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Abstract
IT technology and traditional industries have been combined recently, resulting in IT 
convergence technology in various fields. Through convergence with the automobile, 
pedestrian detection technology, in particular, is used in the autonomous navigation 
control service of autonomous vehicles and also applied in various fields such as 
intelligent CCTV and robot recognition technology. For pedestrian detection, hierar-
chical classification and feature vector were used in early stage, and deep learning is 
under active progress. However, since deep learning for pedestrian detection is time-
consuming for processing a large volume of image data, it requires a lot of comput-
ing resources, and hence building such a system is very expensive. Therefore, in this 
paper we shall present a distributed deep learning platform which can easily build 
a cluster, and execute deep learning process in the distributed cloud environment, 
while achieving performance improvement in various ways. Our platform provides 
a convenient interface for easily and efficiently executing the deep learning process 
in a distributed environment by providing a multilayered system architecture. Our 
system builds and utilizes computing power in easy and efficient way by leveraging 
container technique, so-called OS-level virtualization, rather than traditional hyper-
visor-based virtualization. In our system, we improve the whole performance by 
exploiting both of data and parameter parallelisms at once and reduce the synchroni-
zation overhead by exploiting asynchronous communication for parameter updates. 
Also, we propose an efficient resource allocation scheme for parameter servers and 
slaves which can improve the performance from the experiment.
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1  Introduction

IT convergence technologies have been recently emerging from various fields, 
combining IT technology and traditional industries. In IT convergence technol-
ogy, pedestrian detection is very essential and crucial in particular, since it has 
been utilized in many different fields in relation with human life such as intelli-
gent CCTV, robot recognition, security, autonomous navigation, crime investiga-
tion and entertainment [1]. Pedestrian detection involves finding and recogniz-
ing a person in an image or video, and his exact location. This information can 
be utilized for various uses, providing services needed by the pedestrian or as 
a method of communication [2]. Such pedestrian detection has been converged 
with the automobile field and currently used in the intelligent services for autono-
mous navigation of vehicles.

Pedestrian detection technology in the early years consisted of feature extrac-
tion and learning process [3–9] which have a relatively high false detection rate 
compared to the deep learning model. Convolutional neural network (CNN) 
[10–12] through deep learning is used widely in recent years, which involves 
learning pedestrian data and detecting objects through classification. This method 
has a lower false detection rate compared to the method from early stages, but 
making the detector is strenuous, and the learning time takes very long [13]. 
Therefore, in this paper, we adopt faster region with convolutional neural network 
(Faster R-CNN) [14] technique with excellent detection performance, which uses 
region proposal network (RPN) for faster detection. However, since deep learn-
ing for pedestrian detection is time-consuming for processing a large volume of 
image data, it requires a large number of high-performance computers or sev-
eral high-performance graphics processing units (GPUs). Unfortunately, it takes 
money and time to build such an environment; thus, it must put a lot of pressure 
on researchers who are in financial difficulty. Cloud for deep learning process-
ing is one of solutions to solve this problem. By providing a deep learning cloud 
service from an enterprise company which is building a large data center, deep 
learning researchers can conduct research without any financial or time burdens.

In this paper we shall present a distributed deep learning platform which can 
easily build a cluster, and execute deep learning process fast in the distributed 
cloud environment while achieving performance improvements. Our platform 
provides a convenient interface for easily and efficiently executing the deep learn-
ing process in a distributed environment by providing a multilayered system 
architecture. Our system utilizes computing power in easy and efficient way by 
providing interface for managing distributed resources and by leveraging con-
tainer technique, so-called OS-level virtualization, rather than traditional hyper-
visor-based virtualization. Hypervisor-based machine is operated in the same 
hierarchy as the emulator and guest OS, making it rather inferior and utilization 
of resources difficult [15]. On the other hand, the container is an OS-level virtual-
ization method which provides a virtual environment, isolated from the physical 
system including the CPU, memory and distributed network. By providing deep 
learning clouds through container-based virtualization, physical resources can be 
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used as much as possible without overhead. We achieve performance improve-
ment in various ways. First, we improve the whole performance by exploiting 
both of data and parameter parallelisms at once. For data parallelism, input data 
are distributed among slave nodes, each updating the gradient, while for param-
eter parallelism parameter data among several parameter nodes, respectively. 
Next, we reduce the synchronization overhead by exploiting asynchronous com-
munication for parameter updates. Most of distributed learning frameworks were 
developed using a high-performance distributed processing framework called 
Apache Spark [16], which was based on memory technology. It generally oper-
ates in MapReduce and batch processing in synchronous approach for parame-
ter exchanges. Our system improves performance by adopting the asynchronous 
method for parameter exchange, as the synchronous method takes more time 
compared to the asynchronous one. Also, we propose an efficient resource alloca-
tion scheme for parameter servers and slaves which can improve the performance 
from the experiment. When parameter servers and slaves are placed in VMs of 
different physical nodes, remote communication occurs frequently. Therefore, we 
can reduce the network overhead by placing the parameter server and slave in 
each VM in one physical node.

