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Abstract High-Performance Computing (HPC) is at the crossroads of a po-
tential transition towards mobile market processor technology. Unlike in prior
transitions, numerous hardware vendors and integrators will have access to
state-of-the-art processor designs due to Arm’s licensing business model. This
fact gives them greater flexibility to implement custom HPC-specific designs.

In this paper, we undertake a study to quantify the different energy-
performance trade-offs when architecting a processor based on mobile market
technology. Through detailed simulations over a representative set of bench-
marks, our results show that: (i) a modest amount of last-level cache per core is
sufficient, leading to significant power and area savings; (ii) in-order cores offer
favorable trade-offs when compared to out-of-order cores for a wide range of
benchmarks; and (iii) heterogeneous configurations help to improve processor
performance and energy-efficiency.

Keywords multicore design trade-offs - energy efficiency - heterogeneous
processors
1 Introduction

Today’s High-Performance Computing (HPC) deployments are dominated by
commodity server processors. These processors feature a few aggressive out-
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of-order cores clocked at high frequencies with large shared on-chip caches.
However, the same trends that forced the transition from special-purpose vec-
tor architectures to RISC processors used in workstations in the mid 1990s,
and later to CISC architectures used in contemporary commodity PCs are
starting to appear again in the low-power mobile market segment. The higher
volumes at which the mobile market operates enables faster product cycles,
leading to a fast-paced ecosystem that pushes performance and technological
improvements. This paradigm change can enable the use of low-power mobile
market technologies in HPC in the near future [1, 2].

In fact, these trends are already materializing and vendors have started
to roll out competitive processors that target the HPC market based on low-
power ARM-based systems-on-chip (SoC), e.g., the ThunderX processors fam-
ily [3]. In addition, several HPC companies are already deploying large ARM-
based machines, e.g., Cray with the deployment of a 10,000+ ARMv8-A core
system [4, 5], and in the near future Fujitsu’s next flag-ship machine - The
Post-K [6].

Such a change towards processors that leverage technology from a fast-
paced market, with potentially multiple competing vendors and integrators
involved in architecting and assembling these chips, can lead to a higher degree
of design freedom. Opening the door to tailored designs that fit HPC workload
needs, in order to increase computational throughput while optimizing energy
efficiency.

In this paper, we explore the potential advantages in terms of energy and
performance when designing HPC processors based on emerging mobile mar-
ket technology. We focus on three fundamental design choices that we believe
can play a major role in the performance and energy efficiency of a proces-
sor. First, careful sizing of the last-level cache (LLC) is paramount to design
a processor that exhibits good energy efficiency. The LLC is a major con-
tributor in terms of area and power. Therefore, an over-provisioned LLC, as
current designs implement, wastes resources that can be used to increase com-
putational throughput. Second, we analyze the energy-performance trade-offs
of employing both out-of-order and in-order cores in homogeneous processor
configurations and outline their strengths and weaknesses for different work-
loads. Third, we also evaluate heterogeneous multi-core designs to determine
if they are able to further improve the performance and energy trade-offs seen
in homogeneous configurations.

We use detailed cycle-accurate full-system simulations and refined area and
power models on an extensive list of relevant HPC benchmarks, covering a wide
range of computation and communication patterns defined by the different
HPC dwarfs [7, 8] to demonstrate that:

— A modestly sized LLC retains the performance of larger caches common
in current HPC processors. Our findings contradict current trends that
led to large LLC slices per core. We show performance returns diminish
significantly as cache sizes increase, while imposing steep power/area costs
that severely impact energy efficiency. We find that, a 6MB LLC compared
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to a 16MB LLC ocupies 2.32x less area and consumes 2.46x less power
- the equivalent to 6 out-of-order or 12 in-order cores, while performance
degrades on average only by 1.9% and 5.1% for processors with 8 out-of-
order and 16 in-order cores respectively. This freed power/area due to using
a smaller LLC can be devoted to integrate more cores, thereby increasing
overall processor throughput.

— When evaluating homogeneous configurations with out-of-order or in-order
cores, we demonstrate that, overall, in-order cores offer better energy-
performance trade-offs. For example, we show that 16 in-order cores con-
sistently outperform 8 out-of-order cores (1.28% on average) while main-
taining a lower area and power budgets, leading to significant energy delay
product (EDP) gains of 1.84x on average. We also show that as designs
integrate higher core counts, they may offer diminishing returns due to
software overheads (e.g., runtime) and hardware constraints (e.g., memory
bandwidth), which can hinder performance and energy efficiency.

— The use of heterogeneous core configurations can alleviate some of the
identified core scaling challenges. We show that processor designs with an
out-of-order core, to speed-up runtime events and sequential code regions,
combined with a pool of in-order cores to maximize energy efficiency, de-
livers the best energy-performance trade-offs. Compared to an area and
power equivalent homogeneous out-of-order processor, performance and
EDP improve 1.26x and 1.71x on average, respectively.

