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ABSTRACT Heterogeneous devices are connected with each other through wireless 
links within a Cyber Physical System. These devices undergo resource constraints such as 
battery, bandwidth, memory, and computing power. Moreover, the massive 
interconnections of these devices result in network latency and reduced speed. Edge 
computing offers a solution to this problem in which devices transmit the preprocessed 
actionable data in a formal way resulting in reduced data traffic and improved speed. 
However, to provide the same level of security to each piece of information is not feasible 
due to limited resources. In addition, not all the data generated by Internet of Things (IoT) 
devices require a high level of security. Context-awareness principles can be employed to 
select an optimal algorithm based on device specifications and required information 
confidentiality level. For context-awareness, it is essential to consider the dynamic 
requirements of data confidentiality as well as device available resources. This paper 
presents a context-aware encryption protocol suite that selects optimal encryption 
algorithm according to device specifications and the level of data confidentiality. The 
results presented herein clearly exhibit that the devices were able to save 79% memory 
consumption, 56% battery consumption and 68% execution time by employing the 
proposed context-aware encryption protocol suite. 

INDEX TERMS Edge Computing, Cyber Physical Systems, 6LoWPAN, Context-
awareness, Device Specification, Information Profiling, IoT     

I. INTRODUCTION 
Internet of Things (IoT) allows different devices to connect 
with each other through a wireless network as a part of 
Cyber Physical Systems (CPS) [1]. These interconnected 
devices are designed in such a way that they share 
information about their surroundings to respond to real-
world events. The key features of IoT include self-
configuration, smart decision making, environment sensing, 
event triggering, ad-hoc networking, autonomously reacting 
and action controlling [2]. The number of IoT devices is 
increasing exponentially and is estimated to reach 50 billion 
till 2020 [3]. For the deployment over large areas and in 
numerous quantities, these devices need to be highly 
affordable. These affordability factors give us devices with 

limited capabilities in terms of battery, computation power, 
size, and storage [4, 5]. Due to these constraints, IoT 
devices need a communication protocol that can work with 
short radio range and consume fewer resources. 6LoWPAN 
[5, 6] provides a promising solution to this problem with 
the help of edge computing by adding an adaption layer in 
the network protocol stack for integrating low-power 
network such as IEEE 802.15.4 into IPv6 [7, 8]. This 
adaption layer solves two major problems including a 
massive number of IoT devices through IPv6, and their 
resource constraint nature through utilizing less resouces. 
Moreover, with the increase of IoT devices on the network, 
data production ratio also increases resulting in network 
latency and decreased speed. In this regard, edge computing 
is one of the available approaches [9] in which data is 
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collected and aggregated on the edge node. This requires 
securing the work nodes and edge nodes, as well as the data 
transferred among them [10]. Such preprocessing reduces 
network latency and improves speed. However, providing 
security (device and data)  to such a large infrastructure is 
challenging as security requirements vary from device to 
device and data to data. Therefore, the encryption standards 
in edge computing needs to be context-aware and 
adjustable according to the requirements of the device as 
well as the data. .  
The adaption layer of 6LoWPAN generally includes one 
encryption standard for providing security to different types 
of data and devices [6]. In 6LoWPAN, message encryption 
is usually performed through traditional cryptographic 
algorithms such as AES, DES, and RC4, etc. [5]. These 
algorithms require more computational power, time and 
memory that cause an overhead for lightweight IoT devices 
[7]. Due to these constraints, the adaption of an encryption 
mechanism according to the capability of the resource is an 
open challenge [8] [11]. To make matters worse, IoT 
devices use one encryption algorithm for all types of 
sensitive as well as non-sensitive information [6] [12]. On 
one hand, it is inappropriate for a resource-constrained 
device to provide the same security level to sensitive and 
non-sensitive information. While on the other hand, any 
modification in this protocol may result in either heavy 
resource utilization or compromized security. Therefore, it 
seems unavoidable, for long, to implement a context-aware 
encryption mechanism in 6LoWPAN to provide encryption 
to the data according to its security demands as well as 
device capabilities [13, 14]. The mechanism should use 
encryption algorithm according to the confidentiality level 
of the information as well as the capabilities of the IoT 
device.  

To address this challenge, this paper proposes a 
Context-aware Encryption Protocol Suite (CEPS) for 
6LoWPAN. CEPS is an optimal encryption mechanism that 
considers device capabilities and information sensitivity 
level. To achieve this goal, various encryption algorithms 
were implemented as part of the protocol suite varying in 
strength as well as computational requirements. The 
proposed context-aware encryption suite extracts the device 
capabilities such as battery and memory using kinetic 
battery model [15] and memory usage probe [16], 
respectively. It also classifies the information 
confidentiality requirements through fuzzy logic [34] and 
extracts the resource utilization and security strength of 
each encryption algorithm through simulation. It then maps 
the resource current status and information requirements to 
select an appropriate encryption algorithm optimal for both 
device available resources and information requirements. 
Experimental results showed that CEPS was able to save 
79% memory consumption, 56% battery consumption and 
68% execution time compared to current existing solutions. 
This paper extends the literature in the following three 
ways: a) context-awareness in encryption protocols; b) 
information classification based on its confidentiality for 

6LoWPAN; c) mapping of encryption algorithms based on 
resource availability and information requirements. 

The remainder of this paper is organized as follows. 
Section 2 presents an overview of related work. In Section 
3, the proposed context-aware encryption protocol suite for 
6LoWPAN is discussed. Simulation of the context-aware 
encryption protocol suite and its comparison with the 
existing techniques is explained in Section 4 while, Section 
5 provides some concluding remarks. 
 
II.  RELATED WORK 
IoT devices are not only different from each other with 
respect to their resources such as memory, CPU, and 
battery [4], but also with respect to the confidentiality 
levels of the information they generate [18]. Thus, to 
provide the same security level to every piece of 
information seems less efficient, as the confidentiality 
requirement of information and the capabilities of devices 
may vary. Context-awareness often provides solution to 
similar situations by utilizing the context to provide 
relevant services to the user [19]. In IoT, context-awareness 
is used to solve many problems in various situations 
including smart homes [20], smart grids [21], agriculture 
[22], health care [23], and automated logistics [24].  

