Skip to main content

Advertisement

Log in

Island flower pollination algorithm for global optimization

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Flower pollination algorithm (FPA) is a recent swarm-based evolutionary algorithm that was inspired by the biological evolution of pollination of the flowers. It deals with a panmictic population of pollens (or solutions) at each generation, using global and local pollination operators, to improve the whole population at once. Like other evolutionary algorithms, FPA has a chronic shortcoming that lies in its inability to maturely converge. This is conventionally known as a premature convergence where the diversity of the population is loosed and thus the search is stagnated. Island model is one of the successful structured population techniques that were utilized in the theoretical characteristics of several evolutionary-based algorithms. In this model, the population is divided into a set of islands. The knowledge is distributed among those islands using a migration process that is controlled by migration rate, topology, frequency, and policy. In this paper, the island model is utilized in the evolution process of FPA to control diversity. The proposed approach is called IsFPA. The ability of IsFPA in maintaining the diversity during the search process, and in producing impressive results, can be interpreted by utilizing the island model in the FPA optimization framework. To assess the efficiency of IsFPA, 23 benchmark functions with various sizes and complexities were used. The best parameter configurations of IsFPA were investigated and analyzed. Comparing the results of IsFPA with those of state-of-the-art methods which are FPA, genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm (GSA), multi-verse optimizer (MVO), island bat algorithm (iBA), and island harmony search (iHS), the comparison results show that the IsFPA is able to control the diversity and improves the outcomes where IsFPA is ranked first followed by FPA, iBA, iHS, GSA, MVO, GA, PSO, respectively, based on the Friedman test with Holm and Hochberg as post hoc statistical test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang X-S (2012) Flower pollination algorithm for global optimization. In: Durand-Lose J, Jonoska N (eds) Unconventional computation and natural computation. Springer, Berlin, pp 240–249

    Chapter  Google Scholar 

  2. Abdel-Basset M, Zhou Y (2018) An elite opposition-flower pollination algorithm for a 0–1 knapsack problem. Int J Bio-Inspired Comput 11(1):46–53

    Article  Google Scholar 

  3. Zhou G, Wang R, Zhou Y (2018) Flower pollination algorithm with runway balance strategy for the aircraft landing scheduling problem. Clust Comput 21(3):1543–1560

    Article  MathSciNet  Google Scholar 

  4. Zhang W, Zongxi Q, Zhang K, Mao W, Ma Y, Fan X (2017) A combined model based on ceemdan and modified flower pollination algorithm for wind speed forecasting. Energy Convers Manag 136:439–451

    Article  Google Scholar 

  5. Ram JP, Babu TS, Dragicevic T, Rajasekar N (2017) A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation. Energy Convers Manag 135:463–476

    Article  Google Scholar 

  6. Shuhui X, Wang Y (2017) Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm. Energy Convers Manag 144:53–68

    Article  Google Scholar 

  7. Ram JP, Rajasekar N (2017) A novel flower pollination based global maximum power point method for solar maximum power point tracking. IEEE Trans Power Electron 32(11):8486–8499

    Article  Google Scholar 

  8. Zhou Y, Wang R, Zhao C, Luo Q, Metwally MA (2017) Discrete greedy flower pollination algorithm for spherical traveling salesman problem. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3176-4

    Article  Google Scholar 

  9. Abdelaziz AY, Ali ES, Elazim SMA (2016) Combined economic and emission dispatch solution using flower pollination algorithm. Int J Electr Power Energy Syst 80:264–274

    Article  Google Scholar 

  10. Abdelaziz AY, Ali ES, Elazim SMA (2016) Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems. Energy 101:506–518

    Article  Google Scholar 

  11. Rodrigues D, Silva GFA, Papa JP, Marana AN, Yang X-S (2016) EEG-based person identification through binary flower pollination algorithm. Expert Syst Appl 62:81–90

    Article  Google Scholar 

  12. Nigdeli SM, Bekdas G, Yang X-S (2016) Application of the flower pollination algorithm in structural engineering. Springer, Cham, pp 25–42