2 Background and Motivation

HPC has experienced two major shifts in processor technology. First, by mov-
ing from the use of specific vector architectures to RISC commodity worksta-
tions and, in the mid 1990s, to CISC architectures used in contemporary com-
modity PCs. The same trends that triggered these technological shifts, such as
higher manufacturing volumes, faster design cycles, and economic factors are
starting to appear again for processors in the mobile market segment [1, 2].
However, in this particular shift there are two key differences: (i) there are
numerous hardware integrators and manufacturers looking to expand their
business due to the magnitude of the mobile market; and (ii) easier access to
state-of-the-art processor designs due to Arm’s licensing business model. These
factors create a highly competitive scenario with a leveled play-field, opening
the door to tailored designs that are HPC specific, and for which custom
decisions made by integrators and manufacturers are easier to implement.
Table 1 lists a set of characteristics across dominant and emerging pro-
cessor architectures used in HPC. As can be seen in the top four rows of the
table, dominant architectures integrate fewer cores but dedicate a significant
amount of resources per core, providing deep out-of-order pipelines and specu-
lation with wide frontend and backend engines; or in the case of BlueGene/Q,
wide simultaneous multi-threading (SMT) and two in-order pipelines per core.
In addition, dominant architectures have large LLC slices per core, and provide
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Table 1 Dominant (top) and emerging (bottom) architectures. Ch. — Channels; BW —
Bandwidth

Processor family Cores LLC DRAM
Count Type Size (MB)  Ch. BW
Intel Xeon 8-16  Aggressive OoO 20-50MB 4 76GB/s
AMD Opteron 8-16  Aggressive OoO 16MB 4 51GB/s
SPARC64 8-32  Aggressive OoO 12-24MB 8 120GB/s
BlueGene/Q 16  Aggressive SMT 32MB 4 43GB/s
Sunway MPP 260 Simple CPE* 17MB** 4 136GB/s
Intel Xeon Phi 64-72  Moderate OoO 32-36MB 6 115GB/s
Cavium ThunderX 48  Moderate OoO 16MB 4 55GB/s

* 4 Management Processing Elements (MPE) + 256 Compute Processing Elements (CPE)
** 256 KB per MPE + 64KB scratch per CPE

as many memory channels as pin count permits. On the other hand, emerging
architectures feature higher core counts but employ simpler designs. For ex-
ample, the Sunway MPP [9, 10] has 256 simple in-order compute cores with a
small 64KB scratchpad memory, while both the Intel Xeon Phi' [11] and the
Cavium ThunderX [3] employ modified core architectures that come from the
low-power mobile market domain. Despite retaining out-of-order capabilities,
these cores have shallower pipelines, narrower frontend and backend engines,
and downsized support for speculation; which can lead to hefty power reduc-
tions when compared to an aggressive out-of-order core, and several times
less area [12, 13]. Emerging architectures also have significantly less LLC per
core and, as in dominant architectures, offer as much off-chip bandwidth as
possible.

Exploring fundamental power, area, and performance trade-offs when de-
signing these emerging processors is essential to obtain a balanced architecture
that attains high performance for certain power and area envelopes. In this
paper, we investigate these trade-offs focusing on three key design factors: (i)
the amount of LLC, (ii) the use of moderate out-of-order as well as simpler
in-order cores, and (iii) heterogeneous core configurations. We motivate the
importance of these three design points in the reminder of this section. The
following results are obtained from detailed simulations and estimations over
a comprehensive set of benchmarks. Additional details on our methodology
can be found in Section 3.

Figure 1 shows the amount of area and power consumption for different
LLC sizes and 8 moderate out-of-order cores. As expected, the LLC area and
power increase almost linearly with cache size since most of the transistor bud-
get is used for data cells and power is dominated by leakage. We can observe
that a 6MB LLC has an area equivalent to 8 cores with moderate out-of-order
capabilities, while the cores consume as much power as 16MB of LLC. Sizing
the amount of LLC needs careful consideration in order to minimize area and
power consumption which may allow fitting more cores into the design, thereby

I The Xeon Phi product line has been discontinued
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Fig. 1 Area and average power over a set of benchmarks (see Table 5) for different LLC
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Fig. 2 Performance, area, and power trade-offs for moderate out-of-order and in-order cores
over a set of benchmarks (see Table 5).

increasing computational efficiency. Over-dimensioning the LLC can quickly
lead to significant power and area overheads with limited returns in perfor-
mance. Therefore, it is important to determine at which point the performance
returns of a larger cache are not worth the additional overheads.

Figure 2 shows power, area, and performance trade-offs for out-of-order
and in-order cores that are typically found in the mobile market segment.
The power and area estimates in this figure only consider the cores and their
respective private caches to focus on the actual core trade-offs. As can be
seen in the figure, a system with a single out-of-order core is 1.45x more
performant than the in-order counterpart. However, performance gains come
at a 2x cost in area and power. Similar trade-offs have also been observed
in the datacenter and general-purpose domains [12, 14, 15, 16], showing that
their findings may also apply to HPC benchmarks, and suggesting that further
studies are needed to better understand these trade-offs at a finer granularity,
i.e., per benchmark type. A consequence of these trade-offs is that 16 in-order
cores perform significantly better than 8 out-of-order cores with lower area
and power consumption. Also note that the gap between performance and
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both area and power increases faster for out-of-order than for in-order cores,
a trend that becomes increasingly important as on-chip core counts scale up.

Figure 2 also contains data points for a heterogeneous configuration that
features 1 out-of-order core and 15 in-order cores - termed (1,15). This design
performs better than the 16 in-order configuration at the expense of increased
area and power consumption. Having one or more fast cores in a processor can
be beneficial, especially as thread counts increase since sequential sections of
code or actions such as communication become more relevant and can hinder
performance significantly due to Amdahl’s law [17]. Also, as more cores are
integrated, the area and power overheads of including one or a few bigger cores
becomes less relevant.