In recent times, context-awareness has also been used 
in IoT paradigm to provide some security solutions. The 
literature review for this research can be broadly 
categorized into four different categories including a) 
device profiling, b) information profiling, c) security 
protocol suite in IoT, and d) security in 6LoWPAN. 
Following is a brief overview of the research work in these 
areas:  

A.  DEVICE PROFILING 
For a resource-constrained device, it is less desirable to 
adopt an expensive encryption technique for different 
pieces of information varying in security requirements, 
without considering its resources [25]. A context-aware 
system supports the acquisition, representation, delivery, 
and reaction [15]. Device profiling in context-awareness is 
to match user demands over a device by asking questions, 
for example, does the device has enough memory to 
perform this task? Does it has ample power to execute this 
task? For an encryption protocol suite, it is essential to find 
a security cipher according to the device capabilities. In the 
past, various architectures for IoT devices have used device 
profiling to perform certain tasks. A brief overview of some 
of these research works is as below: 

Messer et al. proposed an approach for small-memory 
devices to execute full version of an application by 
offloading program’s portions to a service [26]. Their 
system enhances the device's capability so if a device has 
not sufficient resources at runtime, it finds a nearby trusted 
computing node for offloading. However, they only 
considered static decisions for managing memory 
constraints but did not consider other resources such as 
network, transmission, and power. In addition, Hofer et al. 



 

  

proposed a context-aware software framework to support 
network connections and limited computing power [27]. 
However, the framework allowed sharing of context among 
devices without assessing their security and reliability. 
Further, a content adaptation system for heterogeneous 
mobile devices was proposed by Lum et al. [28], to provide 
rich hypermedia according to the device capabilities. The 
system was implemented for optimal adaption based on 
various QoS attributes like device battery level, bandwidth, 
screen size, and network conditions. However, while the 
system focused on basic objects like text and images, the 
overall content adaption approach appeared ad hoc. 
Likewise, Taneja et al. [29] proposed a module mapping 
algorithm to minimize the IoT application latency and 
energy consumption. Their results provided a benchmark 
for IoT computation and can be used to provide QoS for 
various applications. However, only static network 
topologies were evaluated but no dynamic wireless 
constraints were considered. In addition, Sathyamoorthy et 
al. proposed a power management solution for resource 
constrained IoT devices [30]. Their proposed approach 
predicted the behavior of IoT devices by extracting the 
application characteristics and calculating their resource 
utilization. However, data confidentiality was not 
considered at all in their profiling, power management or 
analysis of data logs. 
Different studies in the literature proposed interesting 
architectures based on the device profiling, however, the 
authors were unable to find any research that could suggest 
suitable encryption protocol according to the device 
profiling. 

B.  INFORMATION PROFILING 
Massive amount of data is generated by IoT devices which 
vary in level of sensitivity. For a resource-constrained 
device, it is less feasible to use an expensive encryption 
operation for each piece of information regardless of its 
confidentiality requirements [17, 31]. Selecting an 
encryption technique without understanding the 
confidentiality level of data is not a valid technical 
approach [32]. Information profiling [33] can categorize the 
data into different classes according to its confidentiality 
requirements, so appropriate decisions can be observed 
about the optimal encryption algorithm. A brief overview of 
various research works present in this domain is as below: 

Zardari et al. proposed an enhanced version of the 
KNN algorithm to improve the efficiency and accuracy of 
data classification into confidential and non-confidential 
classes [32]. Their proposed algorithm uses a subset of 
training file for classification contrary to the utilization of 
entire file in KNN. However, their algorithm did not 
classify data in the IoT paradigm neither it was evaluated 
on the execution time or resource utilization. Further, 
Mohammadian et al. proposed a data classification model 
based on the organization's privacy policies and 
government rules [34]. Their model used fuzzy logic to 
classify different attributes of the data about an 

organization. Primarily, the model was suggested to be used 
in financial organization, where data can be categorized 
into "very high", "high", "medium" or "low" confidentiality 
levels. The main drawback of this approach was users 
defining attributes’ weights which are prone to biases, 
errors, and complex for large dataset. In addition, a model 
for IoT data classification is proposed in [33], which also 
encrypts the data if found sensitive. The KNN algorithm 
was used for classifying the data while the RSA algorithm 
is used if the classified data is found sensitive. The 
proposed approach reduced the computation of the system 
by not encrypting non-confidential data and hence 
enhanced the efficiency of the system. However, the 
proposed system was not context-aware and also not 
evaluated on network or resource utilization.  

The above-mentioned proposals classify data according 
to its confidentiality level yet do not provide context-aware 
classification in IoT paradigm. Also, they were not 
evaluated on their computational cost or device capabilities 
including memory, bandwidth, network latency, and power. 

C.  SECURITY PROTOCOL SUITE IN IOT 
IoT is a network of sensor devices which are connected 
through wireless network and technology to achieve overall 
perception of information, reliable transmission, and 
intelligent processing [16]. Hence, protecting privacy and 
security are the essential features of IoT [35]. In the recent 
past, various encryption mechanisms have been proposed 
for different IoT protocols to ensure less power 
consumption, memory, and network latency. A brief 
overview of these mechanisms is provided below: 

Adrianto et al. performed a comparison among various 
security protocols, implemented in ETSI M2M standards, to 
find the most suitable algorithm for applications generating 
bulk of data [16]. Their selection criteria were message 
size, CPU usage, memory utilization and processing time. 
However, they did not consider battery consumption and 
information confidentiality level in algorithm selection. 
Likewise, Wu et al. [36] presented a lightweight security 
protocol suite for IoT which includes lightweight 
encryption, authentication, and key management. The 
security of the information is ensured by using a random 
single key for separate file encryption. The protocol suite 
was proved to be computationally efficient but does not 
utilize context-awareness. Further, Hamad et al. [37] 
identified computational requirements of renowned 
encryption algorithms in the cloud paradigm. Their results 
on power consumption and computation time were used to 
take decisions while selecting protocols in cloud 
environment. However, they did not provide any 
information about the computational requirements of 
encryption protocols. Glissa et. al [38] introduced a new 
security module for Omnet++ that implements the security 
suite for IEEE 802.15.4. The security sub-layer is 
responsible for data encryption and authentication 
according to the desired security degree. Their experimental 
setup addressed four performance aspects including energy 



 

  

consumption, transmission latency, packet delivery ratio 
and memory overhead. However, the security module does 
not provide context-awareness according to the information 
confidentiality level. In the similar vein, Toldinas et al. [39] 
performed an empirical study to evaluate the energy 
consumption of symmetric and asymmetric cryptography 
algorithms through Bouncy Castle Crypto API. They 
evaluated computing resources such as CPU time and 
memory for the reduction of power utilization by 
cryptography algorithms. However, both of these works do 
not provide context-awareness according to the information 
confidentiality level. 

