 time units. As the results illustrated in Figure 6 show, 
the CWBound algorithm achieved results of at least 90% on all three measures 
(sensitivity, specificity and accuracy), for all of the CNCAH networks tested in the 
experiment. The KK-MS-DS algorithm achieved around 70% sensitivity for all of the CNCAH 
networks, and the remain- ing algorithms had lower sensitivities than both the CWBound 
and KK-MS-DS algorithms. 

 
 

(a) (b) 
 

(c) (d) 
 

Fig. 6: Algorithm performances with (a) U-Shape, (b) Doughnut, (c) Smile and 

(d) Star networks. 
 

 
4.2 Evaluation of execution time for detecting boundary nodes 

 

In this section, we compare the total time spent for the algorithms to achieve 90% 
sensitivity in the visualisations of the CNCAH networks. Two stopping criteria were set in 
this experiment. Either an algorithm will stop when it achieves 90% sensitivity, or the 
sensitivity of the algorithm remains unchanged up to certain iterations. We used 100 
iterations in our experiments. Figure 7, 8, 9 and 10 sum- marise the results of our 
experiments. The horizontal axis of figures denotes the execution time for each network. 
From the experiments, we found that most of the algorithms did not achieve 90% 
sensitivity. The average sensitivity of the FR 
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and FA2 algorithms was between 40% and 50% for all of the CNCAH networks evaluated. 
 
 
 
 
 
 
 
 

 

 

Fig. 7: Evaluation of the execution time for Doughnut CNCAH network. 
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Fig. 8: Evaluation of the execution time for Smile CNCAH network. 
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Fig. 9: Evaluation of the execution time for Star CNCAH network. 
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Fig. 10: Evaluation of the execution time for U-shape CNCAH network. 
 
 
 
 
 
 

We also found that the DH algorithm did not reach 90% sensitivity, but remained 
constant at around 10%. The FRR algorithm achieved 70 to 80% sensitivity for all of the 
CNCAH networks evaluated. Both the KK and KK-MS-DS algorithms achieved 90% 
sensitivity; however, the KK algorithm exhibited the longest execution time to reach that 
sensitivity. From the experimental results, it is evident that the proposed CWBound 
algorithm reached 90% sensitivity in the shortest time. 



18 Se-Hang Cheong, Yain-Whar Si 
 

 

5 Conclusion 
 

The use of mobile ad hoc network in disaster scenarios has been extensively studied in 
recent years. By locating boundary nodes, we can design energy-efficient messaging 
schedules in which interior nodes can be turned off occasionally to increase the 
throughput. Therefore, boundary node detection is one of the crucial steps in prolonging 
the battery life of devices in mobile ad hoc networks for emergency situations. In this 
article, we proposed a novel boundary node detection algorithm called CWBound for 
CNCAH networks. The CWBound algorithm was evaluated against the KK, DH, FR, FRR, FA2 
and KK-MS-DS algorithms. Our experimen- tal results show that the CWBound algorithm 
achieved the highest sensitivity of these algorithms in all benchmark CNCAH networks. 
The CWBound algorithm also required significantly shorter processing times. The 
CWBound algorithm is 3 to 5 times faster than the KK-MS-DS algorithm, and 60 to 400 
times faster than the original KK algorithm in achieving 90% sensitivity in the four type of 
CNCAH networks (u-shape, smile, star, and doughnut) we evaluated. Our experiments also 
revealed that the remaining algorithms were unable to achieve 90% sensitivity. In 
addition, the CWBound algorithm achieved at least 95% specificity for all of the CNCAH 
networks evaluated, higher than any other algorithm. Con- versely, the FA2 algorithm 
achieved 60% specificity for u-shape, and around 50% specificity for the smile, star and 
doughnut CNCAH networks, which were the lowest specificities of the algorithms tested. 
The experiments also demonstrated that the CWBound algorithm achieved the highest 
accuracy (above 97% for 3 of the 4 CNCAH networks) of the algorithms evaluated. 

In our future work, we plan to develop a distributed version of the proposed 
CWBound algorithm. The distributed version will be based on graph partitioning 
algorithms that separate input networks into multiple zones using soft partitioning [33, 31], 
and multi-level algorithms [32, 36]. In this future version, force-directed algorithms will 
simultaneously process every zone to produce independent visualisations of the graph 
topologies of each zone. These visualisations can then be aggregated into a final 
visualisation of a graph’s topology, using the correlation information from the soft 
partitioning. 
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A Appendix - Chinese Whispers algorithm 
 

We used the Chinese Whispers algorithm for clustering which is proposed by [37]. The algo- rithm 
partitions the nodes of a graph into clusters. The Chinese Whispers algorithm is able to good clustering 
results on large networks within an acceptable number of iterations [38]. The time complexity of the 
Chinese Whispers algorithm is O(n  E), where n  is the number of nodes and E is the number of edges in 
the network. This algorithm uses the following steps to partition the nodes into clusters. On initialisation, 
every node is labelled with a random, unique, class (cluster). For example, node-1 is labelled as class #1, 
node-2 is labelled as class #2 and so on. In each iteration, a randomly selected node is assigned to a class 
in its local neighbourhood. The class selected to be assigned is the one with the highest total edge weight of 
all classes in the neighbourhood of the node. Step 2 is repeated until the class assigned to the nodes 
remains the same for a specified number (f ) of iterations (i.e. a local minimum is reached). However, the 
algorithm may not always be able to converge to a local minimum. In that case, a stopping criterion is used 
to terminate the iterations. The pseudo code for the Chinese Whispers algorithm is given in Algorithm 4. 

 

 

Algorithm 4: Pseudo code of Chinese Whispers algorithm 
 

Input :  network topology G = (V, E) a voting 
threshold δ 
maximum number of iterations s 

Output: Clusters in G 

1 initialise the iteration count it=0 ; 

2 initialise an associated array of class C = ∅ ; 

// Step 1 - initialization of labeling. 
3 initialise the id of class x = 1 ; 
4 foreach v ∈ V do 
5 C[v] ← x; 
6 x ← x + 1; 

7 end 

8 while s > it and not converged do 
// Step 2 - select nodes in a random order. 

9 Let vlist be the list of nodes v V ; 
10  vlist list shuffle(vlist); // randomizes the order of the elements in vlist 

11 foreach u V do 
// Step 2.1 - Calcualte the weight of every class, the pseudo code is shown in Algorithm 3. 

12 CalWeight(); 

13 end 

// Step 3 - Wait until termination condition met. 
14 if C does not change up to certain iteration then 
15 The algorithm is marked as converged and end of iteration. 
16 end 
17 else 
18 it it + 1; 
19 end 

20 end 


