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Abstract

The growing data has brought tremendous pressure for query processing and
storage, so there are many studies that focus on using GPU to accelerate join
operation, which is one of the most important operations in modern database
systems. However, existing GPU acceleration join operation researches are not
very suitable for the join operation on big data.

Based on this, this paper speeds up nested loop join, hash join and theta join,
combining Hadoop with GPU, which is also the first to use GPU to accelerate
theta join. At the same time, after the data pre-filtering and pre-processing,
using Map-Reduce and HDFS in Hadoop proposed in this paper, the larger
data table can be handled, compared to existing GPU acceleration methods.
Also with Map-Reduce in Hadoop, the algorithm proposed in this paper can
estimate the number of results more accurately and allocate the appropriate
storage space without unnecessary costs, making it more efficient.

The rigorous experiments show that the proposed method can obtain 1.5 to
2 times the speedup, compared to the traditional GPU acceleration equi join
algorithm. And in the synthetic data set, the GPU version of the proposed
method can get 1.3 to 2 times the speedup, compared to CPU version.

1. Introduction

One of the most serious problems in the computer industry today is the
growing data. According to statistics, the rate at which data is generated an-
nually on the network will increase by 10 percent every five years[1]. Therefore,
we have to face how to effectively deal with this serious problem in large re-
lational databases. However, the speed of the processor has now grown to the
limits of the current level of technology, more and more attention focused on
parallel technology. One solution is to increase the number of processors[2] and
threads[3]. Another solution is using a single instruction multiple data stream
(SIMD) structure to improve the parallelism by processing multiple data under
one instruction[4].

Now, due to CPU clock frequency limitations, software optimization has
come to an end. Therefore, researchers have to consider other possibilities to
speed up the query processing[5], using multicore CPUs[6]. The use of new
hardware to speed up the process is also possible[7]. In recent years, many
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studies have chosen FPGA as an option for hardware accelerators[8, 9], including
the query[10]. Similarly, image processors (GPU) have been widely used in the
field of query processing[11].

Join operation is one of the most important operations in relational database
operations and one of the longest-running operations in a query. Under this sit-
uation, there are many efforts put to speed up the join operation. IBM has
added new hardware to its commercial system Netezza[12]. Do[13] integrated
CPU processors and DRAM memory into a smart flash device (Smart SSD) to
implement query processing. Devarajan[14] and others believe that the GPU is
the most advanced distributed tool to handle computationally intensive tasks.
Kaldewey[15] and others believed the data needs to be copied to the GPU de-
vice memory for processing. He[16] thought using GPU to query co-processing
was an effective way to improve memory database performance. Yuan[17] used
the GPU device to implement the hash join operation. Pietron[18] and others
used the CUDA programming model on the GPU to achieve a part of SQL
operations. Rui[19] has conducted detailed experimental studies on how join
operation benefits from the rapid growth of the GPU. Angstadt[20] even devel-
oped a dedicated to speed up the SQL statement using the CUDA programming
model on the GPU. In addition to the two-table join, multi-table join equally
occupies a very important position in the relational database, Zhou[21], who
proposed GBFSJ (GPUs BloomFilter Star Join) algorithm, achieved a star join
on the GPU with the use of a Bloom filter. Cruz[22] and others have used the
GPU to achieve such connectivity.

Through the analysis of the existing research results of the new hardware
acceleration join, it is concluded that the research results have the following
problems:

• Existing join operations based on new hardware are still at the initial
stage, most are limited to simple equi join, or lack of research on complex
join operation such as theta join. Future research work should focus more
on complex join operation for practical applications.

• The existing research carried out by the experiment are based on small
data sets, the size of the data set mostly is MB. To use GPU in com-
mercial database systems, future research efforts should be put on scaling
operations on large-scale data.

• A serious problem with the new hardware acceleration join operation is
how to allocate the appropriate storage space for the join results. Differ-
ent from the CPU programming language, dynamically allocating storage
space, GPU needs to allocate enough storage space in advance. However,
the existing research results are not good solutions to this problem.