    Google Scholar 

  13. Sayed SAE−F, Nabil E, Badr A (2016) A binary clonal flower pollination algorithm for feature selection. Pattern Recognit Lett 77:21–27

    Article  Google Scholar 

  14. Zhou Y, Wang R (2016) An improved flower pollination algorithm for optimal unmanned undersea vehicle path planning problem. Int J Pattern Recognit Artif Intell 30(04):1659010

    Article  Google Scholar 

  15. Dahi ZAEM, Mezioud C, Draa A (2016) On the efficiency of the binary flower pollination algorithm: application on the antenna positioning problem. Appl Soft Comput 47:395–414

    Article  Google Scholar 

  16. Abdel-Basset M, Shawky LA (2018) Flower pollination algorithm: a comprehensive review. Artif Intell Rev. https://doi.org/10.1007/s10462-018-9624-4

    Article  Google Scholar 

  17. Alyasseri ZAA, Khader AT, Al-Betar MA, Awadallah MA, Yang X-S (2018) Variants of the flower pollination algorithm: a review. Springer, Cham, pp 91–118

    Google Scholar 

  18. Pan J-S, Dao T-K, Nguyen T-T, Chu S-C, Pan T-S (2016) Dynamic diversity population based flower pollination algorithm for multimodal optimization. In: Nguyen NT, Trawiński B, Fujita H, Hong T-P (eds) Intell Inf Database Syst. Springer, Berlin, pp 440–448

    Google Scholar 

  19. Mahdad B, Srairi K (2016) Security constrained optimal power flow solution using new adaptive partitioning flower pollination algorithm. Appl Soft Comput 46:501–522

    Article  Google Scholar 

  20. Abdel-Basset M, El-Shahat D, El-Henawy I, Sangaiah AK (2018) A modified flower pollination algorithm for the multidimensional knapsack problem: human-centric decision making. Soft Comput 22(13):4221–4239

    Article  Google Scholar 

  21. Nasser AB, Zamli KZ, Alsewari ARA, Ahmed BS (2018) Hybrid flower pollination algorithm strategies for t-way test suite generation. PLoS ONE 13(5):e0195187

    Article  Google Scholar 

  22. Lim TY (2014) Structured population genetic algorithms: a literature survey. Artif Intell Rev 41(3):385–399

    Article  Google Scholar 

  23. Palomo-Romero JM, Salas-Morera L, Garcia-Hernandez L (2017) An island model genetic algorithm for unequal area facility layout problems. Expert Syst Appl 68:151–162

    Article  Google Scholar 

  24. Kurdi M (2017) An improved island model memetic algorithm with a new cooperation phase for multi-objective job shop scheduling problem. Comput Ind Eng 111:183–201

    Article  Google Scholar 

  25. Al-Betar MA, Awadallah MA (2018) Island bat algorithm for optimization. Expert Syst Appl 107:126–145

    Article  Google Scholar 

  26. Alba E, Alfonso H, Dorronsoro B (2005) Advanced models of cellular genetic algorithms evaluated on sat. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation. ACM, pp 1123–1130

  27. Alba E, Dorronsoro B (2009) Cellular genetic algorithms, vol 42. Springer, New York

    MATH  Google Scholar 

  28. Al-Betar MA, Khader AT, Awadallah MA, Alawan MH, Zaqaibeh B (2013) Cellular harmony search for optimization problems. J Appl Math 2013:1–20

    Article  MathSciNet  Google Scholar 

  29. Tardivo ML, Caymes-Scutari P, Bianchini G, Méndez-Garabetti M (2017) Hierarchical parallel model for improving performance on differential evolution. Concurr Comput Pract Exp 29(10):e4087

    Article  Google Scholar 

  30. Dick G (2003) The spatially-dispersed genetic algorithm. In: Genetic and Evolutionary Computation GECCO 2003. Springer, pp 1572–1573

  31. Akbari R, Zeighami V, Ziarati K (2010) MLGA: a multilevel cooperative genetic algorithm. In: 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA). IEEE, pp 271–277