3 Experimental Methodology

We evaluate performance, area, and power of emerging HPC processors by
combining cycle-accurate simulations and fine-tuned modeling tools over a
comprehensive set of benchmarks.

Performance Evaluation: We use gem5 [18] for cycle-accurate full-
system simulations of various processor configurations. Gemb5 is an open-source
simulator that has received significant contributions from the industry (i.e.,
both Arm and AMD) in recent years. The simulator faithfully models microar-
chitectural details of the out-of-order and in-order cores, the cache hierarchy
and the memory subsystem; including the on-chip interconnect, contention for
shared resources, off-chip memory channels, DRAM bank conflicts, etc. The
simulator models the ARMv8-A ISA and boots a recent linux kernel v4.3. For
all benchmarks we simulate the entire region of interest and collect time to
solution among other numerous statistics.

We model processors from 1 to 32 cores and various cache sizes. Out-
of-order cores are modeled after an ARM Cortex-A72, while in-order cores
resemble an ARM Cortex-A53. Table 2 details simulated architectural param-
eters.

Area and Power Evaluation: Based on the parameters introduced
in Table 2, we estimate area and power for the different processor configu-
rations using McPAT 1.3 [19] with 22nm technology models and an on-chip
supply voltage of 0.8V. We have enhanced the McPAT models by applying
the modifications proposed by Xi et al. [20], which greatly increase accuracy
by modeling more core structures and by solving erroneous modeling assump-
tions. We feed McPAT models with detailed architectural input descriptions
and statistics from our performance simulations. In addition, Xi et al. note
that McPAT should not be used for uncore components - e.g. network-on-chip
or memory controllers. For this reason, we perform estimations just for the
cores (including private caches) and the LLC, for which we employ CACTI
6.5 [21]. These two structures are by far the dominant contributors to both
area and power [19].
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Table 2 Parameters for full-system simulations

Processor size 1 — 32 cores.

out-of-order: 3-wide issue/retire, 40-entry instruction queue,
Cores 128-entry ROB, 32 LDQ + 32 STQ, 2GHz
in-order: 2-wide issue, 5-entry store buffer, 2GHz

out-of-order: L1I: 48KB, 3-way, 2 cycle, 2 ports, SMSHRs
L11/D LID: 32KB, 2-way, 2 cycle, 2 ports, 16 MSHRs
Caches in-order: L1I: 32KB, 2-way, 2 cycle, 1 port, SMSHRs
LID: same as out-of-order but with 1 port

1 — 64MB, 16-way, 64B lines, 8 banks, 64MSHRs
See Table 4 for data bank access latencies

Last-level Cache

NoC Coherent crossbar, 128-bit wide, 2 cycles
4 DDR4-2400 channels, 2 ranks/channel, 16 banks/rank, 8KB row-buffer
Main Memory 128-entry write and 64-entry read buffers per channel

75GB/s peak bandwidth. Bank conflicts and queuing delays modeled

Table 3 Single core area and power estimations

Core in-order out-of-order
Absolute  Normalized Absolute  Normalized

Area (mm?) 0.82 1.0x 1.74 2.12x

Power (W) 0.30 1.0x 0.61 2.03x

Table 4 Timing, area, and power estimations for a 16-way 8-banked LLC

Last-level Cache Sizes (MB)
1 2 4 6* 8 16 32 64

Latency (c) 9 9 9 9 10 11 13 17
Area (mm?) 2.32 4.11 820 1254 15.36 29.11 53.49 105.78
Power (W) 0.46 0.85 1.58 2.33 3.08 5.74 10.97 21.81

* Due to geometry constrains it uses 6 banks and 12-ways.

Table 3 shows area and power estimations for a single out-of-order and in-
order core. Both absolute and relative numbers normalized to the in-order core
are shown. Power numbers are the average across all evaluated benchmarks.
Table 4 shows timing, area, and power estimations for the LLC. We evaluate
systems that sweep the LLC size from 1MB to 64MB. The latency reported
by CACTI is used in our performance simulations for LLC data bank access
latency.

Throughout our evaluation, area and power numbers include both the cores
(with private caches) and the LLC. We evaluate homogeneous as well as het-
erogeneous processor configurations. For homogeneous processors we evaluate
a system with 8 out-of-order cores, denoted (8,0); and systems with 16, 24,
and 32 in-order cores, denoted (0,16), (0,24), and (0,32) respectively. In
the (0,16) configuration we substitute each out-of-order core for 2 in-order
cores, which leads to a configuration that features lower area and power con-
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Table 5 Evaluated benchmarks.

Benchmark HPC Parallel Short description Problem size Memory

dwarf [7, 8] construct Footprint
bodytrack dense linear Tasks Employs an annealed particle filter to track 36 frames 233MB
[22, 23] the 3D pose of a human body using edges. 2K particles

Computation and memory intensive.

blackscholes dense linear Tasks Solves the Black-Scholes partial differen- 64K options 8.3MB
tial equation (PDE). Limited by amount
of FP operations a processor can perform.

streamcluster dense linear Tasks Clustering algorithm for a stream of in- 64K points 136MB
put points. Presents balanced memory and 128 dimensions
computation intensity.