• A single new hardware cannot meet the needs of modern business databases,
but existing research is carried out on monolithic new hardware. There
should be more work on deploying new hardware as a distributed archi-
tecture to accelerate join operation.
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This paper is mainly based on the distributed architecture of the GPU to
accelerate the join operation. By combining the Hadoop architecture with the
GPU, advantages of both Hadoop’s node-level parallelism and GPU’s thread-
level parallelism can be taken. Hadoop data processing tasks originally per-
formed by the CPU were sent to the GPU, using the GPU’s parallelism while
opening multiple threads to take advantage of the high computational power
and high parallelism. This paper intends to implement nested loop join, hash
join and theta join algorithm, the remaining types of join will be studied later.

The second section mainly introduces the basic hardware structure, the
thread organization form and the CUDA programming language background,
to better understand the following GPU processing join algorithm. The third
section and the fourth section mainly introduce the main research contents of
this paper, including pre-filtering of data and hardware processing equi join and
non-equi join operation. The fifth section introduces the experiment and the
results obtained in this paper. The last part concludes the paper, summarizes
the contents and points out the innovation.

2. Preliminary

2.1. GPU

The GPU device has a multiparty processor core with multiple instruction
streams and multiple streams (SIMDs), and each multiprocessor core contains a
number of processors. The GPU hardware structure shown in Figure 1 contains
N multiprocessor cores, and each multiprocessor core contains M processors.
Each multiprocessor core contains an instruction processing unit and a storage
resource. All processors on the multiprocessor share the instruction unit and the
storage space, and each processor has a set of registers. GPU devices also have
global memory, and global memory can be accessed by all multiprocessor cores.
Multi-processor core internal storage resources read and write faster, compared
to the global memory.

As shown in Figure 2, in a thread block, the organization of the thread can
be one-dimensional, two-dimensional and three-dimensional, with ID identifying
each thread. Similarly, the organization of thread blocks in a thread grid can
also be divided into one-dimensional, two-dimensional, and three-dimensional.
GPU threads have a variety of organizational forms, making it applicable to
different issues. For example, when dealing with array problems, the thread
grid and the thread block can be used in the one-dimensional organization, and
each thread corresponds to a part of the array elements.

2.2. CUDA

GPU devices slowly evolved into a copier processor for intensive computa-
tion, bringing a variety of programming languages into birth, such as CUDA.
CUDA can be implemented in both CPU and GPU. Additionally, CUDA adds
some content related to GPU devices, such as the use of rich thread resources
on the GPU.
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多的线程，同时线程的创建开销也要远远低于 CPU。GPU 上的线程以线程格、

线程块的形式进行组织。线程是最小的处理单元，若干个线程被组织成线程块，

同时若干个线程块又被组织成线程格。对于任何问题，可将其粗粒度地划分成

若干个子问题，每个线程块可处理其中一个子问题。进一步，把每个子问题划

分成更小的子问题，这些细粒度子问题由 GPU 的基本处理单元线程进行处理。

线程块是每个多处理器核的基本调度单位，一个线程块内的全部线程均在相同

的核心里，并且共享相同的资源。在 GPU 工作时，每个多处理器核对应一个线

程块，每个处理器对应一个线程。由于多处理器核中的存储资源十分有限，因

此每个线程的状态信息都是保存在寄存器中的，每个线程块中的线程个数越多，

所需要的寄存器个数越多。实际中，线程块的个数可能超过了 GPU 设备多处理

器核的个数，通常多处理器核以线程块为基本单位，流水式的进行处理。因此，

GPU 核的个数越多，能够同时处理的线程块个数越多，执行效率越高。 

          

GPU
Multi-Professor N

Multi-Professor 2

Multi-Professor 1

Professor 1 Professor M

Instruction 
Unit

Cache

Global Memory

 
图 2-1 GPU 结构 

 

 如图 2-2 所示，在一个线程块中，线程的组织形式可以是一维、二维以及

三维。在一维的组织形式中，线程 ID 是一个数字；在二维中，线程 ID 是一个

二维坐标（x，y），分别代表该线程在横、纵轴上的标号；同理三维组织形式中，

Figure 1: Structure of GPU

CUDA contains two kinds of code, host code, and kernel code. Host code
runs on the CPU, which is responsible for the applying for storage space, calling
the kernel code, controlling data transformation between CPU and GPU. The
kernel code is the code that runs in parallel on the GPU.

2.3. Join Operation

In the relational database, the join operation is the process of the combi-
nation of two tables into a relationship table under specific conditions. The
attributes that participate in the relationship table are called join keys. If the
join key satisfies the query condition, the corresponding tuples in two tables are
merged into one tuple and stored in the buffer.