  32. Qi S, Wan L, Fu B (2018) Multisource and multiuser water resources allocation based on genetic algorithm. J Supercomput. https://doi.org/10.1007/s11227-018-2563-7

    Article  Google Scholar 

  33. Whitley D, Rana S, Heckendorn RB (1999) The island model genetic algorithm: on separability, population size and convergence. J Comput Inf Technol 7:33–48

    Google Scholar 

  34. Akhmedova S, Stanovov V, Semenkin E (2018) Soft island model for population-based optimization algorithms. In: International Conference on Swarm Intelligence. Springer, pp 68–77

  35. Mambrini A, Sudholt D, Yao X (2012) Homogeneous and heterogeneous island models for the set cover problem. In: International Conference on Parallel Problem Solving from Nature. Springer, pp 11–20

  36. Gong Y-J, Chen W-N, Zhan Z-H, Zhang J, Li Y, Zhang Q, Li J-J (2015) Distributed evolutionary algorithms and their models: a survey of the state-of-the-art. Appl Soft Comput 34:286–300

    Article  Google Scholar 

  37. Tomassini M (2005) Spatially structured evolutionary algorithms: artificial evolution in space and time (natural computing series). Springer, New York

    MATH  Google Scholar 

  38. Lardeux F, Goeffon A (2010) A dynamic island-based genetic algorithms framework. In: Proceedings of the 8th International Conference on Simulated Evolution and Learning, SEAL’10. Springer, Berlin, pp 156–165

  39. Rahman MM, Śļezak D, Wrblewski J (2005) Parallel island model for attribute reduction. In: Pal SK, Bandyopadhyay S, Biswas S (eds) Pattern recognition and machine intelligence. Lecture notes in computer science, vol 3776. Springer, Berlin, pp 714–719

    Chapter  Google Scholar 

  40. Skolicki Z, De Jong K (2004) Improving evolutionary algorithms with multi-representation island models. In: Yao X, Burke EK, Lozano JA, Smith J, Merelo-Guervs JJ, Bullinaria JA, Rowe JE, Tio P, Kabn A, Schwefel H-P (eds) Parallel problem solving from nature—PPSN VIII, volume 3242 of lecture notes in computer science. Springer, Berlin, pp 420–429

    Google Scholar 

  41. Tam KY (1998) Solving facility layout problems with geometric constraints using parallel genetic algorithms: experimentation and findings. Int J Prod Res 36(12):3253–3272

    Article  MATH  Google Scholar 

  42. Al-Hakim L (2000) On solving facility layout problems using genetic algorithms. Int J Prod Res 38(11):2573–2582

    Article  MATH  Google Scholar 

  43. Alshraideh M, Mahafzah BA, Al-Sharaeh S (2011) A multiple-population genetic algorithm for branch coverage test data generation. Softw Qual J 19(3):489–513

    Article  Google Scholar 

  44. Al-Betar MA, Awadallah MA, Khader AT, Abdalkareem ZA (2015) Island-based harmony search for optimization problems. Expert Syst Appl 42(4):2026–2035

    Article  Google Scholar 

  45. Romero JF, Cotta C (2005) Optimization by island-structured decentralized particle swarms. In: Reusch B (ed) Computational intelligence, theory and applications, Advances in soft computing, vol 33. Springer, Berlin, Heidelberg, pp 25–33

  46. Thein HTT (2014) Island model based differential evolution algorithm for neural network training. Adv Comput Sci Int J 3(1):67–73

    Google Scholar 

  47. Wei X, Wang R, Zhang L, Xingsheng G (2012) A multi-population cultural algorithm with adaptive diversity preservation and its application in ammonia synthesis process. Neural Comput Appl 21(6):1129–1140

    Article  Google Scholar 

  48. Michel R, Middendorf M (1998) An island model based ant system with look ahead for the shortest supersequence problem. In: Parallel Problem Solving from Nature, PPSN V. Springer, pp 692–701

  49. Al-Adwan A, Mahafzah BA, Sharieh A (2018) Solving traveling salesman problem using parallel repetitive nearest neighbor algorithm on OTIS-hypercube and OTIS-mesh optoelectronic architectures. J Supercomput 74(1):1–36