From the literature review, it is concluded that little 
attention has been given to context-aware encryption of IoT 
data with respect to device profiling and information 
profiling. 

D.  ENCRYPTION IN 6LOWPAN 
While encryption mechanisms are implemented for 
resource-constrained sensors and actuator networks, in 
6LoWPAN they experience poor performance due to the 
size of packets exchanged and the length of the keys [40]. 
Various initiatives have been taken to enhance the 
performance of encryption mechanisms for resource-
constrained devices, e.g., TinyECC [41] and NanoECC 
[42]. Such initiatives improved the encryption efficiency  
 but do not provide context-aware solution for IoT, which 
includes the resource availability level as well as 
information sensitivity requirements. Following is a brief 
description of the research work present for encryption in 
6LoWPAN. 

 A performance study of end-to-end security available 
for 6LoWPAN based networks is presented by Matthias et 
al. [43]. The performance analysis covered battery 
consumption, network latency and memory utilization, 
while did not measure the impact of information or device 
classification on the resources. Likewise, Raza et al. [44] 
explored current protocols and security solutions that can 
be deployed in a constrained environment. They discussed 
security requirement as well as security mechanisms 
implemented at each layer of 6LoWPAN protocol stack and 
addressed various challenges and limitations for a 
pragmatic deployment in a physical environment. However, 
they did not cover resource consumption for different 
security mechanisms. Moreover, Jung et al. [45] proposed a 
lightweight Secure Sockets Layer (SSL) for IP-WSN 
security using ECC instead of RSA for key exchange and 
authentication. Their results showed some improvements in 
resource consumption, however, they did not utilize 
context-awareness for device capabilities or information 
confidentiality level. 

The literature in this domain provides some lightweight 
encryption techniques for resource constraint devices but it 
does not provide dynamic selection of algorithms based on 
the context of devices. Although the above-mentioned 
approaches provided in these four domains, addressed 
many limitations of the tradition encryption mechanisms, 

there are still various issues that can be addressed by a 
context-aware protocol suite for resource-constrained 
devices. Different architectures based on device profiling 
have been proposed, but they do not cover various aspects 
of constraint devices including memory utilization, power, 
bandwidth, latency, and dynamic connections. Different 
encryption protocols have been designed for IoT devices, 
yet they do not provide context-awareness according to the 
device available resources and information confidentiality 
level. This research now proposes a context-aware 
encryption protocol suite (CEPS) for 6LoWPAN utilizing 
device, information as well as encryption algorithm 
profiling.  
 
III.  PROPOSED SOLUTION 
 IoT configurations are categorized into two classes, i.e., 
sensor-level configuration and system-level configuration 
[18]. Sensor-level configurations deal with the 
configuration of embedded software for changing behavior 
of sensors such as sensing schedule, communication 
patterns, sampling rate, data communication and protocols 
[18], while system-level configurations deal with the 
configuration of internal software components for changing 
behavior of IoT middleware systems [18]. Our proposed 
model identifies and configures both sensors and system 
processing components in order to select suitable 
encryption algorithm. Figure 1 shows the proposed 
encryption protocol suite, which has four main components 
namely: a) device profiling, b) information profiling, c) 
algorithm profiling and d) mapping. CEPS first extracts the 
device capabilities through kinetic battery model [15] and 
memory usage probe [16]. It then classifies the data 
according to its confidentiality level through fuzzy logic 
and extracts the resource utilization and security strength of 
each encryption algorithm through simulation. CEPS then 
maps the security requirements of the information over the 
algorithm’s security strength and resource utilization of 
algorithms over the device capabilities to get the suitable 
security cipher. Detail of these independent components is 
provided below. 

A.  DEVICE PROFILING 
IoT devices have limited capabilities in terms of battery and 
memory. For a resource-constrained device, it may not be 
feasible to adopt an expensive encryption technique every 
time without considering its resources. CEPS utilizes 
device profiling to extract its available memory and battery, 
so appropriate decisions can be taken later for the selection 
of encryption algorithm. Following steps are performed for 
device profiling: 
Step 1: Implement 6LoWPAN protocol stack:  
IoT nodes adopt optimized functionalities of protocols 
which lead toward periodic sleep-wake cycles for 
preserving the resources. A Low Powered Personal Area 
Network (LoWPAN) is composed of small heterogeneous 
devices with limited resources capabilities in terms of 
energy, throughput, memory, and computation. For these 



 

  

wireless networks, the internet protocol (IP) should run on 
low cost, low bandwidth and low power device over IEEE 
802.15.4. IPv6 over Low Powered Personal Area Network  
 (6LoWPAN) acts as an adaption layer between IPv6 and 
IEEE 802.15.4 networks. This protocol was designed for 
small sensor devices which cannot afford expensive internet 
protocol. These devices transmit messages to other devices 
as well as receive messages over 6LoWPAN. 6LoWPAN 
provides an adaption layer with a code size of 12KB, 
requires only 4KB RAM, produces an overhead of only 2 to 
11 bytes and supports 802.15.4++ as well as UDP/TCP.  
Step 2: Extract device capabilities 
To select different algorithms based on the device context, 
its available battery and memory capacities are extracted.  

a) Battery: For the powertrace, kinetic battery model 
[15] (KiBaM) is used to calculate the state of 
charge of a battery. The energy-harvesting module 
of KiBaM reads a data-trace that contains the 
amount of harvested energy per minute. This 
module takes the data-trace as input, processes it 
and feeds the model with the equivalent charging 
current [15]. Variable fixed_perc_energy provides 
the percentage of energy as the node starts.  

b) Memory: To measure the memory (RAM) of an 
IoT device, memory usage probe was used through 
the /proc/self/statm [16] virtual file. This file 
provides information about the physical memory 
of a system by reading RSS from the statm file.  

 The algorithm for device profiling can be observed in 
Algorithm 1.  

