1904.11201v1 [cs.DB] 25 Apr 2019

arxXiv

GPU-based Efficient Join Algorithms on Hadoop

Hongzhi Wang, Ning Li , Zheng Wang, Jianing Li
P.O.Box 750, Harbin Institute of Technology, Harbin, China

Abstract

The growing data has brought tremendous pressure for query processing and
storage, so there are many studies that focus on using GPU to accelerate join
operation, which is one of the most important operations in modern database
systems. However, existing GPU acceleration join operation researches are not
very suitable for the join operation on big data.

Based on this, this paper speeds up nested loop join, hash join and theta join,
combining Hadoop with GPU, which is also the first to use GPU to accelerate
theta join. At the same time, after the data pre-filtering and pre-processing,
using Map-Reduce and HDFS in Hadoop proposed in this paper, the larger
data table can be handled, compared to existing GPU acceleration methods.
Also with Map-Reduce in Hadoop, the algorithm proposed in this paper can
estimate the number of results more accurately and allocate the appropriate
storage space without unnecessary costs, making it more efficient.

The rigorous experiments show that the proposed method can obtain 1.5 to
2 times the speedup, compared to the traditional GPU acceleration equi join
algorithm. And in the synthetic data set, the GPU version of the proposed
method can get 1.3 to 2 times the speedup, compared to CPU version.

1. Introduction

One of the most serious problems in the computer industry today is the
growing data. According to statistics, the rate at which data is generated an-
nually on the network will increase by 10 percent every five years[l]. Therefore,
we have to face how to effectively deal with this serious problem in large re-
lational databases. However, the speed of the processor has now grown to the
limits of the current level of technology, more and more attention focused on
parallel technology. One solution is to increase the number of processors[2] and
threads[3]. Another solution is using a single instruction multiple data stream
(SIMD) structure to improve the parallelism by processing multiple data under
one instructionf4].

Now, due to CPU clock frequency limitations, software optimization has
come to an end. Therefore, researchers have to consider other possibilities to
speed up the query processing[f], using multicore CPUs[6]. The use of new
hardware to speed up the process is also possible[7]. In recent years, many

Preprint submitted to Elsevier April 26, 2019

studies have chosen FPGA as an option for hardware accelerators[8, 9], including
the query[I0]. Similarly, image processors (GPU) have been widely used in the
field of query processing[11].

Join operation is one of the most important operations in relational database
operations and one of the longest-running operations in a query. Under this sit-
uation, there are many efforts put to speed up the join operation. IBM has
added new hardware to its commercial system Netezza[l2]. Do[13] integrated
CPU processors and DRAM memory into a smart flash device (Smart SSD) to
implement query processing. Devarajan[I4] and others believe that the GPU is
the most advanced distributed tool to handle computationally intensive tasks.
Kaldewey[15] and others believed the data needs to be copied to the GPU de-
vice memory for processing. He[I6] thought using GPU to query co-processing
was an effective way to improve memory database performance. Yuan[I7] used
the GPU device to implement the hash join operation. Pietron[I8] and others
used the CUDA programming model on the GPU to achieve a part of SQL
operations. Rui[I9] has conducted detailed experimental studies on how join
operation benefits from the rapid growth of the GPU. Angstadt|20] even devel-
oped a dedicated to speed up the SQL statement using the CUDA programming
model on the GPU. In addition to the two-table join, multi-table join equally
occupies a very important position in the relational database, Zhou|2I], who
proposed GBFSJ (GPUs BloomFilter Star Join) algorithm, achieved a star join
on the GPU with the use of a Bloom filter. Cruz[22] and others have used the
GPU to achieve such connectivity.

Through the analysis of the existing research results of the new hardware
acceleration join, it is concluded that the research results have the following
problems:

e Existing join operations based on new hardware are still at the initial
stage, most are limited to simple equi join, or lack of research on complex
join operation such as theta join. Future research work should focus more
on complex join operation for practical applications.

e The existing research carried out by the experiment are based on small
data sets, the size of the data set mostly is MB. To use GPU in com-
mercial database systems, future research efforts should be put on scaling
operations on large-scale data.

e A serious problem with the new hardware acceleration join operation is
how to allocate the appropriate storage space for the join results. Differ-
ent from the CPU programming language, dynamically allocating storage
space, GPU needs to allocate enough storage space in advance. However,
the existing research results are not good solutions to this problem.

e A single new hardware cannot meet the needs of modern business databases,
but existing research is carried out on monolithic new hardware. There
should be more work on deploying new hardware as a distributed archi-
tecture to accelerate join operation.

This paper is mainly based on the distributed architecture of the GPU to
accelerate the join operation. By combining the Hadoop architecture with the
GPU, advantages of both Hadoop’s node-level parallelism and GPU’s thread-
level parallelism can be taken. Hadoop data processing tasks originally per-
formed by the CPU were sent to the GPU, using the GPU’s parallelism while
opening multiple threads to take advantage of the high computational power
and high parallelism. This paper intends to implement nested loop join, hash
join and theta join algorithm, the remaining types of join will be studied later.

The second section mainly introduces the basic hardware structure, the
thread organization form and the CUDA programming language background,
to better understand the following GPU processing join algorithm. The third
section and the fourth section mainly introduce the main research contents of
this paper, including pre-filtering of data and hardware processing equi join and
non-equi join operation. The fifth section introduces the experiment and the
results obtained in this paper. The last part concludes the paper, summarizes
the contents and points out the innovation.

2. Preliminary

2.1. GPU

The GPU device has a multiparty processor core with multiple instruction
streams and multiple streams (SIMDs), and each multiprocessor core contains a
number of processors. The GPU hardware structure shown in Figure [I| contains
N multiprocessor cores, and each multiprocessor core contains M processors.
Each multiprocessor core contains an instruction processing unit and a storage
resource. All processors on the multiprocessor share the instruction unit and the
storage space, and each processor has a set of registers. GPU devices also have
global memory, and global memory can be accessed by all multiprocessor cores.
Multi-processor core internal storage resources read and write faster, compared
to the global memory.

As shown in Figure [2] in a thread block, the organization of the thread can
be one-dimensional, two-dimensional and three-dimensional, with ID identifying
each thread. Similarly, the organization of thread blocks in a thread grid can
also be divided into one-dimensional, two-dimensional, and three-dimensional.
GPU threads have a variety of organizational forms, making it applicable to
different issues. For example, when dealing with array problems, the thread
grid and the thread block can be used in the one-dimensional organization, and
each thread corresponds to a part of the array elements.

2.2. CUDA

GPU devices slowly evolved into a copier processor for intensive computa-
tion, bringing a variety of programming languages into birth, such as CUDA.
CUDA can be implemented in both CPU and GPU. Additionally, CUDA adds
some content related to GPU devices, such as the use of rich thread resources
on the GPU.

GPU

Multi-Professor N

Multi-Professor 2

Multi-Professor 1 W
Unit

Professor 1 ® o o Professor M

A A A A

v A4
Cache

Global Memory

Figure 1: Structure of GPU

CUDA contains two kinds of code, host code, and kernel code. Host code
runs on the CPU, which is responsible for the applying for storage space, calling
the kernel code, controlling data transformation between CPU and GPU. The
kernel code is the code that runs in parallel on the GPU.

2.8. Join Operation

In the relational database, the join operation is the process of the combi-
nation of two tables into a relationship table under specific conditions. The
attributes that participate in the relationship table are called join keys. If the
join key satisfies the query condition, the corresponding tuples in two tables are
merged into one tuple and stored in the buffer.

According to the different join conditions, the join operation can be divided
into equi join and theta join:

e Equi join: The query statement specifies the join condition for the connec-
tion of the equation. Consider the relationships R(A, B), S(C, D). When
R.A = S.C, it is an equi join. Figure [3| shows the result of the join. In
SQL, the syntax of this join is:

select A, B,C, D from R join S on R.A=S5.C
e Theta join: The query statement specifies the join condition for the con-

nection of the non-equation. Non-equation includes >, <, >, < and so on.
Figure [f] shows the result of the join. In SQL, the syntax of this join is:

GPU Device Grid
Block Block
(0,0) (0,2)
Block Block
(1,0) (1,2)
7/

Threads

(0,0,0) (1,0,0 /

(0,1,0) (1,1,0)

Figure 2: Organization of GPU threads

select A,B,C,D from R join S on R.A<S.C
The join operation can be roughly divided into the following three categories:

e Nested loop join: It is a violent algorithm that converts all tuples in one
table to all tuples in the other table, and generates a new result tuple if
the join condition is met.

e Hash join: It is to put the smaller table (inner table) into a hash table
and store it in memory. And then traverse the larger table (outer table)
to find the tuple of the outer table in the hash table.

e Sort merge join: It is to sort two tables at first, and then traverse them
in sequence to decide whether to join.