According to the different join conditions, the join operation can be divided
into equi join and theta join:

• Equi join: The query statement specifies the join condition for the connec-
tion of the equation. Consider the relationships R(A,B), S(C,D). When
R.A = S.C, it is an equi join. Figure 3 shows the result of the join. In
SQL, the syntax of this join is:

select A,B,C,D from R join S on R.A = S.C

• Theta join: The query statement specifies the join condition for the con-
nection of the non-equation. Non-equation includes >,<,≥,≤ and so on.
Figure 4 shows the result of the join. In SQL, the syntax of this join is:
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线程 ID 为三维坐标（x，y，z），分别代表其在横、纵、竖坐标上的标号。每个

线程块内部的线程均有一套独立编号。与线程一样，在一个线程格中线程块的

组织形式同样可以分为一维、二维以及三维，每个线程块同样具有标识其的 ID。

GPU 中线程多样的组织形式，使得其能适用于不同的问题。例如，当处理数组

问题时，线程格以及线程块可以采用一维的组织形式，每一个线程均对应数组

中的一部分元素。当处理矩阵问题时，线程格与线程块采用二维组织形式更加

适合。 

(0,0,0) (1,0,0)

(0,1,0) (1,1,0)

Threads

GPU Device Grid

Block
(0,0)

Block
(0,1)

Block
(1,0)

Block
(1,1)

 

图 2-2 GPU 线程组织形式 

 

2.3 CUDA 

 GPU 作为一种硬件处理器，开发者为其研发了多种编程语言。GPU 设计之

初目标是为了进行图像处理，因此研发了多种专门开发图像处理的编程语言，

例如 OpenGL、DirectX 等。随着 GPU 设备的发展，慢慢地其演变成了处理密

集计算的协处理器，基于此出现了多种通用编程语言，例如 CUDA 语言。CUDA
作为一种通用编程语言，与 Java 等语言类似，适用于多种领域，不仅仅是专门

Figure 2: Organization of GPU threads

select A,B,C,D from R join S on R.A < S.C

The join operation can be roughly divided into the following three categories:

• Nested loop join: It is a violent algorithm that converts all tuples in one
table to all tuples in the other table, and generates a new result tuple if
the join condition is met.

• Hash join: It is to put the smaller table (inner table) into a hash table
and store it in memory. And then traverse the larger table (outer table)
to find the tuple of the outer table in the hash table.

• Sort merge join: It is to sort two tables at first, and then traverse them
in sequence to decide whether to join.

2.4. Hadoop

Hadoop is an open source software framework, which is used for distributed
storage and big data processing. The core of this framework is the Hadoop
Distributed File System (HDFS) and Map-Reduce.

HDFS, written in Java for the Hadoop framework, is a distributed file system
that can store data on commodity machines, providing high bandwidth across
the cluster.
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1.2.1 连接操作的分类 

 关系型数据库中，连接操作即是将两个表根据特定的条件合并成一个关系

表的过程。关系表中参与比较的属性称之为连接键，待连接的关系表的连接键

必须是可以进行比较的，如必须同为数值型或者同为字符型。若待连接关系表

的元组连接键满足查询语句指定条件，则将两个表中相对应元组合并成一个元

组并存入结果缓冲区中；否则，继续进行匹配。 

 根据连接条件的不同，连接操作可以分为等值连接以及非等值连接两大类： 

（1）等值连接查询语句指定的连接条件为等式的连接操作，即为等值连接。考

虑如下两个关系： 

R൫A, B൯, S(C, D) 

当连接条件为R. a = S. c时，即是一个等值连接。如图 1-1 所示，此连接的结果

为关系 R 与关系 S 中所有满足条件R. a = S. c的元组对所合并成的新元组组成的

集合。在 SQL 语句中，等值连接语法如下： 

                                         SELECT  A, B, C, D FROMR JOIN S ON R. A = S.                   （1-1） 

 

  

 

图 1-1 等值连接 

 