B. INFORMATION PROFILING 
A huge amount of data is generated by IoT devices which 
may include general as well as sensitive information. For a 
real-time system in which rapid processing of data is 
required, using an encryption technique without 
understanding the confidentiality level of the data is not 
always a desirable approach. Therefore, it is necessary to 
analyze the security level of data before applying a data 

encryption technique. Fuzzy logic approach [34] was used 
in the proposed context-aware encryption protocol suite for 
data classification. The fuzzy set theory provides the 
facility to develop rule-based models which include expert 
knowledge along with the numerical data close to real-
world scenarios. Fuzzy approaches treating uncertainties in 
real-world applications have several advantages as they are 
conceptually easy to understand, flexible, tolerant to 
imprecise data and can model non-linear functions of 
arbitrary complexity. Fuzzy logic can be implemented in 
systems with various sizes and capabilities ranging from 

 
FIGURE 1. Proposed solution for a context-aware protocol suite 

 



 

  

small micro-controllers to large, networked, workstation-
based control systems. In CEPS, data is classified in three 
confidentiality classes (i.e., high, medium and low). 
Following steps are performed for information profiling: 
Step 1: Define linguistic variables and terms 

Confidentiality level is the linguistic variable 
representing confidentiality level of the information 
generated by an IoT device. The linguistic values of the 
confidentiality are High, Medium or Low. 
Step 2: Construct membership functions for linguistic 
variables  

A membership function is used to quantify a linguistic 
term. Three membership functions are developed to classify 
different linguistic variables. For instance, if the data 
generated by the IoT device is related to the user, then its 
confidentiality level is considered as High; if the data is 
related to the environment or particular task then its 
confidentiality level is considered as Medium; while if the 
data is related to the general information including routing  
information then its confidentiality level is considered as 
"Low".   

 

 
 
 
 
 
 
 

 
 
 
 
 
 

ALGORITHM 2: INFORMATION PROFILING 
Input: 
1: Define linguistic variables and terms (High, Medium, Low) 
2: Construct membership functions for linguistic variables 
3: IF (DATA_Generated_category= "User", 
4:  then Data_confidentiality_level= "high") 
5: Else If (DATA_Generated_category = "enviorment" , 
6:  then Data_confidentiality_level = "Medium") 
7: Else If (DATA_Generated_category= "public information", 
8:  then Data_confidentiality_level = "Low") 
9: Construct knowledge base rules 
10: IF DATA_Confidentiality_level = "high" 
11:  THEN Encryption_requirement= "High" 
12: IF DATA_Confidentiality_level = "Medium" 
13:  THEN Encryption_requirement = "Medium" 
14: IF DATA_Confidentiality_level = "Low" 
15:  THEN Encryption_requirement = "Low" 
 
 
 

 

ALGORITHM 1: DEVICE PROFILING 
Input: 
1: Implement 6LoWPAN network topology in nodes: 
2: create IPv6 Internet stack 
3: set MTU, delay, data rate of the channel 
4: create csma  
5: install 6lowpan 
6: assign ipv6 address 
7: Device capabilities: 
8: battery: 
9:  Apply KibaM battery model 
10:  read the fixed_perv_energy variable to get the available battery 
11:       Memory: 
12:  open proc/self/statm file 
13:  read rss of the statm file to get the memory of the system 
 
 



 

  

Step 3: Construct knowledge base rules 
A fuzzy rule is a simple IF-THEN rule with a condition and 
a conclusion, which is constructed to control the output 
variable. Following fuzzy rules were defined for the 
linguistic variables and member functions: 
 
IF Data_Confidentiality_level = "High" THEN 
Encryption_requirement= "High" 
IF Data_Confidentiality_level = "Medium" THEN 
Encryption_requirement = "Medium" 
IF Data_Confidentiality_level = "Low" THEN 
Encryption_requirement = "Low" 
 
The algorithm for information profiling can be observed in 
Algorithm 2. 

C. ALGORITHM PROFILING 
In this step, various security ciphers, already implemented 
in 6LoWPAN, are profiled according to their resource 
consumption. Various parameters are investigated at this 
stage, including memory, battery and CPU time 
consumption for each algorithm along with their security 
strengths. Following steps are involved in algorithm 
profiling: 
 
Step 1: Identify Security Ciphers Implemented In 
6LoWPAN 
Literature was consulted for the exploration of different 
encryption algorithms available for 6LoWPAN. For the 
inclusion criteria, the weighted average technique was used, 
where for each literature instance, the score of the 
algorithm was incremented by one. Also, each algorithm 
instance incremented the total algorithms score, which is 
the combined occurrences of all the algorithms. 
 
The average was computed by dividing the total algorithms 
score with the total number of algorithms present in the 
literature for 6LoWPAN, as mentioned in eq. (1). For the 
final inclusion, all the algorithms that have more 

occurrences than the average algorithm score, were 
included in the encryption protocol suit.  

In total, ten encryption algorithms were included in the 
protocol suite based on the above-mentioned criteria. 
Among them, AES, DES, Blowfish, Camellia, Skipjack, 
RC5 and RC6 are block ciphers; RSA and DSA are Public-
key ciphers; while ECIES is an Elliptic curve cipher. 

 
AvgAlgorithmScore =  Σ AlgorithmsScore  

Σ Algorithm
    (Eq. 1) 

 
Step 2: Identify Resources Consumption of Security 
Algorithms 

For the identification of resources utilized by different 
encryption algorithms, a text file of size 10KB was used. 
All the ten algorithms encrypted the file independently to 
get the resources utilization details of various ciphers.  
• Memory: To extract the memory consumption of each 

algorithm, the RSS value from statm file was extracted 
before and after executing every encryption algorithm. 
The initial and final values were then subtracted to get 
the memory consumption of each encryption algorithm. 
The memory consumption of each algorithm to encrypt 
a 10KB file is shown in table 1. According to the initial 
footprints, memory consumption of ECC is higher than 
other algorithms while Camellia consumes the lowest 
memory.   

• Battery: To extract the battery consumption of each 
algorithm, the kinetic battery model [15] was used. The 
power trace notifies the remaining energy of all the 
nodes periodically. The battery consumption of all the 
included encryption algorithms was computed similar 
to memory consumption and shown in Table 1. 
According to the initial footprints, the battery 
consumption of ECC is higher than other algorithms 
while Skipjack consumes the lowest battery. 

ALGORITHM 3: ENCRYPTION ALGORITHM PROFILING 
Input: 
1: Device Resource Consumption 
2: battery: 
3:  apply KibaM model to get available battery 
4:  apply encryption algorithm 
5:  difference of the initial and final value gives battery consumption of the algorithm 
6: Memory: 
7:  read RSS before and after executing algorithm 
8:  difference of initial and final value gives memory consumption of the algorithm 
9: Execution Time: 
10:  InitialTime = clock_time();  
  //rest of the code.   
11:  FinalTime = clock_time(); 
12:  diff = FinalTime  - InitialTime ;   
13:  num_seconds = (double) diff / CLOCK_SECOND;   
 
 



 

  

CPU time: To measure the execution time of each 
algorithm, the initial clock counter was stored before code 
execution and final clock counter was stored after it 
completed execution. The initial and final values were then 
subtracted to get the CPU consumption of each encryption 
algorithm. The time required by each algorithm to encrypt a 
file of size 10KB is shown in table 1. According to the 
initial footprints, the execution time of AES is lower than 
other algorithms while the execution time of DSA is 
greatest. 