2.4. Hadoop

Hadoop is an open source software framework, which is used for distributed
storage and big data processing. The core of this framework is the Hadoop
Distributed File System (HDFS) and Map-Reduce.

HDEFS, written in Java for the Hadoop framework, is a distributed file system
that can store data on commodity machines, providing high bandwidth across
the cluster.

A B C D R.A|S.C |RB |SD
X 1 y 4 y y 2 |4

Figure 3: Example of equi join

A B ¢ b R.A|S.C |RB |S.D
1 X 1 o R.A<S.C

1 3 X q
2 y 1 P
3

z 3 q

Figure 4: Example of theta join

Map-Reduce is a distributed computing framework to handle big data (greater
than 1TB), including Map and Reduce. In the Map phase, the data is read in
units of lines and converted to key — value pairs. In the Reduce phase, pairs
with the same key value are passed to the same Reduce function, and the result
is finally returned[23] 24| 25] 26| 27].

Using Map-Reduce to handle join operations is the current mainstream ap-
proach, roughly divided into three ways, join in Reduce, join in Map, and semi
join.

3. GPU-Based Equi Join with Hadoop

In the join algorithm above, only a small part of the data in two tables
participates in the equi join operation. Therefore, initial pre-filtering in CPU,
passing fewer data between hosts, will be a good solution to this problem. Based
on this, this section mainly introduces GPU to accelerate nested loop join and
hash join, along with the pre-filtering through Hadoop to reduce the amount of
data transferred between devices.

3.1. Data Pre-filtering through Hadoop

In semi join, only tuples of the large group are filtered, by extracting the
join key of the small table. When two large tables are connected, filtering only
the larger ones is not sufficient to achieve the greatest performance boost. The
pre-filter mentioned in this paper extracts common join keys of two tables to
pre-filter both tables. So, even if two tables are very large, it can still achieve a
good performance. This pre-filtering needs two rounds of Map-Reduce through
Hadoop, the following is a specific implementation process.

In the Map phase of the first round of Map-Reduce, firstly read the data
of two tables to extract those to be connected attributes, and add a label to

indicate which table they are from. Specifically, Map’s output is (key, tag), and
key is the value of to be connected attribute. When tag is T, it means the tuple
is from the table T, the same to those with S. Each tuple corresponds to such a
key — value pair. Pairs with the same key are transported to the same Reducer
after shuffling, sorting, merging, and so on. In the Reduce phase, the received
(key,valueyist) are analyzed. Only those valuejist contains both T and S key
value will be outputted as the result to HDFS in Hadoop. All in all, the first
round Map-Reduce’s output is the value of join key attribute in the final result.
That is, the tuples whose value of join key attribute are not in it will not appear
in the final result.

In the second round of the Map-Reduce task, the result from the previous
round is read from the HDFS firstly in the initialization function Setup() and
stored in a hash table. Then in the Map phase, read tuples of two to be joined
original table, and extract the join key. If the join key exists in the hash table,
the tuple is shown in the final result, it is outputted with a tag that identifies
its origin. In this step, only those tuples that are determined to be in the final
result will be outputted to Reduce to participate in the final operation. In this
way, the amount of data to be processed in Reduce declines greatly. At the
same time, it reduces the number of tuples that need to be stored on the GPU,
freeing up device memory.

In semi join, the raw data is inputted directly to HDFS after filtering, and
then a new Map-Reduce is restarted to read and operate the filtered data.
However, it will lead to additional Map-Reduce startup time and additional
expense of both output and extraction in the new round. Therefore, the pre-
filtering method used in this paper incorporates the filtering of data and the
execution of the actual join operation into one round of tasks. That is, after
filtering, mapping and tagging in Map, data is transferred to Reduce for joining,
by shuffling, sorting, merging and other steps. In the Reduce phase, the data
from Map is received and processed (row and column transformation), and the
processed data is then sent to the GPU for specific join operations. After the
GPU is executed, the result is returned to the CPU, and the Reduce outputs it
to HDFS. The pseudo code is shown in Algorithm

3.2. Data Preprocessing through Hadoop

Before reading the filtered data and performing the actual join operation,
Reduce of Map-Reduce in Hadoop needs to perform some preprocessing of the
data. The main processing steps include mapping and row and column trans-
formation. This section describes these two operations and the effects they
bring.

3.2.1. Mapping

For a SQL query, only a few attributes in the relational table will be used,
and most of them will lead to additional overhead. Therefore, analyzing SQL
statement to determine which attributes are query-related will enhance the ef-
ficiency. Existing big data query tools, such as HIVE, IMPALA, all follow a

Algorithm 1: Pre-filtering Algorithm

: Mapl(null,tuple):

: join_key < extract the join key from tuple;

: emit(join_key,tag);

Reducel(key,tag-list):

unique_key < the key which belongs to both of the two tables;

for key in unique_key_list do
emit(key,null);

: Setup()

: Build a hash table with the unique_key_list;

1 Map2(null,tuple):

1 join_key <+ extract the join key from tuple;

1 join_tuple < tuple tuple whose join key is contained in the hash table;

1 join_tuple’ < Projection(Join_tuple);

. emit(join_key/a,tagged join_tuple);

: Reduce2(key,tag-list):

: T < tuples from table T for key;

: S <« tuples from table S for key;

: T° < preprocessing for table T";

1 S < preprocessing for table S’;

: NB_T < number of tuples in T";

: NB_S < number of tuples in S’;

: Result + Join.GPU(T",S",NB_T, NB_S);

: for tuple in Result do

24: emit(null,tuple);

DO DO DD DN b= = b et et e e e et
WNFOOXNDURWNROORTDPI AW

principle: by analyzing the SQL statement, generate the implementation plan,
and optimize the implementation plan, including filtering, mapping operations
before the join operation. The algorithm presented in this paper will map the tu-
ples in the Map phase of the second round of Map-Reduce. For each tuple, only
query-related attributes are kept, others are removed. Those kept attributes are
combined into new tuples. The new tuple has all the query-related attribute

values, but the size is smaller than the original tuple. The pseudo code is shown
in Algorithm [2]

Algorithm 2: Mapping Algorithm(Projection)

1: new-tuple < null;
2: Attrs[] < extract attributes from tuple T;
3: new_tuple < combine relevant attributes in Attrs[] to a new tuple;

8.2.2. Row and Column Transformation

Traditional relational databases use row storage patterns, using tuple as a
basic storage unit in the disk. All bytes of each tuple are stored adjacently. In
online transaction processing (OLTP), the query needs to return all or most of
the columns, making this storage mode perform well.

However, in online analytical processing (OLAP), queries often involve mil-
lions or more row tuples, but only a few of them are required for queries. For
example, a supermarket needs to check the top ten highest sales of commodities
this year. Users usually only concern about the name, categories, and sales.
At this point, the using of row storage will read a lot of useless data, because

only one line of data can be read at one time, of which only a few field value is
required for the query.

The column storage model is a good solution to this flaw. As shown in
Figure [5} the column storage model stores the data in columns, and all the
data in the same column are stored in adjacent storage space. When storing
one row of data, different data fields are stored in the corresponding column’s
storage space. For the column storage model, it only needs to read the columns
associated with the query. In addition, the column storage model performs
better in data compression than the line storage model. Although the column
storage model has many advantages, after being read from the disk, data still
needs to be stored in rows in memory for processing. When the number of to
be read columns is too large, the process of row and column transformation will
bring too much overhead. Therefore, the column storage model is more suitable
for the query with fewer columns involved. At present, many database systems
use column storage mode, such as SQL Server[2§].

In this paper, because the data has been mapped in the Map of the second
round, row and column conversion cannot bring too many benefits. However, for
the join operation, a necessary step is to extract the join key value of each tuple.
As is shown in Chapter [2.2] CUDA is not quite good at the string processing,
for the need of traversing the entire tuple to extract the join key, which will
undoubtedly increase the computing burden of the GPU. At the same time,
because the tuple contains variables of unsettled length, extracting the join key
is not a very wise choice in the kernel. So before sending data to the GPU, row
and column still need to be transformed.

> Row Storage Model
James Male 31
Name Gender Age
Kobe Male 38
James Male 31
Anthony Male 31
Kobe Male 38
Tylor Female 28
Anthony Male 31
Tylor Female 28
Column Storage Model
James Kobe Anthony Tylor
Male Male Male Female
31 38 31 28

Figure 5: Column storage model

To do the transformation, extract all the attribute values of each tuple and
store these attribute values into different buffers. Each buffer stores all the
values of an attribute. Note that attributes in each buffer are stored in the
same order. For any two different tuples t and s in the original data table, let
tuple t be preceded by tuple s. The position of each attribute of the tuple t
in the respective buffer is preceded by the corresponding attribute of the tuple.
As a result, only comparing the records in the join key buffer and extracting
the records in other locations to generate join results are needed. For example,
if the m** record in the T table join key buffer matches the n'” record in the
S table join key buffer, extract the joining result of all m** records of T table
buffers and all n** records of S table buffers.