HPCCG sparse linear  Loops Local symmetric Gauss-Seidel conjugate 1613 nodes 1,591MB
[24] gradient. Solves a sparse linear system on
a 27-point 3D grid. Memory intensive.

facesim sparse linear ~ Tasks Simulates the underlying physics of human 1 frame 177TMB
face movement. 372K mesh
fluidanimate sparse linear  Tasks Uses an extension of the Smoothed Particle 3 frames 117MB
n-body Hydrodynamics (SPH) method to simulate 500K particles

an incompressible fluid.

CoMD n-body Loops Classical molecular dynamics algorithms 500K atoms 132MB
that evaluates all forces between atom
pairs within a cutoff distance.

canneal unstructured  Tasks Cache-aware simulated annealing. Per- 400K elements 103MB
forms little computation and is memory in-
tensive with a pseudo-random access pat-

tern.
LULESH unstructured  Loops Represents a typical hydrocode and uses  90% elements ~ 705MB
[25] an unstructured hex mesh. Has high in-

struction and memory-level parallelism.

heat structured Tasks Iterative solver for heat distribution us- 8K resolution 516MB
ing a Gauss-Seidel algorithm with 5-point 2 heat sources
stencil computations.

fit [26] spectral Loops Computes a one dimensional Fast Fourier =~ 16M elements 260MB
methods Transform.

graph500 graph Loops Breadth-First Search of a large graph. 220 vertices 285MB

[27] algorithms High memory reference density with a

near-random access pattern.

swaptions embarrassingly Tasks Monte Carlo simulations to solve PDEs to 256 swaptions 1.4MB
parallel price a portfolio of swaptions. Highly par- 5K simulations
allel with medium computation intensity.
XSBench embarrassingly Loops Kernel of the Monte Carlo neutronics ap- 34 nuclides 140MB
[28] parallel plication OpenMC. Stresses the memory 1M lookups

system but performs little computation.

sumption (see Figure 2). The (0,24) and (0,32) configurations are more
aggressive and use 3 and 4 in-order cores per out-of-order, respectively. For
heterogeneous systems we evaluate the intermediate configurations, i.e, for the
2 in-order per out-of-order: (6,4), (4,8), (2,12), and (1,14); as well as one
totaling 16 cores with a single out-of-order - (1,15). Similarly for the other
two more aggressive configurations.

Evaluated Benchmarks: Table 5 lists the evaluated benchmarks. We
have classified them according to the computational dwarf [7, 8] they belong,
i.e., dense linear algebra, unstructured grid, etc. We cover all the HPC-relevant
dwarfs with at least one representative. For the most important ones, we use
more than one benchmark to stress different workload characteristics that may
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appear within a dwarf, leading to an extensive coverage in terms of computa-
tional patterns.

Table 5 also includes a short description with insight about the benchmark
characteristics, the problem size employed, and the memory footprint. We have
spent significant effort ensuring all input problem sizes are representative and
deliver real-world LLC behavior for all the evaluated LLC sizes. For bench-
marks that admit arbitrarily large problem sizes we selected representative
real-world values that allow for feasible simulation time.

Benchmarks that employ parallel loops to expose parallelism have been
configured to always use dynamic scheduling to perform well under hetero-
geneous configurations. Similarly, task-based parallelism which is increasingly
common in HPC [29], also employs dynamic scheduling. When evaluating het-
erogeneous configurations we force the master thread to execute in an out-of-
order core at all times. The master thread executes the sequential code regions
between parallel sections and generates the loop chunks or tasks to be executed
by all available cores dynamically.

4 Design Trade-offs Evaluation
4.1 Last-level Cache Size

The rapid growth in transistor count per chip has led to an increase in the
number of cores and LLC sizes. In dominant HPC architectures, per core LLC
slices have increased substantially in recent years despite the large area and
power cost associated. These large caches can quickly become a dominant
component in terms of area and power in emerging processor architectures,
since less aggressive cores are employed. Therefore, if the performance returns
of a larger cache are not significant, the overall energy efficiency of the pro-
cessor can be affected deeply, making LLC sizing a key design decision. To
gain insight on the appropriate design points for emerging HPC processors,
we evaluate the performance benefits of employing various cache sizes using
the parameters presented in Table 4 over four homogeneous processor config-
urations, one with eight out-of-order cores (8,0), and three with 16, 24, and
32 in-order cores - termed (0,16), (0,24), and (0,32) respectively.

Figure 3 shows overall system performance normalized to 1MB of LLC for
each evaluated configuration. The following paragraphs analyze the results per
computational dwarf.

Dense linear algebra: blackscholes is computationally intensive and per-
formance is limited by the amount of floating point throughput the processor
can achieve. Performance improves until the relevant portions of the working
set fit in the cache, which happens at 6MB. For larger caches, performance
starts to degrade due to higher access latencies. Similar behaviors are ob-
served in bodytrack and streamcluster, with timid performance improvements
after 6MB of LLC that are not worth the steep increase in area and power
costs. Most dense linear algebra benchmarks rely on blocking to partition the
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Fig. 3 Last-level cache size sensitivity study.

work, and modest cache sizes are sufficient to hold the working sets for the
evaluated core counts.