 
Step 3: Identify Security Strengths of Algorithms 

Every encryption algorithm utilizes different resources 
and has different security strengths. To identify the security 
strengths of each cipher, relevant literature review was 
performed. According to the literature [46-51], the 
encryption algorithms are categorized according to their 
security strength as shown in Table 1. 

 
TABLE 1 

INITIAL PROFILING OF EACH ALGORITHM 
 

Algorithm Memory 
(KB) 

Battery 
(Joules) 

Execution time 
(ms) 

 
Strength 

RSA 752 23.61 110 High 
ECC 1608 50.55 110 High 
DSA 1068 30.75 70 High 
AES 720 23.09 90 High 

Blowfish 844 20.99 220 High 
RC6 356 18.83 80 Medium 

DES 672 12.46 70 Medium 
Skipjack 392 5.89 80 Low 
Camellia 152 18.46 80 Low 

RC5 228 13.38 80 Low 
 
The algorithm for encryption algorithm profiling can 

be observed in Algorithm 3. 
 

D. MAPPING 
The device, information and algorithm profiling are used 
for the mapping of optimal encryption algorithm according 
to the context of the information and device. The device 
capabilities are mapped to the algorithm’s required 
resources and the information confidentiality level is 
mapped to the algorithm's strength, to find the optimal 
algorithm. These two steps are briefly outlined below: 

Step 1: Map security strength of algorithm over 
information security requirement 

Once the data generated by the IoT device is classified 
according to its security demand, such as high, medium or 
low, all the available encryption algorithms are sorted 
according to the desired security strength. For instance, if 
the data is highly confidential and requires strong 
encryption algorithm, all the ciphers will be sorted 
according to the security strengths they provide, as well as 
the resources they consume. Later, the device current 
capabilities will further decide the final selection of 

ALGORITHM 4: MAPPING ALGORITHM 
Input: 
1: Sort algorithm in descending order on the basis of device profiling 
2: Check information confidentiality level 
3: Check device capabilities (battery, memory) 
4: IF (confidentiality = "High")  
5:  THEN  
6:   Create list of all algorithms 
7:   Sort in descending order 
8:   for all algorithms  
9:    IF (battery_of_device >= list_of_Algorithm[i].battery  
    AND memory_of_device >= list_of_Algorithm[i].memory) 
10:     RETURN list_of_Algorithm_High_Security[i]; 
11: ELSE IF (confidentiality = "Medium")  
12:  THEN  
13:   Create list of algorithms having security strength medium and low   
14:   Sort in descending order according to device resources 
15:   for all algorithms 
16:    IF (battery_of_device >= list_of_Algorithm[i].battery  
    AND memory_of_device >= list_of_Algorithm[i].memory) 
17:     RETURN list_of_Algorithm_Medium_Security[i]; 
18: ELSE IF (confidentiality = "Low")  
19:  THEN 
20:   Create list of algorithms having security strength low 
21:   Sort in ascending order according to device resources 
22:   RETURN list_of_Algorithm_Low_Security[0]; 
 
 

 



 

  

encryption algorithm.  
Step 2: Map device capabilities over resource 

consumption of algorithm 
Once the encryption algorithms are sorted with respect 

to information requirements, the device available 
capabilities are checked to select the final cipher for 
encryption. Various resource requirements of each 
algorithm were calculated in the previous step including 
memory consumption, battery consumption and execution 
time. These resource consumptions are mapped on device 
available resources. For instance, if the information 
demands high confidentiality level, but the available 
resources of the device do not satisfy requirements of any 
algorithm, the protocol suite will select the best possible 
algorithm that can be executed by the available resources. 
The algorithm for mapping can be observed in Algorithm 4. 
 

 
FIGURE 2. Execution time comparison of CEPS with other available           

algorithms 
 

VI. RESULTS AND DISCUSSION 
This section presents simulation and evaluation of our 
proposed context-aware protocol suite. The proposed was 
evaluated on the basis of memory, battery and processing 
time consumption and was compared with already existing 
solutions in 6LoWPAN.  
The objective of this work is to provide a context-aware 
protocol suite according to the device available resources 
and information confidentiality demands. For this purpose, 
we selected ten encryption algorithms which are already 
implemented in 6LoWPAN including AES, RSA, DSA, 
ECC, DES, Blowfish, Skipjack, Camellia, RC5 and RC6.  
The implementation of the protocol suite was done in ns-
3.26, which is an open source simulator developed in C++ 
[52]. It is a network simulator for discrete events, primarily 
targeted to carry out research about a computer network. 
The ns-3 project was used because it provides a solid base 
for simulation, well- documented, easy to use and provides 
debugging facilities [53]. It has various built-in libraries 
and network topologies which are used for defining the 
simulation. ns-3 uses real clock during simulation instead of 
virtual clock which makes the results close to the hardware 
testbed results [54]. Other major reasons for its adaption in 

this article include its support for complete network 
topology for IoT devices [54] as well as IPv6 [55] [56]. 
Along with ns-3, Crypto++ cryptography toolkit1 was also 
used to demonstrate the performance of security algorithms 
in 6LoWPAN. Crypto++ is a freely available open source 
cryptographic library developed in C++ and is widely used 
for research. It provides complete implementation of 
security ciphers, hash functions, authentication codes, and 
key agreement structures2.  
6LoWPAN3 was designed for small sensor devices which 
cannot afford big code size, its complexity, and network 
overhead. The protocol provides a data packet size of 81 
octets, and a data rate of up to 250 kbps. The simulation 
module of 6LoWPAN installs its stack on top of already 
existing NetDevice. NetDevice provides an interface to 
access and manage devices by IP and hides details of 
physical and MAC layers. Two different asynchronous 
functions (send and receive) were implemented to get 
notifications about data transmission. Some other functions 
were also written to compute the available resources 
including memory, battery, and execution time  

 To measure the performance of the context-aware 
encryption protocol suite, a 10KB file is encrypted with all 
the available options. Various encryption algorithms 
currently available for 6LoWPAN are compared with each 
other as well as with the proposed encryption protocol suite 
on the basis of memory utilized, battery consumed and 
execution time. In the following, the description of each of 
the modules is provided: 

 

A. EXECUTION TIME 
To measure the execution time of an encryption algorithm, 
the clock library present inside ns-3 was used. The 
clock_init() function was initialized at the start of the 
program, which uses hardware time along with the 
interrupts. Function clock_time() returns the current tick of 
the clock. Hence, to measure the execution time of a 
program, initial clock tick counter is stored before code 
execution and final tick counter is stored once the code 
completes its execution. 