The outline of our paper is as follows: In Sect. 2, we explain about related works. 
In Sect. 3, we describe about system architecture and flow of our platform, and in 
Sect. 4, we explain about deep learning process. In Sect. 5, we describe about exper-
imental result, and in Sect. 6, we give a conclusion.

2 � Related work

This chapter explores deep learning models for pedestrian detection and program-
ming library which are widely used recently and then describe about distributed par-
allel processing technique for deep learning and distributed environments.

2.1 � Deep learning models for pedestrian detection

Convolutional neural networks (CNN) have been widely used recently, due to its 
excellent performance in the object recognition field [17]. CNN is used in the pro-
cess of classifying whether or not the extracted image is a pedestrian. This method 
involves inputting an image of a certain size and outputting whether or not it is a 
pedestrian in the final output stage through CNN. Feature extraction and classifica-
tion process are all included in one structure. On the other hand, region with convo-
lutional neural network (R-CNN) [18] uses image segmentation for selective search 
in order to extract all the object prediction regions and inputs the extracted regions 
into the learned CNN to classify the results. However, the problem with R-CNN is 
that training is complicated, causing slow test speeds. Fast R-CNN was developed to 
solve this problem. Like the existing R-CNN, Fast R-CNN also predicts the object 
region from the image, but unlike the R-CNN, it can deduce the entire object pre-
diction regions with one CNN calculation for one image. There is no damage to 
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the original image, since the crop and resize operations from the existing technique 
have been omitted, and processing is completed using the ROI pooling layer in the 
CNN computed feature. However, region proposal selective search is still conducted 
outside of the neural network in Fast R-CNN, and region proposal selective search 
becomes the bottleneck of the entire performance. To solve this problem of Fast 
R-CNN, Faster R-CNN was proposed, combining RPN to Fast R-CNN. Instead of 
the slow external selective search, Faster R-CNN uses the fast internal RPN. It also 
has the advantage of sharing the detection network and convolutional feature map 
by applying the back-propagation algorithm of RPN. In this paper, Faster R-CNN 
model is adopted for pedestrian detection due to its fast object detection and excel-
lent accuracy.

2.2 � Deeplearning4j framework

Our deep learning programming is based on Deeplearning4j [19] which is open-
source library based on java and JVM. It supports various deep learning algorithms 
such as the restricted Boltzmann machine, deep belief net, deep autoencoder, stacked 
denoising autoencoder and recursive neural tensor network, word2vec, doc2vec and 
Glove. These algorithms can be executed in parallel using Hadoop and Spark. Dee-
plearning4j is mainly written in Java and includes Scala application programming 
interface (API). Numerical computation uses ND4J.

Deeplearning4j’s open-source library is compatible with both central process-
ing units (CPUs) and GPUs. Deeplearning4j’s learning process is structured to take 
advantage of distributed computing. In other words, it is possible to learn with repet-
itive MapReduce model based on Hadoop and Spark. In addition, it supports CUDA 
kernel, which enables computation on GPU and distributed learning using multiple 
GPUs. With Deeplearning4j framework, any combination of constrained Boltzmann 
machines, convolution neural networks, autoencoders and recurrent neural networks 
can be used.

2.3 � Distributed parallel deep learning

In this section, we shall describe various techniques for distributed parallel deep 
learning including parallelism, parameter sharing and communication.