（2）非等值连接查询语句指定的连接条件为不等式的连接操作，称之为非等值

连接，如图 1-2 所示。非等值连接的连接条件包括>、<、<>、>=、<=，SQL

语法如下： 

                                             SELECT A, B, C, D FROMR JOIN S ON R. A < S. C;              （1-2） 

 连接操作的实现方式大致可以分为以下三类： 

（1）嵌套循环连接 嵌套循环连接是一种暴力算法，即将待连接的两表中任意

一个表的所有元组一一去与另一个表中的全部元组进行比较，若符合连接条件

则生成新的结果元组。显然，这种方法并不适用于尺寸较大的关系表连接。  

 

 

    R     S 

A B C D 

x   1   y   4 

  y   2   z   5 

  z   3   t   6 

R.A S.C R.B S.D 

 y  y  2 4 

 z  z  3  5 

   R.A=S.C 

Figure 3: Example of equi join
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                       图 1-2 非等值连接 

 

（2）散列连接 大数据集上的连接通常采用散列连接，其核心思想是将较小的

表（内表）建立成一个哈希表，并将其存放进内存中。接着遍历较大的表（外

表），将外表的每个元组分别探测内存中的哈希表，若探测成功则将两个元组合

并成新的元组；否则，继续遍历外表。哈希函数需作用在连接键上，并且外表

和内表需要使用相同的哈希函数。注意，若内存容量小于哈希表大小，则须对

内表以及外表按照另外的哈希函数进行分割，对两表的对应块分别做连接，最

后合并结果。注意，散列连接只能处理等值连接。 

（3）排序合并连接 排序合并连接的核心思想是先对待连接的两个关系表进行

排序，接着按顺序遍历两个表，进行连接判断。由于排序合并连接需要对关系

表进行排序，因此通常情况下效率要比散列连接差。但现代关系数据库的关系

表通常都已经排好序，这时排序合并连接的效率会高于散列连接。 

 上述三种实现方式中，散列连接只能适用于等值连接，而嵌套循环连接以

及排序合并连接适用于等值连接以及非等值连接。嵌套循环连接由于采用暴力

方法，因此仅仅适用于小数据集的情况。通常情况下，散列连接性能优于排序

合并连接；但若数据源已经排好序，则采用排序合并连接更优。 

1.2.2 Map-Reduce 实现连接操作 

 Map-Reduce 是 Google 公司所开发的一种分布式计算框架，主要用来处理

大数据（大于 1TB）的运算。Map-Reduce 的核心思想来源于函数式语言，主要

包括 Map 以及 Reduce 两个阶段。在 Map 阶段，以行为单位读取数据并将其转

换成 key-value 键值对的形式；在 Reduce 阶段，具有相同 key 值的键值对经过

哈希操作传递到相同的 Reduce 函数中，Reduce 函数对这些具有相同 key 值的

键值对进行处理，最后将结果汇总返回。 

 尽管 Map-Reduce 模型更加适用于单源数据处理，而连接操作涉及到至少

两个关系表，属于多源数据。但利用 Map-Reduce 处理连接操作依然是目前的

    R     S 

  A   B   C   D 

  1   x   1   o 

  2   y   1   p 

  3   z   3   q 

R.A S.C R.B S.D 

 1  3  x  q 

 2  3  y  q 

   R.A<S.C 

Figure 4: Example of theta join

Map-Reduce is a distributed computing framework to handle big data (greater
than 1TB), including Map and Reduce. In the Map phase, the data is read in
units of lines and converted to key − value pairs. In the Reduce phase, pairs
with the same key value are passed to the same Reduce function, and the result
is finally returned[23, 24, 25, 26, 27].

Using Map-Reduce to handle join operations is the current mainstream ap-
proach, roughly divided into three ways, join in Reduce, join in Map, and semi
join.

3. GPU-Based Equi Join with Hadoop

In the join algorithm above, only a small part of the data in two tables
participates in the equi join operation. Therefore, initial pre-filtering in CPU,
passing fewer data between hosts, will be a good solution to this problem. Based
on this, this section mainly introduces GPU to accelerate nested loop join and
hash join, along with the pre-filtering through Hadoop to reduce the amount of
data transferred between devices.

3.1. Data Pre-filtering through Hadoop

In semi join, only tuples of the large group are filtered, by extracting the
join key of the small table. When two large tables are connected, filtering only
the larger ones is not sufficient to achieve the greatest performance boost. The
pre-filter mentioned in this paper extracts common join keys of two tables to
pre-filter both tables. So, even if two tables are very large, it can still achieve a
good performance. This pre-filtering needs two rounds of Map-Reduce through
Hadoop, the following is a specific implementation process.