To encrypt a file of size 10 KB, the highest execution 
time was found to be of DSA, which was 220 milliseconds, 
while the lowest execution time was found to be of AES, 
with 70 milliseconds. On average, encryption algorithms 
took around 100 milliseconds to encrypt a file of 10 KB. 
However, CEPS took 70 milliseconds to encrypt the same 
file, which is 68% less than DSA and 30% less than the 
average case, as shown in Figure 2. 

B.  MEMORY 
To measure the memory (RAM) utilized by an 

encryption protocol, the memory usage probe was used 
through /proc/self/statm [16] virtual file. This file provides 
                                                 

1 https://github.com/weidai11/cryptopp/releases/tag/CRYPTOPP_8_0_0 
2 https://www.cryptopp.com/docs/ref/ 
3 https://tools.ietf.org/html/rfc4919 

https://github.com/weidai11/cryptopp/releases/tag/CRYPTOPP_8_0_0
https://www.cryptopp.com/docs/ref/
https://tools.ietf.org/html/rfc4919


 

  

physical memory consumed by each of the algorithms as 
well as CEPS. 

The memory consumption of ECC was highest with a 
footprint of 1608 KB, while Camellia consumed the least 
memory with 152 KB. On average, encryption algorithms 
took around 679 KB of memory to encrypt a file of 10 KB. 
On the other hand, the memory consumption of CEPS was 
334 KB to encrypt the same file, which is 79% less than 
ECC and 51% less than the average case, as shown in 
Figure 3. Camellia and RC5 take less memory than CEPS, 
however, both of these algorithms provide minimum 
security to each type of information, whereas CEPS 
provides significantly higher security to confidential 
information, achieving an overall better performance. 

 

 
FIGURE 3.  Memory comparison of CEPS with other algorithms 

C.  BATTERY 
When a device is powered on, a counter starts measuring 
the estimated battery consumption, and when the device is 
turned off, the current value of the battery consumption is 
stored. The difference between the start value and the 
current value is then multiplied by the device power. The 
current values of the skymote microcontroller are given in 
eq. (2). The power trace can be calculated by adding the 
consumption states of active CPU, Low Power Mode 
(LPM), transmit and receive. The following equation can be 
used to get the energy consumption of the sensor node, 
where the value of skymote microcontroller voltage is 
given as 3V [15]. 
 
Energy Consumed =   �(1.8∗CPU+0.051∗LPM+21.8∗Receive+19.5∗Tx)∗3�

CLOCKS_PER_SEC
      (Eq. 2) 
 
The battery consumption of ECC was highest among the 
other encryption algorithms with a footprint of 50.55 joules, 
while skipjack consumed the least battery consumption 
with 5.89 joules. On average, encryption algorithms took 
around 22 joules of battery consumption to encrypt a file of 
10 KB. However, the battery consumption of CEPS was 17 
joules to encrypt the same file, which is 56% less than ECC 
and 21% less than the average case, as shown in Figure 4. 
 

FIGURE 4. Battery comparison of CEPS with other encryption algorithms 

V. CONCLUSION   
IoT devices are usually resource constrained in terms 

of battery, memory and CPU power; facing few big 
challenges like stringent latency and enhanced security. 
Since these issues cannot be addressed effectively by the 
centralized computing architectures. Therefore, for IoT 
systems, Edge computing offers a fast response time and 
better computational power. However, due to lack of 
resources, the adaption of an encryption algorithm 
according to device capabilities is a challenging task. 
Currently, IoT devices use one encryption algorithm to 
encrypt data, however, the data generated by IoT devices 
may vary in confidentiality level and thus do not require 
same level of security. This paper addressed this issue and 
proposed a context-aware encryption protocol suit for Edge 
computing based IoT systems which adapts the encryption 
algorithm based on the information sensitivity as well as the 
device available resources. 

This paper proposed a context-aware encryption 
protocol suite for IoT devices. Different modules of device 
profiling, information profiling, algorithm profiling, and 
mapping were designed for the selection of optimal 
encryption algorithm according to the device available 
resources and information requirements. For device 
profiling, kinetic battery model [15] and memory usage 
probe [16] were used for battery consumption and memory 
consumption, respectively, while fuzzy logic [34] was used  

for information classification. For the simulation and 
implementation of different encryption algorithms, ns-3 and 
crypto++ were used. By using the proposed context-aware 
encryption protocol suite, we are able to save 79% memory 
consumption, 56% battery consumption and 68% execution 
time. 

There are several shortcomings in the proposed 
research. For example, for the device profiling, only battery 
and memory consumptions were traced, whereas bandwidth 
and processing power of the device could also be 
considered. Also, some paid simulator could be used to get 
more accurate results. Moreover, in this research, 
encryption ciphers implemented in 6LoWPAN were used. 
In future, similar protocols can be designed for other IoT 



 

  

communication technologies like WiFi, Bluetooth, Zigbee, 
and WiMax. 

REFERENCES 
 
[1] K. Ashton, "That ‘internet of things’ thing," RFID journal, vol. 
22, no. 7, pp. 97--114, 2009.  
 
[2]  J. Gubbi, R. Buyya, S. Marusic and M. Palaniswami, "Internet 
of Things (IoT): A vision, architectural elements, and future 
directions," Future generation computer systems, vol. 29, no. 7, 
pp. 1645--1660, 2013.  
 
[3]  L. Hou, S. Zhao, X. Xiong, K. Zheng, P. Chatzimisios , M. S. 
Hossain and W. Xiang, "Internet of things cloud: architecture and 
implementation," IEEE Communications Magazine, vol. 54, no. 
12, pp. 32--39, 2016.  
 
[4]  R. Khan, . S. . U. Khan, R. Zaheer and S. Khan, "Future 
internet: the internet of things architecture, possible applications 
and key challenges," in cFrontiers of Information Technology 
(FIT), 2012 10th International Conference on, IEEE, 2012, pp. 
257--260. 
 
[5]  C. Hennebert and S. J. Dos, "Security protocols and privacy 
issues into 6LoWPAN stack: A synthesis," IEEE Internet of 
Things Journal, vol. 1, no. 5, pp. 384--398, 2014.  
 
[6]  C. H. Liu, Z. Sheng, V. C. Leung, W. Moreno, K. K. Leung 
and Ö. Yürür, "Context-awareness for mobile sensing: A survey 
and future directions," IEEE Communications Surveys \& 
Tutorials, vol. 18, no. 1, pp. 68--93, 2016.  
 