2.3.1 � Parallelism

Distributed parallel training is used in deep learning for accelerating training, which 
can be classified into two ways: data parallelism and model parallelism. Figure 1a 
outlines the data parallelism method, where the input data set for learning is divided 
among multiple computers for training. In this method, the entire model is loaded 
into each distributed computer, and the input data are divided into several parts each 
of which is distributed among computers for training. Then, the weights computed 
by each computer are merged to update the whole parameters [20].
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Figure  1b outlines the model parallelism method, where multiple computers 
divide the deep learning model for training. Each computer performs training for the 
entire input data and exchanges propagation data which have been partially calcu-
lated with other distributed computers.

2.3.2 � Parameter sharing

There are two ways to share parameters: full mesh topology-based sharing and star 
topology-based sharing technique [21, 22]. Figure 2a outlines full mesh technique, 
where each computer delivers the parameter to all the other computers directly. This 
approach has the advantage of not requiring separate shared storage management, 
but its expandability is reduced, since the number of communication increases by 

Fig. 1   Parallelism

Fig. 2   Parameter sharing
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N2 as the number of distributed computers increases. On the other hand, Fig. 2b out-
lines star approach, which requires the concurrency control and synchronization of 
the shared parameter storage, but has the advantage of better expandability, since 
communication does not increase when the number of computers increases.

2.3.3 � Synchronous and asynchronous communication

In case of star topology-based parameter sharing technique, the parameter synchro-
nization between the computers is necessary, since the distributed computers need to 
update their respective parameters in the central computer. In case of a synchronous 
update, the entire training performance is adjusted to the performance of the last com-
puter which sends its parameter to the central computer, since the execution time dif-
fers for each distributed processing computer, depending on their performance and 

Fig. 3   Synchronous communication

Fig. 4   Asynchronous communication
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the current workload. This is shown in Fig. 3. To solve this problem, an asynchronous 
update approach can be used as shown in Fig. 4. This involves executing the training 
without synchronizing the parameters received from each computer. Most of the dis-
tributed frameworks are based on the synchronous technique and provide additional 
asynchronous technique to partially improve the training speed [23]. Asynchronous 
processing is more complicated than synchronous processing and has the disadvantage 
of deadlock. 

2.4 � Distributed environment

2.4.1 � Akka

In our system, Akka [24] plays an important role in driving system and communication 
between nodes, which is a free and open-source toolkit, and runtime simplifying the 
construction of concurrent and distributed applications on the JVM. It supports multi-
ple programming models for concurrency, but it emphasizes actor-based concurrency, 
with inspiration drawn from Erlang. The actor model implemented by Akka is based 
on the mathematical model proposed by Carl Hewitt in 1973. Now that concurrent pro-
gramming is becoming increasingly difficult to write in multithreading environments 
and the number of CPU cores used by a single computer is increasing rapidly, Akka 
provides an intuitive and convenient programming model for writing concurrent code. 
The actor model has several features. An object’s methods cannot be called directly, 
and a message can be only delivered. It is basically asynchronous and non-blocking. 
It also works concurrently. These Akka features are very powerful. With Akka, it is 
possible to eliminate all or at least the sequential parts and blocking calls which exist 
throughout the program. In addition, Akka has the advantage of automatically guaran-
teeing scale-out.

2.4.2 � HDFS

Hadoop Distributed File System (HDFS) [25] is a block-structured file system based 
on Google File System (GFS). Large files of over tens of terabytes can be stored in the 
distributed server, and storage can also be configured using the low-end server, which 
has advantages over existing large file systems (NAS, DAS, SAN, etc.). Network File 
System (NFS) is a general distributed file system that was developed for many users 
to access data in a network environment, but there is a restriction that only one logic 
volume stored in a single device can be accessed remotely [26]. HDFS was designed to 
overcome the limitations of NFS. It can store terabytes or petabytes by distributing data 
among multiple computers, supporting files much larger than NFS. Since the reliability 
of data storage in HDFS is high, individual computers can use the data even if they 
cause an error.
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2.4.3 � Container

Container, also known as OS virtualization, is the process of performing one 
operating system in another operating system. As shown in Fig. 5, the container 
shares the kernel of the original OS with other containers and has its own runt-
ime, library, etc., to execute application programs. Unlike the existing hypervisor-
based virtualization, the container can make efficient use of resources as it does 
not require guest OS and emulator.