In the Map phase of the first round of Map-Reduce, firstly read the data
of two tables to extract those to be connected attributes, and add a label to
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indicate which table they are from. Specifically, Map’s output is (key, tag), and
key is the value of to be connected attribute. When tag is T, it means the tuple
is from the table T, the same to those with S. Each tuple corresponds to such a
key− value pair. Pairs with the same key are transported to the same Reducer
after shuffling, sorting, merging, and so on. In the Reduce phase, the received
(key, valuelist) are analyzed. Only those valuelist contains both T and S key
value will be outputted as the result to HDFS in Hadoop. All in all, the first
round Map-Reduce’s output is the value of join key attribute in the final result.
That is, the tuples whose value of join key attribute are not in it will not appear
in the final result.

In the second round of the Map-Reduce task, the result from the previous
round is read from the HDFS firstly in the initialization function Setup() and
stored in a hash table. Then in the Map phase, read tuples of two to be joined
original table, and extract the join key. If the join key exists in the hash table,
the tuple is shown in the final result, it is outputted with a tag that identifies
its origin. In this step, only those tuples that are determined to be in the final
result will be outputted to Reduce to participate in the final operation. In this
way, the amount of data to be processed in Reduce declines greatly. At the
same time, it reduces the number of tuples that need to be stored on the GPU,
freeing up device memory.

In semi join, the raw data is inputted directly to HDFS after filtering, and
then a new Map-Reduce is restarted to read and operate the filtered data.
However, it will lead to additional Map-Reduce startup time and additional
expense of both output and extraction in the new round. Therefore, the pre-
filtering method used in this paper incorporates the filtering of data and the
execution of the actual join operation into one round of tasks. That is, after
filtering, mapping and tagging in Map, data is transferred to Reduce for joining,
by shuffling, sorting, merging and other steps. In the Reduce phase, the data
from Map is received and processed (row and column transformation), and the
processed data is then sent to the GPU for specific join operations. After the
GPU is executed, the result is returned to the CPU, and the Reduce outputs it
to HDFS. The pseudo code is shown in Algorithm 1.

3.2. Data Preprocessing through Hadoop

Before reading the filtered data and performing the actual join operation,
Reduce of Map-Reduce in Hadoop needs to perform some preprocessing of the
data. The main processing steps include mapping and row and column trans-
formation. This section describes these two operations and the effects they
bring.

3.2.1. Mapping

For a SQL query, only a few attributes in the relational table will be used,
and most of them will lead to additional overhead. Therefore, analyzing SQL
statement to determine which attributes are query-related will enhance the ef-
ficiency. Existing big data query tools, such as HIVE, IMPALA, all follow a

7



Algorithm 1: Pre-filtering Algorithm

1: Map1(null,tuple):
2: join key ← extract the join key from tuple;
3: emit(join key,tag);
4: Reduce1(key,tag list):
5: unique key ← the key which belongs to both of the two tables;
6: for key in unique key list do
7: emit(key,null);
8: Setup()
9: Build a hash table with the unique key list;

10: Map2(null,tuple):
11: join key ← extract the join key from tuple;
12: join tuple← tuple tuple whose join key is contained in the hash table;
13: join tuple, ← Projection(Join tuple);
14: emit(join key/a,tagged join tuple);
15: Reduce2(key,tag list):
16: T ← tuples from table T for key;
17: S ← tuples from table S for key;
18: T , ← preprocessing for table T ,;
19: S, ← preprocessing for table S,;
20: NB T ← number of tuples in T ,;
21: NB S ← number of tuples in S,;
22: Result ← Join GPU(T ,, S,, NB T,NB S);
23: for tuple in Result do
24: emit(null,tuple);

principle: by analyzing the SQL statement, generate the implementation plan,
and optimize the implementation plan, including filtering, mapping operations
before the join operation. The algorithm presented in this paper will map the tu-
ples in the Map phase of the second round of Map-Reduce. For each tuple, only
query-related attributes are kept, others are removed. Those kept attributes are
combined into new tuples. The new tuple has all the query-related attribute
values, but the size is smaller than the original tuple. The pseudo code is shown
in Algorithm 2.