3.8. GPU-Accelerated Equi Join Operation

This section describes the details of equi join operations on the GPU, in-
cluding the threading model used in CUDA, the specific execution flow of join
operations, the estimation and analysis of results number, and the thread hier-
archy analysis. In addition, this section implements nested loop joins and hash
join operations.

8.8.1. GPU-Based Nested Loop Join

According to Section [2.3] nested loop join needs to loop through two tables,
so the use of two-dimensional thread model is essential, that is, the organization
of the thread block in the thread grid and the organization of the thread in the
thread block are two-dimensional. Figure[6]is a thread grid organization, which
contains a total of four thread blocks, each thread block also contains four
threads, and are in the form of 2 % 2 organization. Thus, the line grid in both
horizontal axis and vertical axis contain two thread blocks, the same as the
organization of threads in the thread block.

S0 S1 S2
RN
:IIDIE;!O) [:' B|O%,|1)

_ImE

1]

]]
I N

Figure 6: Thread grid organization of nested loop join

When multi-threads process nested loop join, each thread needs to deal with
part of the data. Only when all threads have completed their tasks, the GPU
will return results to the CPU. Obviously, the total processing time for tasks on

10

the GPU depends on the last thread. Under this situation, something needs to
be done to balance the task for each thread.

In this paper, for table T and table S, assuming that the organization of
thread blocks in thread grids is m * n, the organization of each thread in blocks
is x * y. So the organization of whole threads in thread grids is mx * ny. The
number of tuples to be processed in each table by each thread is given by
equation [T and equation

NBS:ﬂ+1 (1)
m x X
T
NBT:u—ﬁ-l (2)
n*y

Suppose that a thread is located in a thread block with the index (a,b), the
index of the thread in the thread block is (¢,d). The position, where to read
NBg and N Br tuples from table S and T, is shown in equation |3 and

IDs = (a*x+c)* NBg (3)

IDp = (b*y+d)* NBr (4)

IDg and I Dy are the starting positions of the data in two tables. In Figure[6]
the red box represents the thread, which handles the join operation between T'1
and S3. In CUDA, the thread block, the index of the thread in the block, sizes
of grid and block can be obtained directly, making it easy to connect the data.

During thread execution, whenever a match is successful and a new tuple
is generated, new tuple needs to be cached, and the result is returned when
all threads have finished executing. The biggest problem of multithreading
writing data into memory is writing memory conflicts. In order to prevent the
conflict, each thread can be allocated a fixed storage space. Whenever a thread
generates a result, the results will be written to its corresponding storage space.
And when all threads have completed the task, the result will be summed and
then returned. At the same time, a local variable is set in each thread to record
the number of results generated in the thread.

Since the exact number of join results is not known until the join operation
is performed, when allocating storage space for each thread, space is set to a
maximum possible number of results, that is, NBg * N Brp.

3.8.2. GPU-Based Hash Join

According to Section hash join only needs to loop through one data
table. So one-dimensional organization of both blocks in grid and threads in
the block are more suitable for CUDA. As shown in Figure[7] the grid contains
four thread blocks, and each thread block contains two threads.

Assuming that each thread grid contains nyj.cks thread blocks, each thread
block contains n¢preqads threads, and if the table S is the larger table, the number
of tuples in the table S allocated to each thread is given by the equation

NBS:ﬁ-Fl (5)

mxx

11

Block 1+ Block 2+ Block 3+ Block 4+

S1+¢ S2¢ S3¢ S5¢ S6+ S7¢

‘ Hash Table« ‘

Figure 7: Thread grid organization of hash join

In fact, in addition to the last thread in the last thread block, each thread
handles NBg tuples of table S, and the remaining tuples are handled by the
last thread. If a block index in the grid is p, and the index of thread in the
block is q, the location from where to start reading N Bg tuples in table S can
be calculated by equation [G}

IDS = (p * Nthreads T+ Q) * NBS (6)

This paper introduces the hash bucket to handle hash conflicts. Whenever a
tuple is detected, it is first positioned to the corresponding hush bucket through
the hash function, followed by a small range of detection in the bucket. Hash
bucket size is fixed, so the space utilization is slightly inadequate, but the de-
tection efficiency is as good as others.

As it shown in Algorithm [I} when the data is sent to the GPU, NBp and
N Bg are sent as well. So NBr x N Bg is set as the maximum storage space.

3.8.8. Estimation of Join Results Size

As mentioned earlier, before the kernel program performs the actual join
operation, it is necessary to preallocate enough memory in the CPU for the
result. But before the join is completed, we can not know the specific number of
results. Usually, memory is set with regard to the size of the Cartesian product.
But obviously, when tables are too large, the size of the Cartesian product will
be far larger than that of device memory. The existing research is based on
the experiments on small data set, so even if the distribution of memory is in
accordance with the Cartesian product, it does not exceed the device memory.
Although the method proposed in this paper is based on the Cartesian product
as well, due to the data pre-filtering and Map-Reduce structure, the performance
of the estimation is far better than that of the existing results.

Assuming that the ratio of tuples participating in the join of table T and
table S is « and . So, after pre-filtering, 8 * |S| and ~ * |T'| tuples respectively
perform the actual join operation. As mentioned before, tuples with the same
key value are passed to the same Reducer. If there are k Reducers, each Reducer
deals with wy * 8|S, wo * B |S|......w x B % |S| S-tuples and Ay -y * |T|, Ao x v *
|T|... A\ * v * |T'| T-tuples, and the parameters satisfy the following conditions:

(7)

Rs;.e results need to be allocated storage space:

k
Ruize =y % B[S # |T| Y wi* A; (8)
i=1
Because parameters in equation [8| are all below 1, it will save a lot of space
for pre-allocating memory.

8.83.4. Thread Hierarchy

In the standard CUDA program, the thread is organized in the form of thread
block-thread hierarchy, where the number of thread blocks and the number of
threads in each thread grid can be set, but there is only one thread grid. The
algorithm in this paper combines Hadoop with the GPU. The Map-Reduce
architecture is also a multi-threaded task. Multiple Reducers perform tasks in
parallel. Each Reducer corresponds to a thread. Therefore, the hierarchy of the
proposed algorithm is thread grid (Reducer)-thread block-thread.

In CUDA programming, the number of threads in each block is usually set
to a multiple of 32, the number of blocks is based on the amount of data,
usually the more the better. Assuming that the GPU has a total of N threads,
the reducer number iS Ny eqycers, and each grid contains npcrs of blocks. Each
thread block contains n¢peqqs threads. The parameter relationship must satisfy
the relationship [J]

Nyeducers * Nthreads * NMblocks < N (9)

That is, in the case where the relationship is established, the bigger product
of parameters the better. When the total number of set threads is greater than
the number of threads on the GPU, some tasks need to wait for a free thread.
In this way, the task waiting and the creation of multiple threads will bring a
lot of additional overhead. As shown in Algorithm [1} the number of Reducers
can be changed by modifying the parameter a.

3.4. Mized Programming of GPU and Hadoop

The Map-Reduce program runs on CPU and is based on Java language.
While, the GPU kernel program runs on GPU, based on the CUDA program-
ming model and the C language. Therefore, the combination of Hadoop and
GPU involves a compatibility problem between Java and C. This experiment
is programmed through the JNI interface to complete this work. Since the file
format of the CUDA program is .cu, and the traditional C language is the .c
file, there is a need of an additional .c file as a middleware. Through this mid-
dleware, GPU kernel function can be called. And then Map-Reduce will call the
middleware, so as to achieve the join of CPU and GPU. Because the memory
cannot be shared between CPU and GPU, the same data from Java to C needs
a copy, and then another copy from C memory space to GPU device memory.
That is, to transfer data from Map-Reduce to GPU, and a total of two copies are
required. Obviously, this introduces additional overhead and memory footprint,
so future research should continue to solve this problem.

13

4. GPU-Based Theta Join with Hadoop

Given the importance of Hadoop, there are many research focused on using
Map-Reduce to deal with theta join operations. Koumarelas[29], Okcan[30]
and Penar[31] achieved theta join operations of two tables on Map-Reduce,
meanwhile Yan[32], Zhang[33] and Changchun[34] B5] achieved a multi-table
theta join. Augustyn[36] used the GPU to estimate the join selectivity for theta
join of two tables.

This section focuses on how to combine Hadoop with a GPU to handle theta
join operations based on two data tables, multi-table join will be studied later.

4.1. Classic Theta Join Algorithm on Hadoop

For theta joins, simply passing tuples with the same join key to the same
Reducer is not sufficient to get the full result. Because in theta join a tuple
does not only need to match its tuples with the same join keys, but also need
to match the tuples that are greater or less than the join key. As shown in
Figure |8] the areas represented by the shaded parts all need to be matched.