Linux container (LXC) [27] is an OS-level virtualization technique for running 
multiple isolated Linux systems (containers) from a single control host. LXD [28] 
is a pure container hypervisor that performs Linux OS and VM-style operations 
at a remarkable speed and density. New Linux hypervisors that were developed 
to replace kernel-based virtualization, such as KVM container technology like 
Dockers, have security issues. As a result, in spite of the speed and density that 
enables efficient resource utilization, containers have been used as a traditional 
hypervisor, without maximizing resources. However, LXD, a new pure container-
centric hypervisor, uses the same technology as the Docker container to provide 
the same level of security as traditional hypervisors like KVM.

3 � Distributed deep learning platform

In this chapter, we shall describe about system architecture for distributed deep 
learning system.

Fig. 5   Hypervisor and container virtualization
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3.1 � System architecture

Our distributed deep learning system consists of three layers: Distributed Deep 
Learning Interface Layer (DDLIL), Distributed Deep Learning Execution Layer 
(DDLEL) and Distributed System Infrastructure Layer (DSIL) as shown in Fig. 6. 
In DDLIL, user develops deep learning application programs and submits them to 
DDLEL, which in turn manages, allocates system resources in the distributed envi-
ronment and then runs the programs. DSIL exploits HDFS for storing distributed 

Fig. 6   System architecture
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files and deploys virtual programming environment and deep learning model on 
container-based cloud infrastructure. Each layer shall be explained in detail in the 
following sections.

3.1.1 � Distributed Deep Learning Interface Layer (DDLIL)

DDLIL is responsible for receiving the request of the user for running application, 
building a job and delivering it to the system. It consists of job submitter and paral-
lel model manager as shown in Fig.  7. Job submitter consists of submit module, 
request analyzer and request builder. Submit module receives requests from users 
for application program execution, and request analyzer analyzes the user request 
such as parallelism, build file path, main class path, the number of parameter serv-
ers and slaves, etc., so that request builder builds parallel application program by 
interacting with parallel manager which generates a proper parallel model with data 
and parameter partition modules. Data partition module is responsible for the data 
parallelism of distributed deep learning. Each application allocates data according 
to the number of slave nodes and the size of total input data for distributed deep 
learning. Parameter partition module is responsible for the parameter parallelism of 
distributed deep learning. It appropriately allocates parameters of the model accord-
ing to the number of parameter servers. The generated model is created as a job with 
various information, which is transmitted to DDLECP for deployment and running 
in the system.

Fig. 7   Components of DDLIL
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3.1.2 � Distributed Deep Learning Execution Layer (DDLEL)

DDLEL manages the clustered resources, distributes the user application to the 
selected nodes and executes applications. The first is to manage cluster and infra-
structure state. The second is to manage the resources to execute the application. 
The third is to deploy the job to the allocated resources. The forth is to run the appli-
cation. Figure 8 outlines the control flow and configuration components.

When DDLEL receives a job from user request from DDLIL, stream manager 
generates a stream controller to handle the job. Stream manager manages the lifecy-
cle of the stream controller. Stream manager creates stream controllers according to 
the number of jobs submitted from the DDLIL. Each stream controller corresponds 
to one job requested by the user and managers several resource agent controllers. 
Stream manager is maintained until the stream controller is finished. Stream control-
ler requests resources to resource manager through resource requester. To commu-
nicate with the allocated resources, the stream controller generates resource agent 
controllers as many as the number of nodes allocated through the resource agent 
manager. The requested job is deployed to each agent through resource agent con-
troller. Agent actually executes the deployed job. After receiving the job, resource 
agent generates a task for execution.

Fig. 8   Components of DDLEL
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Resource agent directly communicates with the resource agent controller. 
Once the task is allocated to resource agent, the task is created to execute the user 
application program. Also, it communicates with infrastructure information man-
ager of the resource manager periodically and sends the condition of the node. 
Task consists of the execution module and communication module for the user 
application. It manages the lifecycle of the user application program and is main-
tained until the application program is completed. Execution module runs the 
actual application program. The user application program is processed by loading 
the build file’s class in the job, using the class loader. Communication module 
is used in the communication between nodes and occurs through the distributed 
processing of the user application program. It is used in the exchange of param-
eters between the parameter server and the slave during distributed deep learning 
processing.