[7] A. G. Roselin, P. Nanda and S. Nepal, "Lightweight 
Authentication Protocol (LAUP) for 6LoWPAN Wireless Sensor 
Networks," in Trustcom/BigDataSE/ICESS, 2017 IEEE, IEEE, 
2017, pp. 371--378. 
 
[8] C. Kolias, A. Stavrou, J. Voas, I. Bojanova and R. Kuhn, 
"Learning internet-of-things security" hands-on"," IEEE Security 
\& Privacy, vol. 14, no. 1, pp. 37--46, 2016.  
 
[9]  X. Su, P. Li, Y. Li, H. Flores, J. Riekki, and C. Prehofer, 
“Towards semantic reasoning on the edge of IoT systems,” in 
Proc. the 6th International Conference on the Internet of Things, 
2016, pp. 171–172. 
 
[10] B. Gu, Z. Zhou, S. Mumtaz, V. Frascolla, and A. K. Bashir. 
Context-Aware Task Offloading for Multi-Access Edge 
Computing: Matching with Externalities. IEEE Globecom. 2018. 
 
[11] I. Yaqoob, E. Ahmed, M. H. ur Rehman, A. I. A. Ahmed, M. 
A. Al-garadi, M. Imran and M. Guizani, "The rise of ransomware 
and emerging security challenges in the Internet of Things," 
Computer Networks, vol. 129, pp. 444--458, 2017.  
 
[12] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. 
Hashem, A. Siddiqa and I. Yaqoob, "Big IoT data analytics: 
architecture, opportunities, and open research challenges," IEEE 
Access, vol. 5, pp. 5247--5261, 2017.  
 

[13] G. Bansod, A. Patil, S. Sutar and N. Pisharoty, "ANU: an 
ultra-lightweight cipher design for security in IoT," Security and 
Communication Networks, vol. 9, no. 18, pp. 5238--5251, 2016.  
 
[14] I. F. Siddiqui, N. M. F. Qureshi, M. A. Shaikh, B. S. 
Chowdhry, A. Abbas, A. K. Bashir, and S. U. J. Lee. Stuck-at 
Fault Analytics of IoT Devices Using Knowledge-based Data 
Processing Strategy in Smart Grid. Wireless Personal 
Communications, Springer, 2018. 
 
[15] A. Riker, M. Curado and E. Monteiro, "Neutral Operation of 
the Minimum Energy Node in Energy-Harvesting Environments," 
in 2017 IEEE Symposium on Computers and Communication 
(ISCC), 2017, pp. 1-6. 
 
[16] D. Adrianto and F. J. Lin, "Analysis of security protocols and 
corresponding cipher suites in ETSI M2M standards," in Internet 
of Things (WF-IoT), 2015 IEEE 2nd World Forum on, IEEE, 
2015, pp. 777—782. 
 
[17] H. Suo, J. Wan, C. Zou and J. Liu, "Security in the internet of 
things: a review," in Computer Science and Electronics 
Engineering (ICCSEE), 2012 international conference on, vol. 3, 
IEEE, 2012, pp. 648--651. 
 
[18] C. Perera and A. V. Vasilakos, "A knowledge-based resource 
discovery for Internet of Things," {Knowledge-Based Systems, 
vol. 109, pp. 122--136, 2016. 
 
[19] C. Perera, A. Zaslavsky, P. Christen and D. Georgakopoulos, 
"Context aware computing for the internet of things: A survey," 
IEEE Communications Surveys \& Tutorials, vol. 16, pp. 414--
454, 2014. 
 
[20] Y.-W. Kao and S.-M. Yuan, "User-configurable semantic 
home automation," Computer Standards & Interfaces, vol. 34, no. 
1, pp. 171--188, 2012. 
 
[21] Q. Zhou, S. Natarajan, Y. Simmhan and V. Prasanna, 
"Semantic information modeling for emerging applications in 
smart grid," in Information Technology: New Generations 
(ITNG), 2012 Ninth International Conference on, IEEE, 2012, pp. 
775--782. 
 
[22] K. Taylor, C. Griffith, L. Lefort, R. Gaire, M. Compton, T. 
Wark, D. Lamb, G. Falzon and M. Trotter, "Farming the web of 
things," IEEE Intelligent Systems, vol. 28, no. 6, pp. 12--19, 2013.  
 
[23] A. Hristoskova, V. Sakkalis, G. Zacharioudakis, M. Tsiknakis 
and F. De Turck, "Ontology-driven monitoring of patient’s vital 
signs enabling personalized medical detection and alert," Sensors, 
vol. 14, no. 1, pp. 1598--1628.  
 
[24] C. Preist, J. Esplugas-Cuadrado, S. A. Battle, S. Grimm and 
S. K. Williams, "Automated business-to-business integration of a 
logistics supply chain using semantic web services technology," in 
International Semantic Web Conference, Springer, 2005, pp. 987--
1001. 
 
[25] C. M. Medaglia and A. Serbanati, "An overview of privacy 
and security issues in the internet of things," in The Internet of 
Things, Springer, 2010, pp. 389--395. 
 



 

  

[26] A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D. Chen, 
T. J. Giuli and X. Gu, "Towards a distributed platform for 
resource-constrained devices," in Distributed Computing Systems, 
2002. Proceedings. 22nd International Conference on, IEEE, 2002, 
pp. 43--51. 
 
[27] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger, J. 
Altmann and W. Retschitzegger, "Context-awareness on mobile 
devices-the hydrogen approach," in System Sciences, 2003. 
Proceedings of the 36th Annual Hawaii International Conference 
on, IEEE, 2003, p. 10. 
 
[28] W. Y. Lum and F. C. Lau, "A context-aware decision engine 
for content adaptation," IEEE Pervasive computing, vol. 1, no. 3, 
pp. 41--49, 2002.  
 
[29] M. Taneja and A. Davy, "Resource aware placement of IoT 
application modules in Fog-Cloud Computing Paradigm," in 
Integrated Network and Service Management (IM), 2017 
IFIP/IEEE Symposium on, IEEE, 2017, pp. 1222--1228. 
 
[30] P. Sathyamoorthy, E. C.-H. Ngai, X. Hu and V. Leung, 
"Profiling Energy Efficiency and Data Communications for 
Mobile Internet of Things," Wireless Communications and Mobile 
Computing, 2017.  
 