Sparse linear algebra and n-body methods: Both HPCCG and facesim
contain a conjugate gradient kernel. In the former, data is represented as a
3D grid to do 27-point stencil calculations, while the latter uses a tetrahedral
mesh. HPCCG is not sensitive to LLC size because it has low data reuse and
the main bottleneck at higher core counts is off-chip memory bandwidth, with
over 17 misses per kilo instruction (MPKI) for (0,32). On the other hand,
facesim attains significant performance improvements as cache sizes increase,
as data can be reused across the three different kernels that constitute an it-
eration. With large caches a good portion of the mesh can be stored in the
cache, which allows for an even higher level of reuse as nodes may be visited
multiple times.
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The n-body benchmarks partition the space and calculate forces between
close particles. Therefore, working set sizes for the partitions are manageable.
CoMD achieves modest improvements when going above medium sized caches,
i.e., 6-8MB. Fluidanimate performs better with the largest cache sizes, up to
1.23x over the 1MB setup for (0,32). However, the costs of increasing the
cache to these sizes outweigh the performance benefits over a modest 6-8MB
cache size.

Unstructured and structured grids: Unstructured grid benchmarks
like LULESH or canneal have complex memory access patterns that lead to
poor spatial locality. As shown in the figure, cache sizes of 6-8MB already
obtain most of the benefits for all core counts. LULESH further improves
performance with larger cache sizes, but in the best case it would be by 14%
for a cache that increase from 8MB to 64MB, which would greatly degrade
energy efficiency. Canneal obtains limited improvements across core counts
by doubling the cache from 8MB to 16MB, and for larger caches performance
degrades due to increased access latencies. On the other hand, structured grids
have more regular access patterns, however, data reuse is low. As can be seen
in heat, increasing the cache size can actually decrease performance as the
benchmark is more sensitive to latency than to capacity.

Spectral methods: The main characteristic of this computational dwarf is
the employed all-to-all communication pattern. In fft, maximum performance
is achieved at 16MB, however, it offers diminishing returns for caches larger
than 6MB. Therefore, as happens in most benchmarks that employ blocking
techniques, modest cache sizes are sufficient.

Graph algorithms: graph500 traverses a large graph generating memory
reference bursts that have near-random access patterns. Since the memory
references are independent, out-of-order cores perform significantly better by
issuing them in parallel without blocking the pipeline. For (8,0) performance
improvements saturate at 6MB of LLC cache size. However, in-order cores
perform poorly since they are unable to exploit the fact that memory references
are independent and there is no spatial locality. Larger caches alleviate these
issues by caching more visited nodes that might be revisited later, achieving
large improvements of over 2.5x for 16 cores.

Embarrassingly parallel: We evaluate two highly parallel benchmarks
with different characteristics. swaptions has medium computation intensity
and a small dataset, therefore cache size does not affect performance in a
significant manner. On the other hand, XSBench performs little computation
and stresses the memory hierarchy demanding a lot of off-chip bandwidth,
with over 42 MPXKI for all evaluated configurations. Therefore, the LLC access
latency is on the critical path and performance degrades for large caches.

Conclusions: On average, and for most benchmarks, we find that a 6MB
LLC is a good design point for all evaluated core counts. This observation
differs from the trends followed in dominant architectures, which employ sig-
nificantly larger cache sizes. Compared to a 16MB LLC, a 6MB LLC ocupies
2.32x less area and consumes 2.46 x less power with small or non-existent per-
formance penalties, that on average are 1.9% for out-of-order cores and 5.1%
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Fig. 4 Speed-up and energy-efficiency of a single out-of-order with respect to an in-order
core.

for 16 in-order cores (worse case). graph500 and facesim could benefit from a
large cache, however, in the case of graph500 it is patching an underlying prob-
lem that is related to in-order cores not being suited for this benchmark, and
in the case of facesim the improvements that would be achieved do not justify
the necessary investment for a 16MB or 32MB cache just for this benchmark.
We advocate that the freed area and power should be devoted to integrate
more cores. This approach will make future processor designs for HPC more
performant and energy efficient. The reminder of this paper assumes a 6MB
LLC.

4.2 Out-of-Order vs In-Order Execution

Performance and energy implications of using out-of-order or in-order execu-
tion greatly depend on the characteristics of the executed benchmark. Bench-
marks that have high instruction-level parallelism (ILP), i.e., independent in-
structions that can be issued in parallel, or memory-level parallelism (MLP),
i.e., multiple inflight memory requests, greatly benefit from out-of-order execu-
tion. Contrarily, if memory references or executed instructions are dependent,
in-order cores can provide competitive performance. These observations are
well known, however, their impact in terms of performance and energy for
emerging HPC processor designs and how they affect specific benchmarks re-
mains to be seen.

Figure 4 shows performance and energy ratios for a single out-of-order core
over a single in-order core for all benchmarks using their serial implementa-
tions. Energy calculations take into account the core as well as the 6MB LLC.
Canneal and XSBench, which are memory intensive but cannot expose enough
MLP due to dependent access patterns, obtain almost no benefit from out-of-
order execution - i.e., only 1.08x faster than in-order while consuming 1.38x
more energy. At the other end of the spectrum we find bodytrack, LULESH,
and graph500, which have abundant ILP and MLP. In these scenarios, out-of-
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Table 6 Area and power estimations for evaluated homogeneous core configurations.