Resource manager provides as much resources as user application needs. When 
the use of resources is completed, the corresponding resources are collected. If there 
are not enough resources for the user’s request, the process is terminated and a warn-
ing is issued. Infrastructure information manager manages the status of resources. If 
one of the nodes in the cluster is killed, remove it from the resource pool. Resource 
negotiator is responsible for determining the appropriate resources according to the 
status of each resource when the stream controller requests resources through the 
resource requester. When the resource negotiator determines the requested resource, 
resource provider deploys the allocated resources through DSIL.

Stream manager also manages a buffer which consists of several topics each stor-
ing real-time images coming from source such as CCTV as shown in Fig. 9. Real-
time images in each topic are distributed onto multiple partitions residing in the 
single or distributed broker nodes based on the file system using Kafka. Each of 
multiple partitions in the topic is processed by a single node so that multiple parti-
tions can be processed simultaneously for deep learning as a preprocessing step.

Fig. 9   Stream processing for real-time image
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3.1.3 � Distributed System Infrastructure Layer (DSIL)

DSIL provides container-based cloud and HDFS for distributed file storage as shown 
in Fig. 10. Distributed System Infrastructure refers to the infrastructure on which our 
system operates. Distributed System Infrastructure consists of LXD controller and 
HDFS controller. LXD controller is used to create a container-based virtual machine 
on the physical node and set the usage amount of each resource. HDFS controller 
is used to create Hadoop Distributed File System (HDFS) for storing the inputs of 
the deep learning process. Since HDFS stores files in block units on the distributing 
nodes, it can reduce the network load caused by requesting the files from multiple 
nodes.

3.2 � System control flow

In this section, we shall describe the control flow as well as a hierarchy of our sys-
tem as shown in Fig. 11. The control flow is largely divided into two parts: DDLIL 
and DDLEL. An application written by the user is delivered to DDLIL responsible 
for building and submitting it to our system. The application delivered to the DDLIL 
is created as a job containing a variety of information for running applications on 
our system. One example of the information is about the parallelism of the model. 
The job is delivered to DDLEL, which in turn requests resources from resource 
manager to run the application. It also deploys the job to the agent of the allocated 
distributed resource. Each agent receives a job and generates a task to execute the 
application and creates a communication module in the distributed deep learning 
application. Then, the application is executed as a task by agent.

Our system has a software hierarchy diagram as shown in Fig.  12. Physical 
nodes are distributed at the bottom to explain at the lowest level, which provides 
real resources for running the deep learning application program. Next is LXD 
machine container for providing resource virtualization service and then HDFS 
layer for loading input files of the application program. It provides input data to the 

Fig. 10   LXD container
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distributed nodes for data parallelism. As mentioned previously, resources can be 
used efficiently if OS-level virtualization is used. Next is distributed deep learning 
system software for supporting distributed and cloud environment. Our proposed 
deep learning system uses Deeplearning4j and provides a wrapper for deep learning 
application.

4 � Distributed deep learning processing

Distributed deep learning processing is executed as follows: First, input data 
are distributed among slaves for distributed deep learning. All parameters are 
also distributed among parameter servers. Each slave receives parameters from 

Fig. 11   Control flow of system

Fig. 12   System software diagram
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parameter servers and then finds the gradient by processing the part of input data 
with specified batch size, based on the imported parameters. The calculated gra-
dients are sent back to the parameter servers, each updating its corresponding 
parameters. This train process is repeated until sufficient accuracy is obtained.

4.1 � Data and parameter parallelism

Our system provides two kinds of parallelism in the distributed environment: 
data parallelism and parameter parallelism. For the former, the whole model is 
loaded for each slave, and the input data is distributed among slaves for training 
as shown in Fig. 13. Each time the training process in each slave is repeated, the 
modified gradients are exchanged with the parameter servers. Since deep learn-
ing training processes very large input data, data parallelism can be an efficient 
method to reduce the overall training time through parallel processing.

The size of overall model parameters is very large when large-scale deep learn-
ing processing is performed as shown in Fig. 14. Therefore, it may incur a net-
work bottleneck during parameter exchange in distributed environment. In order 
to solve this problem, parameter parallelism is used by distributing the entire 
parameters across several parameter servers, thus reducing the communication 
overhead arising in the centralized parameter server.

Fig. 13   Data partition
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4.2 � Parameter exchange method

There are two methods for parameter exchange: asynchronous and synchronous. 
Figure 15 shows parameter exchange method for both methods. Our system adopts 
the asynchronous method for the parameter exchange method.