[31] A. Musaddiq, Y. B. Zikriya, O. Hahm, H.J. Yu, A. K. Bashir, 
and S.W. Kim. A Survey on Resource Management in IoT 
Operating Systems. IEEE Access. vol. 6, pp. 8459-8482. 2018. 
 
[32] M. A. Zardari and L. T. Jung, "Data security rules/regulations 
based classification of file data using TsF-kNN algorithm," 
Cluster Computing, vol. 19, no. 1, pp. 349--368, 2016.  
 
[33] M. A. Zardari, L. . T. Jung and M. N. B. Zakaria , "Data 
Classification Based on Confidentiality in Virtual Cloud 
Environment," Research Journal of Applied Sciences, Engineering 
and Technology, vol. 8, no. 13, pp. 1498--1509, 2014.  
 
[34] M. Mohammadian and D. Hatzinakos, "Data classification 
process for security and privacy based on a fuzzy logic classifier," 
International Journal of Electronic Finance, vol. 3, no. 4, pp. 374--
386, 2009. 
 
[35] A. Safi, "Improving the Security of Internet of Things Using 
Encryption Algorithms," World Academy of Science, Engineering 
and Technology, International Journal of Computer, Electrical, 
Automation, Control and Information Engineering, vol. 11, no. 5, 
pp. 546--549, 2017.  
 
[36] X.-W. Wu, E.-H. Yang and J. Wang, "Lightweight security 
protocols for the Internet of Things," in Personal, Indoor, and 
Mobile Radio Communications (PIMRC), 2017 IEEE 28th Annual 
International Symposium on, IEEE, 2017, pp. 1--7. 
 
[37] F. Hamad, L. Smalov and A. James, "Energy-aware Security 
in M-Commerce and the Internet of Things," IETE Technical 
review, vol. 26, no. 5, pp. 357--362, 2009.  
 
[38] G. Glissa and A. Meddeb, IEEE 802.15. 4 security sublayer 
for OMNET++, IEEE, 2017, pp. 1891--1896. 
 
[39] J. Toldinas, R. Damasevicius, A. Venckauskas , T. 
Blazauskas and J. Ceponis, "Energy consumption of cryptographic 

algorithms in mobile devices," Elektronika ir Elektrotechnika, vol. 
20, no. 5, pp. 158--161, 2014.  
 
[40] S. U. Khan, C. Pastrone, L. Lavagno and M. A. Spirito, "An 
authentication and key establishment scheme for the IP-based 
wireless sensor networks," Procedia Computer Science, vol. 10, 
pp. 1039--1045, 2012.  
 
[41] A. Liu and P. Ning, "TinyECC: A configurable library for 
elliptic curve cryptography in wireless sensor networks," in 
Proceedings of the 7th international conference on Information 
processing in sensor networks, IEEE Computer Society, 2008, pp. 
245--256. 
 
[42] P. Szczechowiak,, L. B. Oliveira, M. Scott, M. Collier and R. 
Dahab, "NanoECC: Testing the limits of elliptic curve 
cryptography in sensor networks," in Wireless sensor networks, 
Springer, 2008, pp. 305--320. 
 
[43] C. Matthias, S. Kris, B. An, S. Ruben, M. Nele and A. Kris, 
"Study on impact of adding security in a 6LoWPAN based 
network," in Communications and Network Security (CNS), 2015 
IEEE Conference on, IEEE, 2015, pp. 577-584. 
 
[44] S. Raza, S. Duquennoy, J. Höglund, U. Roedig and T. Voigt, 
"Secure communication for the Internet of Things—a comparison 
of link-layer security and IPsec for 6LoWPAN," Security and 
Communication Networks, vol. 7, pp. 2654--2668, 2014. 
 
[45] W. Jung, S. Hong, M. Ha, Y.-J. Kim and D. Kim, "SSL-based 
lightweight security of IP-based wireless sensor networks," in 
Advanced Information Networking and Applications Workshops, 
2009. WAINA'09. International Conference on, IEEE, 2009, pp. 
1112-1117. 
 
[46] M. Mathur and A. Kesarwani, "Comparison between Des, 
3des, Rc2, Rc6, Blowfish And Aes," in Proceedings of National 
Conference on New Horizons in IT-NCNHIT, 2013, pp. 143--148. 
 
[47] M. Ebrahim, S. Khan and U. B. Khalid, "Symmetric 
algorithm survey: a comparative analysis," 2014.  
 
[48] R. Tripathi and S. Agrawal, "Comparative study of 
symmetric and asymmetric cryptography techniques," 
International Journal of Advance Foundation and Research in 
Computer (IJAFRC), vol. 1, no. 6, pp. 68--76, 2014.  
 
[49] T. Nie, C. Song and X. Zhi, "Performance evaluation of DES 
and Blowfish algorithms," in Biomedical Engineering and 
Computer Science (ICBECS), 2010 International Conference on, 
IEEE, 2014, pp. 1--4. 
 
[50] H. K. Verma and R. K. Singh, "Performance analysis of RC5, 
Blowfish and DES block cipher algorithms," International Journal 
of Computer Applications (0975--8887) Volume, 2012.  
 
[51] M. Agrawal and P. Mishra, "A comparative survey on 
symmetric key encryption techniques," International Journal on 
Computer Science and Engineering, vol. 4, no. 5, p. 877, 2012.  
 
[52] A. Kumar, K. Gopal and A. Aggarwal, "Simulation and 
analysis of authentication protocols for mobile Internet of Things 
(MIoT)," in PDGC, 2014 International Conference on, IEEE, 
2014, pp. 423—428. 



 

  

 
[53] G. Brambilla, M. Picone, S. Cirani, M. Amoretti and F. 
Zanichelli, "A simulation platform for large-scale internet of 
things scenarios in urban environments," in Proceedings of the 
First International Conference on IoT in Urban Space, ICST, 
2014, pp. 50--55. 
 
[54] S. R. Prasad, R. Vivek and J. Mungara, NS3 simulation 
studies for optimized neighbour discovery in 6LoWPAN 
networks, IEEE, 2016, pp. 15—18. 
 
[55] G. D'Angelo, S. Ferretti and V. Ghini, "Simulation of the 
Internet of Things," in High Performance Computing \& 
Simulation (HPCS), 2016 International Conference on, IEEE, 
2016, pp. 1—8. 
 
[56] M. S. H. Talpur, M. Z. A. Bhuiyan and G. Wang, "Shared--
node IoT network architecture with ubiquitous homomorphic 
encryption for healthcare monitoring," International Journal of 
Embedded Systems, vol. 7, no. 1, pp. 43--54, 2014. 
 
 
 
 
 
 
 