Cores out-of-order in-order

8 16 24 32
Area (mm?) 1.0x 0.93x  1.40x  1.87x
Power (W) 1.0x 0.86x 1.28x 1.71x

order execution performs much better and attains speed-ups of 1.83x, 2.31x,
and 3.25x respectively, with significant energy savings. Between these two
extremes we find most benchmarks, with speed-ups using out-of-order that
range from 1.21x (streamcluster) to 1.49x (swaptions). However, for all these
benchmarks the in-order core is more energy-efficient. These results show that
in-order processors could outperform out-of-order processor configurations un-
der the same area and power budgets.

Next, we evaluate homogeneous core configurations with 8 out-of-order
cores (8,0) and 16 (0,16), 24 (0,24), and 32 (0,32) in-order configurations.
Table 6 shows area and power estimations for these configurations normalized
to (8,0). Both the cores and the LLC are considered. The (0,16) configu-
ration is below (8,0) in terms of area and power, while the more aggressive
(0,24) and (0,32) configurations are above.

Figure 5 shows energy-performance trade-offs for the evaluated homoge-
neous configurations. We plot energy efficiency in nano-joules (nJ) per flop
(left axis), and energy delay product (EDP) normalized to (8,0) (right axis).
Note that we plot the inverse of the normalized EDP - higher is better. Per-
formance is presented as scalability over a single in-order core in the x-axis.

Dense linear algebra: Both bodytrack and blackscholes present similar
trends with significant improvements in energy efficiency when moving from
(8,0) to in-order configurations; up to 1.22x and 1.60x respectively. For
(0,32) there is a slight increase in energy due to lower gains in performance
scaling at higher thread counts. However, in terms of EDP, (0,32) is the best
configuration as the gains in performance offset the loss in energy efficiency,
reaching 2.10x and 3.16x better EDP than (8,0) respectively. streamclus-
ter shows similar trends for (0,16), but the application fails to scale well
with more threads which hinders both energy efficiency and EDP, reaching
maximum EDP with (0,24).

Sparse linear algebra and n-body methods: HPCCG and facesim
also obtain significant energy reductions and performance improvements with
(0,16) over (8,0). However, the memory bound nature of this benchmarks
limits scalability at higher core counts. As we can observe, with more than 16
cores HPCCG'’s performance stagnates and there is a sharp drop in EDP, while
in facesim EDP continues improving as its scalability improves sufficiently.

On the other hand, both n-body benchmarks, fluidanimate and CoMD,
fare significantly better under in-order configurations, achieving large energy
reductions per flop. In addition, both scale well as core counts increase due
to their simple yet effective parallelization scheme that has a good balance
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Fig. 5 Energy-performance trade-offs for evaluated homogeneous processors.

between computation and memory intensity. These two factors lead to large
EDP improvements with (0,32), of 3.65x and 4.13x over (8,0), respectively.

Unstructured and structured grids: The unstructured grid bench-
marks exhibit disparate behaviors. canneal is memory intensive but references
are dependent and cannot be issued in parallel, therefore, in-order performance
is almost as good as out-of-order. The obtained results are similar to those seen
for n-body benchmarks, but with a costlier energy per flop rating due to mem-
ory intensity. However, LULESH benefits greatly from out-of-order execution
due to high ILP and MLP. For this reason, (8,0) performs better than (0,16)
and on par with (0,24). Even though (0,32) outperforms (8,0), it does so
at a much higher energy cost, and is therefore not able to beat the baseline
EDP. heat exhibits good performance scaling up to (0,24), with a peak EDP
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improvement of 2.6x over (8,0). Performance is limited for (0,32) due to a
lack of tasks to feed all cores, i.e., task creation is not fast enough.

Spectral methods: fft has limited scalability at high core counts due to its
costly all-to-all communication patterns. For this reason, it scales reasonably
well with up to 16 cores, but further increasing core count delivers diminishing
returns. Nonetheless, (0,16) offers better energy trade-offs and outperforms
the (8,0) configuration.

Graph algorithms: graph500 has ample MLP that can be exploited by
out-of-order execution. As observed in LULESH, this makes (8,0) the most
energy efficient configuration with the best EDP metric. It is worth mentioning
that GPUs are a good match for this particular benchmark [30, 31], as they
have abundant memory bandwidth and hundreds of cores available.

Embarrassingly parallel: As expected, both swaptions and XSBench
attain the best scalability, with energy reductions of 1.79x and 1.97x, and
EDP improvements of 4.67x and 6.19x, respectively. Note that due to XS-
Bench memory intensity, the energy spent per flop is significantly larger than
in most of the other benchmarks.

Conclusions: LULESH and graph500 did not benefit from in-order con-
figurations due to their high ILP and MLP that favors out-of-order execution.
However, we can observe a clear trend where (0,16) consistently outperforms
(8,0) in terms of energy per flop (1.5x on average), performance (1.28x%
on average), and EDP (1.84x on average). Note that (0,16) also has lower
area and power envelopes than (8,0). This indicates that in-order cores are
good candidates and can play a major role in future HPC processor designs.
In addition, almost all benchmarks obtain further performance and EDP im-
provements with (0,24) and (0,32). Exceptions include benchmarks that are
limited by the amount of available work or memory bandwidth (HPCCG). We
also observe that as more cores are present, performance scaling is increasingly
difficult due to both hardware and software limitations. An example of the for-
mer is poor memory bandwidth scaling with respect to core count, while an
example of the latter is the overheads associated with managing more threads
and the limits imposed by Amdahl’s law [17]. These limitations can be solved
by using appropiate technologies like high-bandwidth memory, and by exploit-
ing heterogeneous configurations as we show in the following section.