    Article  Google Scholar 

  50. Al-Adwan A, Sharieh A, Mahafzah BA (2019) Parallel heuristic local search algorithm on OTIS hyper hexa-cell and OTIS mesh of trees optoelectronic architectures. Appl Intell 49(2):661–688

    Article  Google Scholar 

  51. Ingrouille M (2009) Understanding flowers and flowering: an integrated approach. Ann Bot 103(1):vi

    Article  Google Scholar 

  52. Łukasik S, Kowalski PA (2015) Study of flower pollination algorithm for continuous optimization. In: Angelov P, Atanassov KT, Doukovska L, Hadjiski M, Jotsov V, Kacprzyk J, Kasabov N, Sotirov S, Szmidt E, Zadrożny S (eds) Intelligent systems’2014. Springer, Cham, pp 451–459

    Google Scholar 

  53. Corcoran AL, Wainwright RL (1994) A parallel island model genetic algorithm for the multiprocessor scheduling problem. In: Proceedings of the 1994 ACM Symposium on Applied Computing. ACM, pp 483–487

  54. Skolicki Z, De Jong K (2005) The influence of migration sizes and intervals on island models. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation. ACM, pp 1295–1302

  55. Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, New York

    Book  MATH  Google Scholar 

  56. Whitley D, Rana S, Heckendorn RB (1997) Island model genetic algorithms and linearly separable problems. In: Corne D, Shapiro JL (eds) Evolutionary computing, AISB EC 1997. Lecture notes in computer science, vol 1305. Springer, Berlin, Heidelberg, pp 109–125

    Google Scholar 

  57. Skolicki Z (2005) An analysis of island models in evolutionary computation. In: Proceedings of the 2005 Workshops on Genetic and Evolutionary Computation. ACM, pp 386–389

  58. Skolicki Z, De Jong K (2004) Improving evolutionary algorithms with multi-representation island models. In: Parallel Problem Solving from Nature-PPSN VIII. Springer, pp 420–429

  59. Kushida J, Hara A, Takahama T, Kido A (2013) Island-based differential evolution with varying subpopulation size. In: 2013 IEEE Sixth International Workshop on Computational Intelligence and Applications (IWCIA). IEEE, pp 119–124

  60. Cantú-Paz E (1998) A survey of parallel genetic algorithms. Calc Paralleles Reseaux Syst Repartis 10(2):141–171

    Google Scholar 

  61. Rucinski M, Izzo D, Biscani F (2010) On the impact of the migration topology on the island model. Parallel Comput 36(10):555–571

    Article  MATH  Google Scholar 

  62. Fernández F, Tomassini M, Vanneschi L (2003) An empirical study of multipopulation genetic programming. Genet Program Evolvable Mach 4(1):21–51

    Article  MATH  Google Scholar 

  63. Arnaldo I, Contreras I, Millán-Ruiz D, Hidalgo JI, Krasnogor N (2013) Matching island topologies to problem structure in parallel evolutionary algorithms. Soft Comput 17(7):1209–1225

    Article  Google Scholar 

  64. Araujo L, Merelo JJ (2011) Diversity through multiculturality: assessing migrant choice policies in an island model. IEEE Trans Evol Comput 15(4):456–469

    Article  Google Scholar 

  65. Ono K, Hanada Y, Kumano M, Kimura M (2013) Island model genetic programming based on frequent trees. In: 2013 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp 2988–2995

  66. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv. Eng. Softw. 69:46–61

    Article  Google Scholar 

  67. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization (NICSO 2010), volume 284 of studies in computational intelligence. Springer, Berlin, pp 65–74

    Chapter  Google Scholar 

  68. García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180(10):2044–2064

    Article  Google Scholar 

  69. Eiben ÁE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Azmi Al-Betar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Betar, M.A., Awadallah, M.A., Abu Doush, I. et al. Island flower pollination algorithm for global optimization. J Supercomput 75, 5280–5323 (2019). https://doi.org/10.1007/s11227-019-02776-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-019-02776-y

Keywords

Navigation