T

S.A>=T.A

Figure 8: Matrix in classic algorithm

Okcan[30] proposed a classic Map-Reduce processing theta join operation
algorithm, named M-Bucket-I. As shown in Figure the Cartesian product
of two tables is represented by a two-dimensional matrix. The matrix is divided
into many areas, each region corresponds to a Reducer, and each region has an
ID. In Map function, for each tuple, a (ID, < Record,tag >) key-value pair is
generated for each region intersecting it, where tag is the identity that identifies
the tuple source. As a result, tuples with the same ID, that is, tuples located
in the same area, are passed to the same Reducer for processing. In this way, it
is possible to ensure that each element in the matrix can be processed and led
to the correct result.

14

1 2 3 4 0 12 31 4
0
1
1
2]]
S S 2
3 3i
4 3
4
(a) Classic algorithm (b) Developed algorithm

Figure 9: Theta join algorithm on Map-Reduce

In this algorithm, only the area where the result is determined is processed,
and no actual processing is performed on the data that does not produce the re-
sult area. However, this algorithm requires some information about the original
data in advance, which means additional overhead is needed.

2
S S 2 S 2
3 3 3
4 4 4
(a) Greater and greater or (b) Less and less or equal (c) Not equal
equal

Figure 10: Organization of matrix under different join conditions

4.2. Improved Theta Join Algorithm on Hadoop and GPU

To solve this problem, this paper presents an improved algorithm. On the
basis of the classic algorithm, this algorithm can further identify certain areas,
where tuples from two tables satisfy the join condition.

Similar to the M-Bucket-I, this algorithm calculates the range of each table
join key and k quantiles of each range. Figure shows the organization of
the two-dimensional matrix when k is 4. In this matrix, each element does
not represent a tuple pair, but a range pair. Unlike the M-Bucket-I where the
divided area is the rectangle of any size, this algorithm divides the area into
strict squares. The advantage of this division is, for some regions, if any one of
the tuple pairs meets the join condition, there is no need to judge the data in
this region for the join.

15

As shown in Figure[10(a)l when the join condition is that join key attribute
value of S-table is greater than or greater than or equal to that of T-table, any
pair of tuple pairs in the green region satisfies the join condition, and the tuple
pair in the red region needs to be judged. While the tuple pair in the white
region must not satisfy the join condition. Figure shows that of S-table
is less than or less than or equal to that of T-table. And Figure show the
condition that two values are not equal. So only the red area of the data needs
to be sent to the GPU for theta join processing. And the other areas can be
judged directly by the area ID. The pseudo code is shown in algorithm [3]

Algorithm 3: theta join on Map-Reduce

: Map(key:null, value: a tuple from a split of either table)
join_key < extract the join key from wvalue;
. if value € S then
RegionID.x < bucket ID of value according to its join key;
for all possible RegionID.y according to the join condition do
emit(< RegionID.xz, RegionID.y >, < value,”S” >);
. if value € T then
RegionlID.y < bucket ID of value according to its join key;
for all possible RegionID.x according to the join condition do
emit(< RegionID.z, RegionID.y >, < value,”T” >);
: Reduce(key’:Regionl D, value_list: tagged tuples corresponding in RegionlD)
: T < null;
: S « null;
: for each tuple t in value_list do
add t to S or T according to its tag;
1 if RegionID.x == RegionlD.y then
result < GPU_theta_join(S,T);
for each record in result do
emit(null, record);
. else if RegionlID.x matches RegionlD.y according to the join condition then

D = = = = = = e
COXNPUAWNHOLRTD IR W

21: cartesian_result < do cross join for S and T}
22: for each record in cartesian_result do
23: emit(null, record);

As shown in Figure the A region coordinates are (3, 1) and the abscissa
is greater than the ordinate. Therefore, any tuple in the A region satisfies the
condition, that join key attribute value of table S is greater than that of table
T. When the abscissa is equal to the ordinate, the region may have a join result,
so it is necessary to send it to the GPU for theta join judgment.

In the theta join operation on the GPU, nested loop join algorithm can be
used, the thread organization form and the processing mode are the same as
those of the GPU in Chapter

The method used in this article only applies the data in the diagonal area
to the GPU, so it is only necessary to allocate storage space for the data in the
diagonal area, which can increase the storage space utilization.

5. Experimental Results

This section compares the methods proposed in this paper, through the exist-
ing GPU accelerated join operation algorithm to verify whether it has improved
performance, being more efficient. At the same time, compared with the CPU

16

implementation of the proposed algorithm in this paper, to verify whether the
GPU implementation has the speedup for the join operation.

The experiments done in this section are based on larger datasets. Unless
special instructions, all experimental raw data are TPC-H data sets. GPU
devices running on the Linux operating system, the version of Ubuntu 14.04,
and Hadoop is version 2.6.0.

5.1. Nested Loop Join

This section focuses on the experiments of the nested loop join. It is com-
pared separately with the GPU accelerated nested loop join with a single device
and the proposed algorithm in CPU. At the same time by changing the value
of o in algorithm [If to change the number of Reducers started by Map-Reduce,
changes in the execution time can be observed. At the same time, through the
synthetic data, the performance of the method can be observed. If there is no
special description, the value of a is 100. This experiment is based on the small
dataset, because the cost of the nested loop join is very large, the traditional
GPU acceleration method is not able to effectively support large data sets.

5.1.1. Comparison of Nested Loop Join with Single GPU

In this experiment, in order to ensure the reliability of the experimental
results, the proposed method is also implemented on a single GPU device, and
Hadoop is a pseudo-distributed structure. As shown in Figure [I6] when the
data set is small, the efficiency of the proposed method is lower than that of
the traditional one. However, the execution time of the traditional method is
significantly increased with the increase of the original dataset, which is different
to the proposed algorithm. As shown in the figure, it will have at least one times
the speedup over the traditional one, which means under the same accelerating
condition of GPU, the proposed method is more efficient.

i
o

9 »
g /
; /
. /
i /
= 4,44i;;;i_.—_gg:37é;!:iij:::: g GPU
3 Pl ~8—HADOOP+GPU
2
1 7~
: —

2MBX 4MBX 8MBX 12MBX 16MBX
1MB 2MB 4MB 6MB 8MB

data size
Figure 11: Comparison of nested loop join with single GPU
Data that does not appear in the final result is filtered out, and the data
that actually performs the join operation is much smaller than the original data

set. After pre-filtration, the actual processing time is greatly reduced, but the
pre-filtration process also introduces additional time overhead.

17

Therefore, when the data set is small, the gain effect of the pre-filtering is
lower than that of the additional cost, so the method proposed in this paper has
a long execution time at first. With the increase of the data set, the gain effect
exceeds the overhead, so the method proposed in this paper is significantly lower
than the traditional method.

5.1.2. Comparison of Nested Loop Join with CPU on TPC-H Data Set

The value of « in the CPU is 1, which ensures the best execution efficiency.
Except for the value of a and the equipment, the implementation process of
GPA and CPU is exactly the same. As shown in Figure compared with
the CPU implementation, using the GPU to achieve the proposed nested loop
join algorithm has no obvious speedup. This is because, in Reduce phase of the
second round of Map-Reduce of CPU version, only tuples with the same join key
will be passed to the same Reducer. In this experiment, the distribution of the
TPC-H data join keys is even. Each join key value corresponds to only a small
number of tuples. Therefore, the actual execution time of the join operation in
the CPU version is very small, most of the time is taken by data pre-filtering.
And GPU can only accelerate small proportion of data, so the effect is not
obvious.

160

140 »
120 %
100

80

=4—CPU

time/s

~#—-HADOOP+GPU
60

40 —

20

0.35GB X 0.70GB X 1.05GBX 1.4GBX 1.75GB X
0.24GB 0.48GB 0.72GB 0.96GB 1.2GB

data size

Figure 12: Comparison of nested loop join with CPU on TPC-H data set

5.1.3. Comparison of Nested Loop Join with CPU on Synthetic Data Set
Based on the unobvious effect of the proposed algorithm on the TPC-H data
set, the synthetic data set is made for another experiment. In the synthetic data
set, the number of tuples corresponding to each join key is more than that of
the TPC-H data set. To ensure the reliability of the experimental results, the
distribution of join keys has been modified on the basis of the experimental
data set shown in Figure [I2] Specifically, dividing the join key by a positive
integer, the number of tuples corresponding to each join key increases. As can
be seen from Figure in the synthetic dataset, compared to the CPU, using
the GPU can get nearly 2 times the speedup. Through Figure[I6and Figure[12]
the proposed method can be applied to larger data sets than traditional GPU
algorithms. Because the join key value range in the synthetic data set is much

18

smaller than that in the TPC-H dataset, when the value of « is small, a good
speedup can be obtained. Therefore, « is 5 in this experiment.