4.3 Heterogeneous Core Configurations

Figure 6 shows the different trends in terms of performance, area, power,
energy and EDP for several evaluated heterogeneous configurations. Numbers
are averaged across all evaluated benchmarks to grasp the general trends. Both
the cores and the LLC are considered for area and power estimations. Each of
the three plots starts with the homogeneous (8,0) configuration and gradually
shifts towards (0,16), (0,24), and (0,32) configurations respectively. For
example, Figure 6a shows results for (8,0), (6,4), (4,8), (2,12), (1,14),
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and (0,16); as well as a 16-core configuration with a single out-of-order core
- (1,15).

In Figure 6a all heterogeneous designs occupy less area and consume less
power than (8,0). As we have shown in Table 3, out-of-order cores are more
than 2x the area and power of an in-order core. Performance increases as
more in-order cores are added and it peaks at the configurations that have
one out-of-order core, (1,14) and (1,15). The latter being the best both in
performance and EDP. Figures 6b and 6c¢ show more aggressively sized het-
erogeneous designs where area and power is above that of the baseline (8,0)
configuration. As in the previous figure, as more in-order cores are added both
performance and EDP improve. The best results are again obtained by con-
figurations that feature at least 1 out-of-order core. This suggests that having
an out-of-order core can be useful in certain scenarios to help improve pitfalls
that occur in homogeneous processor designs. We investigate this further in
the following paragraphs. We can also observe that on average (1,23) has
better EDP than (1,15), however, (1,31) is slightly below, which illustrates
the difficulties to scale to high core counts.

Figure 7 shows energy-performance trade-offs for heterogeneous configu-
rations. Energy efficiency is again measured in nJ per flop, and performance
using scalability over an in-order core. We plot 3 lines with several data points.
Each line starts with (8,0), the intermediate data points are the heteroge-
neous configurations, adding in-order cores in detriment of out-of-order ones.
We again plot a data point that has the maximum number of total cores and
one of them is out-of-order, i.e., (1,15), (1,23), and (1,31).

Dense linear algebra: For bodytrack and blackscholes both performance
and energy efficiency improve as in-order core counts increase. For (0,32) we
observe worse energy efficiency than in (1,28), and in the case of blackscholes
performance also degrades due to scalability limitations. In general, (1,15),
(1,23), and (1,31) are the best performing, sometimes at a slight cost in
terms of energy. In blackscholes, (1,31) significantly improves performance by
7.4% over (0,32). By using output traces from our simulations we have been
able to verify that the bottleneck for (0,32) is task creation, i.e., running out
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of available work due to tasks not being created fast enough. By having a faster
out-of-order core, we can ensure that all in-order cores have tasks available to
execute at all times. Streamcluster presents an erratic behavior due to load
imbalance that is difficult to control in heterogeneous configurations since its
regular execution pattern is sensitive to thread count.

Sparse linear algebra and n-body methods: HPCCG becomes mem-
ory bound as core count increases. With more than 16 - 20 cores performance
stagnates and energy efficiency starts to degrade. The (0,16) configuration
for which memory is still not a problem is the most efficient in terms of en-
ergy. Facesim loses performance in (0,16) and (0,24) due to the inability to
timely provide work for all cores. However, when an out-of-order core is used,
both performance and energy efficiency improve. This is due to the ability of
the out-of-order core to generate tasks faster, providing enough work timely
for the in-order cores.

fluidanimate and CoMD present similar trends, where having one out-of-
order core improves performance due to faster task creation in fluidanimate
and lower thread management overheads in the case of CoMD, further showing
the positive impact a faster core can have in alleviating runtime and thread
management overheads.

Unstructured and structured grids: In canneal, (1,15), (1,23), and
(1,31) improve performance over homogeneous in-order configurations. In our
traces we observe that (0,32) presents load imbalance for the thread that cre-
ates tasks, which always finishes its tasks with a bit of delay after all other
threads reach the barrier. This is solved by having an out-of-order core do-
ing task creation, eliminating load imbalance. In LULESH energy efficiency
degrades as the number of in-order cores increases. The best performing con-
figuration is (1,31), but at a steep energy per flop cost compared to (8,0),
which offers the best trade-offs. In heat scalability improves notably as in-
order cores are added. Again, the best performing configurations include an
out-of-order core, with an affordable energy cost.

Spectral methods: Due to its all-to-all communication pattern, fft’s per-
formance scaling degrades as total core count increases. The first step that
increases core counts improves performance significantly compared to the fol-
lowing steps, for which performance stagnates or even degrades, leading to
worse energy efficiency.

Graph algorithms: As explained before, graph500 favors out-of-order
execution. As more in-order cores are added, both performance and energy
efficiency suffer severe degradation.

Embarrassingly parallel: Both swaptions and XSBench scale well as
total core count increases. In swaptions (1,15) and (1,23) perform best in
their respective data lines, however, (1,31) loses a bit of performance due to
load imbalance. XSBench does not see any additional performance improve-
ments when using an out-of-order core, yielding the same performance as the
all in-order configurations, which have slightly better energy efficiency.