Synchronous method, when performing updates on the parameter servers, is per-
formed synchronously on all nodes. It has advantage for accuracy and implementa-
tion cost. However, synchronous method causes all the other slaves to wait, while 
the parameter server performs each update. Therefore, the overall performance is 
adjusted to that of the worst performing node, resulting in performance degrada-
tion. In other words, each slave node which has already performed the update should 

Fig. 14   Parameter partition

Fig. 15   Parameter exchange
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wait until the latest update of the gradient is performed. On the other hand, in the 
asynchronous mode, each slave communicates asynchronously with the parameter 
servers to update parameter. For this reason, asynchronous method can be quickly 
trained without sacrificing accuracy as compared to synchronous method. Asyn-
chronous method performs updates more concurrently.

Generally, many distributed frameworks are based on synchronous methods. In 
particular, Deeplearning4j, the foundation of our deep learning process, implements 
distributed processing based on the Apache Spark, which is a synchronous model 
based on MapReduce as a large-scale distributed processing framework. Therefore, 
distributed deep learning processing based on Apache Spark exchanges parameters 
in a synchronous manner. As a result, performance is somewhat lower than that of 
the asynchronous method. However, although our system is based on Deeplearn-
ing4j, we shall provide a way for exchanging the parameters asynchronously without 
deploying Apache Spark, improving the overall performance.

5 � Performance evaluation

For the experimental evaluation, Akka and Deeplearning4j libraries are used in our 
system for distributed deep learning processing. Akka is open-source toolkit for 
simplifying the construction of concurrent and distributed programming. It enables 
us to build our distributed system including clustering, deployment of job, resource 
management and so on. Our deep learning processing is based on Deeplearning4j, 
an open-source deep learning library written in Java. It supports a variety of deep 
learning models, including limited Boltzmann machines, CNN, recurrent neural net-
work and so on. We provide DistMultiLayerNetwork class to run Deeplearning4j in 
distributed mode on our system, which is a class wrapping MultiLayerNetwork class 
of Deeplearning4j. The application program written by the user is submitted to the 
system by executing the main submit class, which analyzes the request, creates the 
task and sends it to the submit module. It generates Akka Actor System before send-
ing the task to submit module, since submit module is Akka’s actor,

5.1 � System environment

Our system environment for performance evaluation consists of 8 container systems 
written by LXD based on the OS virtualization technology from 4 physical nodes 
each with 8 CPU’s (Intel (R) Xeon (R) CPU E5606 @ 2.13 GHz) and 24 GB DDR3 
main memory. Each container system is allocated 4 CPU’s with 4 cores and 10 GB 
of RAM. Performance is evaluated under various experiments. Figure 16 shows our 
experimental environment.

We experiment KITTI data set for pedestrian detection on Faster R-CNN deep 
learning model. We measure performance by changing the number of parameter 
servers and slaves as well as the placement of parameter servers and slaves. For 
performance evaluation, we are more concerned with comparing synchronous and 
asynchronous modes for various configurations in terms of the overall time taken for 
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the whole training process, since it is hard to differentiate the communication time 
from computation time in asynchronous mode. We try to find the optimal place-
ment from the viewpoint of the whole training process performance by showing that 
asynchronous mode is better than synchronous one due to the overlapped duration 
between computation and communication rather than from communication/compu-
tation cost.

Our data set for the pedestrian detection experiment on Faster R-CNN is a set of 
images from KITTI data set. It consists of 7481 training sets and 7518 test sets, each 
with 1242 × 375 image size. Figure 17 shows examples of our KITTI data sets.

5.2 � Experimental result

First, we compare performance when assigning various placements to VMs. 
Table 1 shows four experimental configurations with the fixed number of slaves 
and parameter servers: four slaves in one VM, two slaves in two VMs in one node 
and two nodes, respectively, one slave in one VM in four nodes. Figure 18 shows 
performance for each configuration for both of synchronous and asynchronous 
cases. Experimental result shows that if multiple slaves are placed in a single 

Fig. 16   Experiment environment

Fig. 17   KITTI data sets
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VM, the performance is not improved, since CPUs of single VM are shared. In 
other words, assigning one role of parameter server or slave to one VM shows the 
best performance.