300
p 4

250 /
200

) / ——CPU
£ 150

~#i=HADOOP+GPU

0.35GB X 0.70GB X 1.05GBX 1.4GBX 1.75GB X
0.24GB 0.48GB 0.72GB 0.96GB 1.2GB

data size

Figure 13: Comparison of nested loop join with CPU on synthetic data set

5.1.4. Effect of a on the Execution Efficiency of Nested Loop Join

In the algorithm refprefilteringalgo, the value of o will affect the parallel
number of the algorithm. To clarify the influence of o on the performance of
the algorithm, we can observe the execution time of the algorithm by changing
the value of a. This experiment uses a TPC-H data set, the data set size is
1.75GB and 1.2GB. The experimental results are shown in Figure [T4 When «
is small, with the increase of «, the execution time of the algorithm decreases
gradually. When « increases to a certain extent, with the increase of o value,
time also increases.

160

155 2

150 //
< 145 y
£ 140 — —/

135 * * <> <

130

125

120 ‘ ‘ ‘ ‘

50 100 150 200 250 300

o

Figure 14: Effect of a on the execution efficiency of nested loop join

When the value of « is small, the number of Reducers is larger, resulting in
the total number of threads of the algorithm beyond the total number of GPU
devices. Some tasks need to wait for the other tasks to be completed before
they can be assigned to the free thread to perform the task. The waiting time
plus the overhead of creating multiple threads make the execution time of the
algorithm higher when the value of « is less. When the value of « is large enough
that the number of total threads of the algorithm is smaller than that of the
total number of GPU devices, with the increase of o, the number of Reducer
decreases. It leads to the decrease of the total number of threads, the increase

19

of data amount processed by each thread, so the algorithm execution time will
increase with the increase of a.. It can be seen from Figure[I4] that the algorithm
will obtain the ideal execution effect when the value of « is between 100 and
250.

5.2. Hash Join

This section focuses on the experiment of accelerating the hash join algo-
rithm. The experimental results are observed by comparing the hash algorithm
with the single GPU and the CPU implementation. And in the synthetic data
set, the efficiency and the speedup of the proposed method can be observed.
Additionally, by changing the « value, this section observes the influence of «
on the algorithm. If there is no special instruction, « value is 10000.

5.2.1. Comparison of Hash Join with Single GPU

In this experiment, the value of « is 10000, which is much larger than the
« when dealing with nested loop join. This is because the hash join calcula-
tion task is much smaller than the nested loop join, so larger amounts of data
processed in each Reducer can give full play to the advantages of GPU.

As can be seen from the Figure when the data set is small, the pro-
posed method has lower efficiency, compared to the traditional GPU algorithm.
When the data set size is good enough, the proposed method is better than the
traditional GPU algorithm. The experimental results show that the proposed
method can achieve 2 times the speedup over traditional one, which means under
the same accelerating condition of GPU, the proposed method is more efficient.

160

140 et
120 A
,, 100 ~
2 80 -
= 60 - ——GPU
40 1 ~8—HADOOP+GPU
20
0

350MB X 525MB X 700MB X 875MB X 1050MB
240MB 360MB 480MB 600MB X 720MB

data size

Figure 15: Comparison of hash join with single GPU

5.2.2. Comparison of Hash Join with CPU on TPC-H Data Set

When the data set is small, most of the time is used to process the data
pre-filter. When the data pre-filter takes longer than the time it reduces on
the actual join operation, the total time will increase. While as the data set
continues to increase, the method proposed in this paper will achieve better
results, because the data pre-filter is less time-consuming. By comparing with
Figure it is found that traditional GPU processing algorithms can handle

20

larger amounts of data when handling hash joins. This is because when the
data set is large, the hash join algorithm performance is much higher than the
nested loop join, so it can handle more data sets.

[N
o

9 »
s /
S /
. /
E s
= 4 7?'_%4 === GPU
2 Pl ~i—HADOOP+GPU
1 <
: —

2MBX 4MBX 8MBX 12MBX 16MBX
iMB 2MB 4MB 6MB 8MB

data size

Figure 16: Comparison of hash join with CPU on TPC-H data set

5.2.3. Comparison of Hash Join with CPU on Synthetic Data Set

Data is synthesized in the same way as nested loops. As shown in Figure[17]
in the synthetic data, the proposed GPU algorithm is better than its CPU
version, with 1.3 times speedup. Hash join speedup is not good as nested loop
join, because the nested loop join spends more time in the actual join processing,
so it can be optimized in the proportion of large.

200

= -
1 v A

120
% 100 o ——CPU
=t /
E 80 «=HADOOP+GPU
A

0.35GB X 0.70GB X 1.05GBX 1.4GBX 1.75GB X
0.24GB 0.48GB 0.72GB 0.96GB 1.2GB

data size

Figure 17: Comparison of hash join with CPU on synthetic data set

5.2.4. Effect of a on Fxecution Efficiency of Hash Join

This experiment uses TPC-H data set, the data set size is 1.75GB and 1.2GB.
Similarly, a is changed in the experiment to observe its effect on algorithm
performance. Figure[I§ shows the change in the execution time of the hash join
algorithm proposed in this paper when the value of o changes. When « is small,
the execution time of the algorithm decreases obviously as « becomes larger.
When the value of « is too small, the total number of threads of the algorithm
exceeds the total number of threads of the GPU device, so the execution time

21

is longer. Since the computational task of the hash join is much smaller than
the nested loop join, the overall execution time does not increase significantly
when the « value continues to increase, although the amount of data processed
in each Reducer increases. If the value of « continues to increase to a certain
extent, the algorithm’s overall execution time will continue to increase.

144

.
142
140 N
@ 138 \\
2136
= 134 N\
132 \: o
130
128
126 : : : : :
50 100 150 200 250 300

o

Figure 18: Effect of a on the execution efficiency of hash join

5.8. Theta Join

This section compares the theta joins. Because there is no available mature
GPU accelerating theta join, this experiment compares with the CPU. This
experiment is based on a small dataset. In order to ensure the validity of
the experimental results, implementation details are exactly as described in
Algorithm [3]

In contrast to the equi join, the theta join has a high selectivity, so the size of
the theta join results is larger than the magnitude of input data. The results of
the experiment are shown in Figure It can be seen from the figure that the
Hadoop-based theta join algorithm on the GPU is better than its CPU version,
and the speedup is about twice as much as the latter, which means under the
same accelerating condition of GPU, the proposed method is more efficient.

16

14 /)
12 7
« 10 /
g 8 4
c 6 A —4—CPU
‘2‘] %" ~8—HADOOP+GPU
0 ‘ ‘ ‘ ‘

T
500 X500 1000X 1500X 2000X 2500 X
1000 1500 2000 2500

data size/row

Figure 19: Comparison of theta join on small data set

We also experimented on larger datasets. Since the join results are out of
memory when the data set is large, we do not store the results. As shown in
Figure when the data set is large, GPU implementation is still better than
the CPU implementation.

22

20 /
15 /

10 4 =4 CPU

5 ~#i=HADOOP+GPU

50000 X 100000 X 150000 X 200000 X 250000 X
50000 100000 150000 200000 250000

data size/row

Figure 20: Comparison of theta join on small data set

6. Conclusion

This paper focuses on Hadoop-based join operation acceleration tasks on im-
age processors (GPUs). GPU was originally developed as an image processing,
and nowadays, more and more GPU applications appear in general comput-
ing tasks, such as machine learning, data mining and other fields. Based on the
GPU’s powerful computing power and high parallelism, there is a lot of research
focused on using it to speed up database operations. In the field of the modern
database, the join operation as a computationally intensive task is the main
problem.

In research results of existing GPU accelerating join operations, although the
use of its strong parallelism significantly increases the efficiency of join execution,
it is not good because of the limited storage resources of the GPU device and
the limited functionality of the universal programming language CUDA. The
existing research results are based on smaller data sets, and therefore can not
be applied to the practical application on a large scale.

Based on this idea, the distributed computing platform Hadoop is combined
with the GPU, by referring to the idea of a CPU filtering join algorithm. By
initially filtering the raw data table through the first round of the Map-Reduce
task at the CPU, it will filter the tuple that does not appear in the results, and
only send the connectable tuples to the GPU device for actual join operations.
By reducing the amount of data actually processed, it is possible to reduce the
utilization of the storage space on the device while improving the efficiency of
the algorithm execution so that it can handle a larger amount of data. At the
same time, it is possible to estimate the number of join results more accurately
without introducing additional overhead, to allocate accurate storage in advance
and reduce the storage space occupancy rate. In addition to the equi join, this
article is the first to use the GPU to accelerate the theta join operation, which
still uses the combination of Hadoop and GPU.