Conclusions: As shown in Figure 6a, (8,0) and (1,15) are area and
power equivalent. However, (1,15) improves performance and EDP by 1.26 x
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and 1.71x respectively, while also improving performance over (0,16) by
4.9%. In addition, we have shown that speeding up runtime related events
such as task creation or thread management in parallel loops is advantageous,
specially for large core counts. The energy penalty of including an out-of-order
core is not significant (see Figure 6) and becomes smaller as more cores are
integrated. Having an out-of-order core can also help speed up initialization
phases and other sequential code sections, which quickly become relevant bot-
tlenecks as core counts increase [17].

5 Related Work

Prior work has identified significant over-provisioning in conventional server
processors in the context of datacenters and warehouse computing, both in core
capabilities and in the memory hierarchy [14, 32, 33]. These works focused on
request-oriented workloads such as web search. For this type of server work-
loads they find that large instruction footprints limit system performance,
which does not happen in HPC. Even though their findings differ from the
ones discussed in this paper, there is a clear trend by different computing
communities to move from dominant server architectures towards more spe-
cialized designs that can help reduce the costs while optimizing for the targeted
metrics relevant to each space.

Albericio et al. [34] propose a cache design that only stores data for reused
cache lines, reducing the size of the data array significantly. The paper is fo-
cused on architecting this design by introducing changes in the data allocation
and replacement policies, as well as modifications in the coherence protocol.
The authors find that storing a small subset of the cache lines yields good per-
formance, hinting in passing that LLC sizes are over-provisioned. Similarly,
Siddique et al. [35] show that cache locality for certain scientific applications
is low, and that local memories are much more area and energy efficient than
regular LLCs.

Huh et al. [36] explored the design space of CMP systems for in-order
and out-of-order cores. They conclude that out-of-order cores are more area-
efficient than in-order cores. However, on that study only performance and area
was taken into account, the lack of power measurements clearly favors out-of-
order designs. Moreover, as the paper authors mention, the use of SPEC2000
workloads may not be representative of HPC applications due to small data
footprints, which makes workloads more compute bound, for which out-of-
order cores are better suited. Laurenzano et al. [37] performed a thorough
comparison of an out-of-order (Cortex A15) and an in-order (Cortex A9) pro-
cessor using real test platforms. In their evaluation, the performance ratio of
the out-of-order versus the in-order system was higher than the one we have
observed in our experiments. However, this can be explained by the differences
present in the employed real test platforms, which makes the actual core com-
parison difficult. Some of these differences include: LLC size (2MB vs. 4MB),
DDRA3 speed (1333MHz vs. 1600MHz), vectorization capabilities, and different
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floating-point ISA support. In our experiments, however, the entire system is
exactly the same for each core type.

Prior work has shown that mobile processors have promising qualities that
make them candidates for HPC in the near future [1, 2]. Driven by a rapidly
growing market that is demanding more and more performance, mobile pro-
cessors have more aggressive roadmaps and integrate technological innovations
faster. Several cluster prototypes built with low-power commodity processors
started to be deployed in the early 2000s [38, 39, 40, 41]. Tibidabo was the first
large-scale HPC cluster based on mobile processors [42]. Deployed in 2011, it
had 256 nodes of dual-core ARM Cortex A9 processors and it was the first to
have a full HPC software stack.

Since then, several companies have already developed custom processors
based on the ARMvS8-A architecture, e.g., Cavium’s ThunderX [3]. In addition,
leading HPC companies have already announced large ARM-based machines to
be deployed in the near future, like the Fujitsu Post-K supercomputer [6] and
a 10,000+ ARMv8-A system by Cray [4]. With the arrival of these machines,
the shift towards processors based on mobile market technology will likely
accelerate. Therefore, the study undertaken in this paper is a necessary first
step to understand the energy-performance trade-offs present in processors
based on mobile market technology.

6 Conclusions

In this paper we evaluate and quantify several design trade-offs for emerging
HPC processors based on mobile market technology. We have focused our
study on three main fronts: (i) last-level cache sizing, (ii) the use of out-of-order
and in-order homogeneous configurations, and (iii) heterogeneous designs.
Contrary to the trends followed in dominant architectures, we find that a
modestly sized LLC can significantly improve energy-efficiency without com-
promising performance. In addition, we show that in-order core designs offer
better energy-performance trade-offs than out-of-order for a wide range of HPC
benchmarks. Comparing (8,0) and (0,16), the latter has, on average, bet-
ter energy per flop (1.50x), performance (1.28x) and EDP (1.84x). Finally,
heterogeneity can help alleviate software constrains that hinder performance
scaling by speeding up runtime events using an out-of-order core that gen-
erates work for a pool of in-order cores, which in our evaluation delivers the
best energy-performance trade-offs; improving performance (1.26x) and EDP
(1.71x) compared to an area and power equivalent out-of-order processor.
Our study quantifies emerging trends that hardware vendors are starting
to adopt and will soon make their way into production systems, providing a
better understanding of the expected energy-performance implications in such
systems. Our results show that future processor designs with a carefully sized
LLC and that mainly employ simple in-order cores, can deliver better energy-
performance characteristics than current dominant architectures, consolidat-
ing the shift towards HPC processors based on mobile market technology.
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