Next, we measure the performance by varying the number of parameter servers 
and slaves. First, we compare the performance by increasing the number of slaves 
each in a single VM with respect to different number of parameter servers as shown 
in Figs. 19, 20 and 21. Both of synchronous and asynchronous cases show that per-
formance increases and then decreases as the number of slaves increases, since fre-
quent networks occur as the slave increases. In particular, the asynchronous case 
shows better performance than the synchronous one. The best performance case is 
for one parameter server and five slaves in asynchronous mode. In this case, it is 
1.98 times faster than when it is not parallelized and 1.66 times faster than the syn-
chronization case. In addition, it is 1.31 times faster than the best performance when 
using multiple parameter servers, 4 parameter servers and 4 slaves.

Table 1   Placement configurations of parameter servers and slaves

Fig. 18   Performance for each placement configuration
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Next, we compare the performance by increasing the number of parameter serv-
ers with respect to different number of slaves as shown in Figs. 22, 23 and 24. This 
experimental result shows that the performance does not always increase when the 
number of parameter servers increases. Rather, the overall performance decreases, 
since the size of the parameters is rather small. The best performance can be 
achieved by selecting the number of parameter servers according to the number of 
parameters and data distributed to each node and the network speed.

5.3 � Optimal placement of slave and parameter server

In this section, we suggest a placement strategy of parameter servers and slaves 
to get optimal performance of distributed deep running. It attempts to reduce the 

Fig. 19   Performance with respect to different number of slave nodes on 1 parameter server

Fig. 20   Performance with respect to different number of slave nodes on 2 parameter servers
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number of remote communications that occur in parameter exchanges by placing 
a parameter server and a slave on each VM in a physical node. Table 2 shows the 
placement of these strategies. Figure 25 shows that this placement is performed 
better than the randomly placed method. In optimal results, the asynchronous 
communication method is 1.55 times faster than that without parallelism and 
1.27 times faster than the synchronous communication method with 4 parameter 
servers and 4 slaves.

Fig. 21   Performance with respect to different number of slave nodes on 3 parameter servers

Fig. 22   Performance with respect to parameter server on 1 slave
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6 � Conclusion

In this paper we have presented the distributed deep learning platform which can 
easily build a cluster, and execute deep learning process fast in the distributed cloud 
environment while achieving performance improvement. Our platform provides a 
convenient interface for easily and efficiently executing the deep learning process 
in a distributed environment by providing a system architecture which consists of 
three layers: DDLIL, DDLEL and DSIL. In DDLIL, user develops deep learning 
application programs and submits them to DDLEL, which in turn allocates system 
resources in the distributed environment and then runs the programs. DSIL provides 

Fig. 23   Performance with respect to parameter server on 2 slaves

Fig. 24   Performance with respect to parameter server on 3 slaves
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HDFS for storing distributed files and deploys virtual programming environment 
and deep learning model on container-based cloud infrastructure. Our system can 
easily build clustering and run distributed processing in a distributed environment 
using one simple command.

The various features of our platform can efficiently handle deep learning process-
ing efficiently in a distributed environment. Our system utilizes computing power 
in easy and efficient way by leveraging container technique, so-called OS-level 
virtualization, rather than traditional hypervisor-based virtualization. We achieve 
performance improvement in various ways. First, we have improved the whole per-
formance by exploiting both of data and parameter parallelisms at once. Next, we 
have reduced the synchronization overhead by exploiting asynchronous communica-
tion for parameter updates. Also, we have proposed an efficient resource allocation 

Table 2   Placements of parameter servers and slaves

Fig. 25   Performance with respect to optimal placement
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scheme for parameter servers and slaves which can improve the performance from 
the experiment. When parameter servers and slaves are placed in VMs of differ-
ent physical nodes, remote communication occurs frequently. We have suggested a 
way to improve performance by reducing the frequency of remote communication 
by placing parameter servers and slaves on the same physical node. Experimental 
results have shown that our scheme for distributed deep learning provides higher 
performance on processing time by adopting asynchronous communication method. 
In both experiments, asynchronous communication method has shown better perfor-
mance than synchronous communication method. In addition, the strategy of plac-
ing parameter servers and slaves on each VM of a single physical node is able to 
boost performance.

As a future work, we are going to further develop distributed parallel platform for 
fast deep learning in other computation-intensive applications.
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