The followings are the conclusions:

e The proposed algorithm is more efficient than the existing single GPU de-
vice, and it can be applied to the larger dataset. Compared with the CPU
implementation, the GPU algorithm proposed in this paper has no obvious

23

speedup on the dataset with fewer key numbers and fewer tuples corre-
sponding to each join key. However, the algorithm proposed in this paper
can achieve 2 times the speedup on a dataset with more corresponding
tuples.

e The accelerating hash join algorithm proposed in this paper can achieve
2 times the speedup, compared with the existing GPU acceleration hash
join. Similarly, the GPU implementation of the algorithm proposed in
this paper has no obvious speedup compared to the CPU implementation,
when the number of connected keys is large, but each join key value cor-
responds to a few tuples. When the number of corresponding tuples is big
enough, GPU implementation can get 1.3 times the speedup.

e In this paper, the theta join processing algorithm, compared to the CPU
implementation, GPU implementation can get 2 times the speedup.

Compared with the existing research results, the research content of this paper
has achieved the following innovative achievements:

e This article is the first to use the filter join algorithm on the GPU to
deal with the equi join operation. One round of Map-Reduce filters out
non-connectable tuples and sends only connectable tuples to the GPU
device. By reducing the processing time of the actual join operation and
the occupancy rate of the device memory, it can handle more data.

e The proposed method can accurately estimate the size of the equi join
result without introducing additional overhead, and allocate the appro-
priate storage space for the result, making the GPU storage space more
efficient, more suitable for large-scale data sets.

e Among the existing GPU accelerating equi join operation, this article is
the first to have an experiment on a larger data set (GB level).

e This article is the first to use GPU to accelerate theta join operations.

Although there are a lot of research results on GPU accelerating join, these
results are not enough to be applied to the commercial database system. So
the future work should continue to conduct in-depth research, including the
following:

e The future work should use multiple GPU devices to deal with large
datasets on the join operation, in a distributed architecture. Although in
this article Hadoop and GPU were combined, because of limited resources,
the experiment is not completed in the real large data set. Future research
should deal with TB-level datasets on multiple GPU devices.

e This paper only implements the join operation of two tables. Future re-
search work should include more complicated join operations, such as ac-
celerating multi-table join and similarity join.

24

Acknowledgement. This paper was partially supported by NSFC grant U1509216,61472099,
National Sci-Tech Support Plan 2015BAH10F01, the Scientific Research Foun-

dation for the Returned Overseas Chinese Scholars of Heilongjiang Province
LC2016026 and MOE-Microsoft Key Laboratory of Natural Language Process-

ing and Speech, Harbin Institute of Technology.

7. References
References

[1] J. F. Gantz, The diverse and exploding digital universe, An Idc White
Paper Retrieved.

[2] J. Kriiger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani, H. Plat-
tner, P. Dubey, A. Zeier, [Fast updates on read-optimized databases using
multi-core cpus, PVLDB 5 (1) (2011) 61-72.

URL http://www.v1ldb.org/pvldb/vol5/p061_jenskrueger_vldb2012.
pdf

[3] B. W. Low, B. Y. Ooi, C. S. Wong, Scalability of database bulk inser-
tion with multi-threading, in: J. M. Zain, W. M. B. W. Mohd, E. El-
Qawasmeh (Eds.), Software Engineering and Computer Systems - Sec-
ond International Conference, ICSECS 2011, Kuantan, Pahang, Malaysia,
June 27-29, 2011, Proceedings, Part III, Vol. 181 of Communications in
Computer and Information Science, Springer, 2011, pp. 151-162. |doi:
10.1007/978-3-642-22203-0_14.

URL https://doi.org/10.1007/978-3-642-22203-0_14

[4] J. Zhou, K. A. Ross, Implementing database operations using SIMD in-
structions, in: M. J. Franklin, B. Moon, A. Ailamaki (Eds.), Proceed-
ings of the 2002 ACM SIGMOD International Conference on Management
of Data, Madison, Wisconsin, June 3-6, 2002, ACM, 2002, pp. 145-156.
doi:10.1145/564691.564709.

URL http://doi.acm.org/10.1145/564691.564709

[6] B. Zhang, X. Wang, Z. Zheng, The optimization for recurring queries in
big data analysis system with mapreduce, Future Generation Computer
Systems.

[6] V. Silva, J. Leite, J. J. Camata, D. de Oliveira, A. L. Coutinho, P. Val-
duriez, M. Mattoso, Raw data queries during data-intensive parallel work-
flow execution, Future Generation Computer Systems 75 (Supplement C)
(2017) 402 — 422.

[7] D. J. DeWitt, DIRECT - A multiprocessor organization for supporting
relational database management systems, IEEE Trans. Computers 28 (6)
(1979) 395-406. |doi:10.1109/TC.1979.1675379.

URL https://doi.org/10.1109/TC.1979.1675379

25

http://www.vldb.org/pvldb/vol5/p061_jenskrueger_vldb2012.pdf
http://www.vldb.org/pvldb/vol5/p061_jenskrueger_vldb2012.pdf
http://www.vldb.org/pvldb/vol5/p061_jenskrueger_vldb2012.pdf
http://www.vldb.org/pvldb/vol5/p061_jenskrueger_vldb2012.pdf
https://doi.org/10.1007/978-3-642-22203-0_14
https://doi.org/10.1007/978-3-642-22203-0_14
http://dx.doi.org/10.1007/978-3-642-22203-0_14
http://dx.doi.org/10.1007/978-3-642-22203-0_14
https://doi.org/10.1007/978-3-642-22203-0_14
http://doi.acm.org/10.1145/564691.564709
http://doi.acm.org/10.1145/564691.564709
http://dx.doi.org/10.1145/564691.564709
http://doi.acm.org/10.1145/564691.564709
https://doi.org/10.1109/TC.1979.1675379
https://doi.org/10.1109/TC.1979.1675379
http://dx.doi.org/10.1109/TC.1979.1675379
https://doi.org/10.1109/TC.1979.1675379

8]

[10]

J. Teubner, R. Miiller, G. Alonso, [Frequent item computation on a chip,
IEEE Trans. Knowl. Data Eng. 23 (8) (2011) 1169-1181. |doi:10.1109/
TKDE.2010.216.

URL https://doi.org/10.1109/TKDE. 2010.216

L. Woods, J. Teubner, G. Alonso, |Real-time pattern matching with fpgas,
in: S. Abiteboul, K. Béhm, C. Koch, K. Tan (Eds.), Proceedings of the
27th International Conference on Data Engineering, ICDE 2011, April 11-
16, 2011, Hannover, Germany, IEEE Computer Society, 2011, pp. 1292—
1295. [doi:10.1109/ICDE.2011.5767937.

URL https://doi.org/10.1109/ICDE.2011.5767937

J. Singaraju, A. Thamarakuzhi, J. A. Chandy, Active storage networks:
Using embedded computation in the network switch for cluster data pro-
cessing, Future Generation Computer Systems 45 (Supplement C) (2015)
149 — 160. |doi:https://doi.org/10.1016/j.future.2014.10.020.
URL http://www.sciencedirect.com/science/article/pii/
S0167739X14002143

A. B. Hernéndez, M. S. Perez, S. Gupta, V. Muntés-Mulero, Using machine
learning to optimize parallelism in big data applications, Future Generation
Computer Systems.

M. Singh, B. Leonhardi, Introduction to the IBM netezza warehouse appli-
ance, in: J. W. Ng, C. Couturier, M. Litoiu, E. Stroulia (Eds.), Center for
Advanced Studies on Collaborative Research, CASCON ’11, Toronto, ON,
Canada, November 7-10, 2011, IBM / ACM, 2011, pp. 385-386.

URL http://dl.acm.org/citation.cfm?id=2093965

J. Do, Y. Kee, J. M. Patel, C. Park, K. Park, D. J. DeWitt, |Query
processing on smart ssds: opportunities and challenges, in: K. A. Ross,
D. Srivastava, D. Papadias (Eds.), Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, New
York, NY, USA, June 22-27, 2013, ACM, 2013, pp. 1221-1230. doi:
10.1145/2463676.2465295.

URL http://doi.acm.org/10.1145/2463676.2465295

N. Devarajan, S. Navneeth, S. Mohanavalli, GPU accelerated relational
hash join operation, in: International Conference on Advances in Comput-
ing, Communications and Informatics, ICACCI 2013, Mysore, India, Au-
gust 22-25, 2013, IEEE, 2013, pp. 891-896. |doi:10.1109/ICACCI.2013.
6637294l

URL https://doi.org/10.1109/ICACCI.2013.6637294

T. Kaldewey, G. M. Lohman, R. Miiller, P. B. Volk, |GPU join processing
revisited, in: S. Chen, S. Harizopoulos (Eds.), Proceedings of the Eighth
International Workshop on Data Management on New Hardware, DaMoN
2012, Scottsdale, AZ, USA, May 21, 2012, ACM, 2012, pp. 55-62. /doi:

26

https://doi.org/10.1109/TKDE.2010.216
http://dx.doi.org/10.1109/TKDE.2010.216
http://dx.doi.org/10.1109/TKDE.2010.216
https://doi.org/10.1109/TKDE.2010.216
https://doi.org/10.1109/ICDE.2011.5767937
http://dx.doi.org/10.1109/ICDE.2011.5767937
https://doi.org/10.1109/ICDE.2011.5767937
http://www.sciencedirect.com/science/article/pii/S0167739X14002143
http://www.sciencedirect.com/science/article/pii/S0167739X14002143
http://www.sciencedirect.com/science/article/pii/S0167739X14002143
http://dx.doi.org/https://doi.org/10.1016/j.future.2014.10.020
http://www.sciencedirect.com/science/article/pii/S0167739X14002143
http://www.sciencedirect.com/science/article/pii/S0167739X14002143
http://dl.acm.org/citation.cfm?id=2093965
http://dl.acm.org/citation.cfm?id=2093965
http://dl.acm.org/citation.cfm?id=2093965
http://doi.acm.org/10.1145/2463676.2465295
http://doi.acm.org/10.1145/2463676.2465295
http://dx.doi.org/10.1145/2463676.2465295
http://dx.doi.org/10.1145/2463676.2465295
http://doi.acm.org/10.1145/2463676.2465295
https://doi.org/10.1109/ICACCI.2013.6637294
https://doi.org/10.1109/ICACCI.2013.6637294
http://dx.doi.org/10.1109/ICACCI.2013.6637294
http://dx.doi.org/10.1109/ICACCI.2013.6637294
https://doi.org/10.1109/ICACCI.2013.6637294
http://doi.acm.org/10.1145/2236584.2236592
http://doi.acm.org/10.1145/2236584.2236592
http://dx.doi.org/10.1145/2236584.2236592
http://dx.doi.org/10.1145/2236584.2236592

[16]

[17]

[18]

[19]

[20]

[21]

[22]

10.1145/2236584.2236592.
URL http://doi.acm.org/10.1145/2236584.2236592

J. He, M. Lu, B. He, Revisiting co-processing for hash joins on the coupled
CPU-GPU architecture, PVLDB 6 (10) (2013) 889-900.
URL http://www.vldb.org/pvldb/vol6/p889-he.pdf

Y. Yuan, R. Lee, X. Zhang, The yin and yang of processing data warehous-
ing queries on GPU devices, PVLDB 6 (10) (2013) 817-828.
URL http://www.vldb.org/pvldb/vol6/p817-yuan.pdf

M. Pietron, P. Russek, K. Wiatr, Accelerating select where and select join
queries on a GPU, Computer Science (AGH) 14 (2) (2013) 243-252. |doi:
10.7494/csci.2013.14.2.243|

URL https://doi.org/10.7494/csci.2013.14.2.243

R. Rui, H. Li, Y. Tu, |Join algorithms on gpus: A revisit after seven years,
in: 2015 IEEE International Conference on Big Data, Big Data 2015, Santa
Clara, CA, USA, October 29 - November 1, 2015, IEEE, 2015, pp. 2541—
2550. |[doi:10.1109/BigData.2015.7364051.

URL https://doi.org/10.1109/BigData.2015.7364051

K. Angstadt, E. Harcourt, A virtual machine model for accelerating re-
lational database joins using a general purpose GPU, in: L. T. Watson,
J. Weinbub, M. Sosonkina, W. I. Thacker (Eds.), Proceedings of the Sym-
posium on High Performance Computing, HPC 2015, part of the 2015
Spring Simulation Multiconference, SpringSim 15, Alexandria, VA, USA,
April 12-15, 2015, SCS/ACM, 2015, pp. 127-134.

URL http://dl.acm.org/citation.cfm?id=2872615

G. Zhou, G. Wang, GBFSJ: bloom filter star join algorithms on gpus, in:
12th International Conference on Fuzzy Systems and Knowledge Discovery,
FSKD 2015, Zhangjiajie, China, August 15-17, 2015, IEEE, 2015, pp. 2427-
2431. doi:10.1109/FSKD.2015.7382334.

URL https://doi.org/10.1109/FSKD.2015.7382334

M. S. H. Cruz, Y. Kozawa, T. Amagasa, H. Kitagawa, (GPU acceleration
of set similarity joins, in: Q. Chen, A. Hameurlain, F. Toumani, R. Wag-
ner, H. Decker (Eds.), Database and Expert Systems Applications - 26th
International Conference, DEXA 2015, Valencia, Spain, September 1-4,
2015, Proceedings, Part I, Vol. 9261 of Lecture Notes in Computer Science,
Springer, 2015, pp. 384-398. doi:10.1007/978-3-319-22849-5_26.

URL https://doi.org/10.1007/978-3-319-22849-5_26

J. Myung, J. Shim, J. Yeon, S. Lee, Handling data skew in join algorithms
using mapreduce, Expert Syst. Appl. 51 (2016) 286-299. doi:10.1016/].
eswa.2015.12.024l

URL https://doi.org/10.1016/j.eswa.2015.12.024

27

http://dx.doi.org/10.1145/2236584.2236592
http://dx.doi.org/10.1145/2236584.2236592
http://doi.acm.org/10.1145/2236584.2236592
http://www.vldb.org/pvldb/vol6/p889-he.pdf
http://www.vldb.org/pvldb/vol6/p889-he.pdf
http://www.vldb.org/pvldb/vol6/p889-he.pdf
http://www.vldb.org/pvldb/vol6/p817-yuan.pdf
http://www.vldb.org/pvldb/vol6/p817-yuan.pdf
http://www.vldb.org/pvldb/vol6/p817-yuan.pdf
https://doi.org/10.7494/csci.2013.14.2.243
https://doi.org/10.7494/csci.2013.14.2.243
http://dx.doi.org/10.7494/csci.2013.14.2.243
http://dx.doi.org/10.7494/csci.2013.14.2.243
https://doi.org/10.7494/csci.2013.14.2.243
https://doi.org/10.1109/BigData.2015.7364051
http://dx.doi.org/10.1109/BigData.2015.7364051
https://doi.org/10.1109/BigData.2015.7364051
http://dl.acm.org/citation.cfm?id=2872615
http://dl.acm.org/citation.cfm?id=2872615
http://dl.acm.org/citation.cfm?id=2872615
https://doi.org/10.1109/FSKD.2015.7382334
http://dx.doi.org/10.1109/FSKD.2015.7382334
https://doi.org/10.1109/FSKD.2015.7382334
https://doi.org/10.1007/978-3-319-22849-5_26
https://doi.org/10.1007/978-3-319-22849-5_26
http://dx.doi.org/10.1007/978-3-319-22849-5_26
https://doi.org/10.1007/978-3-319-22849-5_26
https://doi.org/10.1016/j.eswa.2015.12.024
https://doi.org/10.1016/j.eswa.2015.12.024
http://dx.doi.org/10.1016/j.eswa.2015.12.024
http://dx.doi.org/10.1016/j.eswa.2015.12.024
https://doi.org/10.1016/j.eswa.2015.12.024

[24]

[25]

[26]

T. Yuan, Z. Liu, H. Liu, Optimizing hash join with mapreduce on multi-
core cpus, IEICE Transactions 99-D (5) (2016) 1316-1325.
URL http://search.ieice.org/bin/summary.php?id=e99-d_5_1316

M. A. H. Hassan, M. Bamha, F. Loulergue, Handling data-skew effects
in join operations using mapreduce, in: D. Abramson, M. Lees, V. V.
Krzhizhanovskaya, J. J. Dongarra, P. M. A. Sloot (Eds.), Proceedings of the
International Conference on Computational Science, ICCS 2014, Cairns,
Queensland, Australia, 10-12 June, 2014, Vol. 29 of Procedia Computer
Science, Elsevier, 2014, pp. 145-158.|d0i1:10.1016/j .procs.2014.05.014,
URL https://doi.org/10.1016/j.procs.2014.05.014

T. Csar, R. Pichler, E. Sallinger, V. Savenkov, Using statistics for comput-
ing joins with mapreduce, in: A. Cali, M. Vidal (Eds.), Proceedings of the
9th Alberto Mendelzon International Workshop on Foundations of Data
Management, Lima, Peru, May 6 - 8, 2015., Vol. 1378 of CEUR Workshop
Proceedings, CEUR-WS.org, 2015.

URL http://ceur-ws.org/Vol-1378/AMW_2015_paper_13.pdf

F. N. Afrati, N. Stasinopoulos, J. D. Ullman, A. Vasilakopoulos, |Sha-
resskew: An algorithm to handle skew for joins in mapreduce, CoRR
abs/1512.03921. arXiv:1512.03921.

URL http://arxiv.org/abs/1512.03921

P. Larson, E. N. Hanson, S. L. Price, Columnar storage in SQL server 2012,
IEEE Data Eng. Bull. 35 (1) (2012) 15-20.
URL http://sites.computer.org/debull/Al12mar/apollo.pdf

I. K. Koumarelas, A. Naskos, A. Gounaris, Binary theta-joins using mapre-
duce: Efficiency analysis and improvements), in: K. S. Candan, S. Amer-
Yahia, N. Schweikardt, V. Christophides, V. Leroy (Eds.), Proceedings of
the Workshops of the EDBT/ICDT 2014 Joint Conference (EDBT/ICDT
2014), Athens, Greece, March 28, 2014., Vol. 1133 of CEUR Workshop
Proceedings, CEUR-WS.org, 2014, pp. 6-9.

URL http://ceur-ws.org/Vol-1133/paper-02.pdf

A. Okcan, M. Riedewald, [Processing theta-joins using mapreduce, in: T. K.
Sellis, R. J. Miller, A. Kementsietsidis, Y. Velegrakis (Eds.), Proceedings
of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2011, Athens, Greece, June 12-16, 2011, ACM, 2011, pp. 949—
960. |doi:10.1145/1989323.1989423.

URL http://doi.acm.org/10.1145/1989323.1989423

M. Penar, A. Wilczek, The design of the efficient theta-join in map-reduce
environment, in: S. Kozielski, D. Mrozek, P. Kasprowski, B. Malysiak-
Mrozek, D. Kostrzewa (Eds.), Beyond Databases, Architectures and Struc-
tures. Advanced Technologies for Data Mining and Knowledge Discov-
ery - 12th International Conference, BDAS 2016, Ustron, Poland, May

28

http://search.ieice.org/bin/summary.php?id=e99-d_5_1316
http://search.ieice.org/bin/summary.php?id=e99-d_5_1316
http://search.ieice.org/bin/summary.php?id=e99-d_5_1316
https://doi.org/10.1016/j.procs.2014.05.014
https://doi.org/10.1016/j.procs.2014.05.014
http://dx.doi.org/10.1016/j.procs.2014.05.014
https://doi.org/10.1016/j.procs.2014.05.014
http://ceur-ws.org/Vol-1378/AMW_2015_paper_13.pdf
http://ceur-ws.org/Vol-1378/AMW_2015_paper_13.pdf
http://ceur-ws.org/Vol-1378/AMW_2015_paper_13.pdf
http://arxiv.org/abs/1512.03921
http://arxiv.org/abs/1512.03921
http://arxiv.org/abs/1512.03921
http://arxiv.org/abs/1512.03921
http://sites.computer.org/debull/A12mar/apollo.pdf
http://sites.computer.org/debull/A12mar/apollo.pdf
http://ceur-ws.org/Vol-1133/paper-02.pdf
http://ceur-ws.org/Vol-1133/paper-02.pdf
http://ceur-ws.org/Vol-1133/paper-02.pdf
http://doi.acm.org/10.1145/1989323.1989423
http://dx.doi.org/10.1145/1989323.1989423
http://doi.acm.org/10.1145/1989323.1989423
https://doi.org/10.1007/978-3-319-34099-9_15
https://doi.org/10.1007/978-3-319-34099-9_15

[32]

[33]

31 - June 3, 2016, Proceedings, Vol. 613 of Communications in Com-
puter and Information Science, Springer, 2016, pp. 204-215. doi:10.1007/
978-3-319-34099-9_15.

URL https://doi.org/10.1007/978-3-319-34099-9_15

K. Yan, H. Zhu, Two mrjs for multi-way theta-join in mapreduce), in:
M. Pathan, G. Wei, G. Fortino (Eds.), Internet and Distributed Computing
Systems - 6th International Conference, IDCS 2013, Hangzhou, China, Oc-
tober 28-30, 2013, Proceedings, Vol. 8223 of Lecture Notes in Computer Sci-
ence, Springer, 2013, pp. 321-332. |[doi:10.1007/978-3-642-41428-2_26,
URL https://doi.org/10.1007/978-3-642-41428-2_26

X. Zhang, L. Chen, M. Wang, |[Efficient multi-way theta-join processing
using mapreduce, PVLDB 5 (11) (2012) 1184-1195.

URL http://vldb.org/pvldb/vol5/p1184_xiaofeizhang v1db2012.
pdf

C. Zhang, J. Li, L. Wu, M. Lin, W. Liu, SEJ: an even approach to multi-
way theta-joins using mapreduce, in: J. Liu, J. Chen, G. Xu (Eds.), 2012
Second International Conference on Cloud and Green Computing, CGC
2012, Xiangtan, Hunan, China, November 1-3, 2012, IEEE, 2012, pp. 73—
80. |doi:10.1109/CGC.2012.9.

URL https://doi.org/10.1109/CGC.2012.9

C. Zhang, J. Li, L. Wu, M. Lin, W. Liu, |SEJ: an even approach to multi-
way theta-joins using mapreduce, in: J. Liu, J. Chen, G. Xu (Eds.), 2012
Second International Conference on Cloud and Green Computing, CGC
2012, Xiangtan, Hunan, China, November 1-3, 2012, IEEE, 2012, pp. 73—
80. |doi:10.1109/CGC.2012.9.

URL https://doi.org/10.1109/CGC.2012.9

D. R. Augustyn, L. Warchal, |Gpu-accelerated method of query selectiv-
ity estimation for non equi-join conditions based on discrete fourier trans-
form, in: N. Bassiliades, M. Ivanovic, M. Kon-Popovska, Y. Manolopoulos,
T. Palpanas, G. Trajcevski, A. Vakali (Eds.), New Trends in Database and
Information Systems II - Selected papers of the 18th East European Confer-
ence on Advances in Databases and Information Systems and Associated
Satellite Events, ADBIS 2014 Ohrid, Macedonia, September 7-10, 2014
Proceedings II, Vol. 312 of Advances in Intelligent Systems and Comput-
ing, Springer, 2014, pp. 215-227. |doi:10.1007/978-3-319-10518-5_17.
URL https://doi.org/10.1007/978-3-319-10518-5_17

29

http://dx.doi.org/10.1007/978-3-319-34099-9_15
http://dx.doi.org/10.1007/978-3-319-34099-9_15
https://doi.org/10.1007/978-3-319-34099-9_15
https://doi.org/10.1007/978-3-642-41428-2_26
http://dx.doi.org/10.1007/978-3-642-41428-2_26
https://doi.org/10.1007/978-3-642-41428-2_26
http://vldb.org/pvldb/vol5/p1184_xiaofeizhang_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1184_xiaofeizhang_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1184_xiaofeizhang_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1184_xiaofeizhang_vldb2012.pdf
https://doi.org/10.1109/CGC.2012.9
https://doi.org/10.1109/CGC.2012.9
http://dx.doi.org/10.1109/CGC.2012.9
https://doi.org/10.1109/CGC.2012.9
https://doi.org/10.1109/CGC.2012.9
https://doi.org/10.1109/CGC.2012.9
http://dx.doi.org/10.1109/CGC.2012.9
https://doi.org/10.1109/CGC.2012.9
https://doi.org/10.1007/978-3-319-10518-5_17
https://doi.org/10.1007/978-3-319-10518-5_17
https://doi.org/10.1007/978-3-319-10518-5_17
http://dx.doi.org/10.1007/978-3-319-10518-5_17
https://doi.org/10.1007/978-3-319-10518-5_17

	1 Introduction
	2 Preliminary
	2.1 GPU
	2.2 CUDA
	2.3 Join Operation
	2.4 Hadoop

	3 GPU-Based Equi Join with Hadoop
	3.1 Data Pre-filtering through Hadoop
	3.2 Data Preprocessing through Hadoop
	3.2.1 Mapping
	3.2.2 Row and Column Transformation

	3.3 GPU-Accelerated Equi Join Operation
	3.3.1 GPU-Based Nested Loop Join
	3.3.2 GPU-Based Hash Join
	3.3.3 Estimation of Join Results Size
	3.3.4 Thread Hierarchy

	3.4 Mixed Programming of GPU and Hadoop

	4 GPU-Based Theta Join with Hadoop
	4.1 Classic Theta Join Algorithm on Hadoop
	4.2 Improved Theta Join Algorithm on Hadoop and GPU

	5 Experimental Results
	5.1 Nested Loop Join
	5.1.1 Comparison of Nested Loop Join with Single GPU
	5.1.2 Comparison of Nested Loop Join with CPU on TPC-H Data Set
	5.1.3 Comparison of Nested Loop Join with CPU on Synthetic Data Set
	5.1.4 Effect of on the Execution Efficiency of Nested Loop Join

	5.2 Hash Join
	5.2.1 Comparison of Hash Join with Single GPU
	5.2.2 Comparison of Hash Join with CPU on TPC-H Data Set
	5.2.3 Comparison of Hash Join with CPU on Synthetic Data Set
	5.2.4 Effect of on Execution Efficiency of Hash Join

	5.3 Theta Join

	6 Conclusion
	7 References