Algorithm 2: Mapping Algorithm(Projection)

1: new tuple← null;
2: Attrs[]← extract attributes from tuple T;
3: new tuple← combine relevant attributes in Attrs[] to a new tuple;

3.2.2. Row and Column Transformation

Traditional relational databases use row storage patterns, using tuple as a
basic storage unit in the disk. All bytes of each tuple are stored adjacently. In
online transaction processing (OLTP), the query needs to return all or most of
the columns, making this storage mode perform well.

However, in online analytical processing (OLAP), queries often involve mil-
lions or more row tuples, but only a few of them are required for queries. For
example, a supermarket needs to check the top ten highest sales of commodities
this year. Users usually only concern about the name, categories, and sales.
At this point, the using of row storage will read a lot of useless data, because
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only one line of data can be read at one time, of which only a few field value is
required for the query.

The column storage model is a good solution to this flaw. As shown in
Figure 5, the column storage model stores the data in columns, and all the
data in the same column are stored in adjacent storage space. When storing
one row of data, different data fields are stored in the corresponding column’s
storage space. For the column storage model, it only needs to read the columns
associated with the query. In addition, the column storage model performs
better in data compression than the line storage model. Although the column
storage model has many advantages, after being read from the disk, data still
needs to be stored in rows in memory for processing. When the number of to
be read columns is too large, the process of row and column transformation will
bring too much overhead. Therefore, the column storage model is more suitable
for the query with fewer columns involved. At present, many database systems
use column storage mode, such as SQL Server[28].

In this paper, because the data has been mapped in the Map of the second
round, row and column conversion cannot bring too many benefits. However, for
the join operation, a necessary step is to extract the join key value of each tuple.
As is shown in Chapter 2.2, CUDA is not quite good at the string processing,
for the need of traversing the entire tuple to extract the join key, which will
undoubtedly increase the computing burden of the GPU. At the same time,
because the tuple contains variables of unsettled length, extracting the join key
is not a very wise choice in the kernel. So before sending data to the GPU, row
and column still need to be transformed.

Name Gender Age

James Male 31

Kobe Male 38

Anthony Male 31

Tylor Female 28

James Male 31

Kobe Male 38

Anthony Male 31

Tylor Female 28

Row Storage Model

James Kobe Anthony

Male Male Male

31 38 31

Column Storage Model

Tylor

Female

28

Figure 5: Column storage model
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To do the transformation, extract all the attribute values of each tuple and
store these attribute values into different buffers. Each buffer stores all the
values of an attribute. Note that attributes in each buffer are stored in the
same order. For any two different tuples t and s in the original data table, let
tuple t be preceded by tuple s. The position of each attribute of the tuple t
in the respective buffer is preceded by the corresponding attribute of the tuple.
As a result, only comparing the records in the join key buffer and extracting
the records in other locations to generate join results are needed. For example,
if the mth record in the T table join key buffer matches the nth record in the
S table join key buffer, extract the joining result of all mth records of T table
buffers and all nth records of S table buffers.

3.3. GPU-Accelerated Equi Join Operation

This section describes the details of equi join operations on the GPU, in-
cluding the threading model used in CUDA, the specific execution flow of join
operations, the estimation and analysis of results number, and the thread hier-
archy analysis. In addition, this section implements nested loop joins and hash
join operations.

3.3.1. GPU-Based Nested Loop Join

According to Section 2.3, nested loop join needs to loop through two tables,
so the use of two-dimensional thread model is essential, that is, the organization
of the thread block in the thread grid and the organization of the thread in the
thread block are two-dimensional. Figure 6 is a thread grid organization, which
contains a total of four thread blocks, each thread block also contains four
threads, and are in the form of 2 ∗ 2 organization. Thus, the line grid in both
horizontal axis and vertical axis contain two thread blocks, the same as the
organization of threads in the thread block.
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表的缓冲区中第 n 个记录生成连接结果。 

3.4 GPU 加速等值连接操作 

 至此，本文所ᨀ算法中对数据的预过滤、预处理部分已经介绍完毕。本小

节主要介绍 GPU 上实现等值连接操作的实现细节，包括 CUDA 中所采用的线

程模型、连接操作的具体执行流程以及对结果数量的估计分析、线程层次分析

等。本节实现了嵌套循环连接以及哈希连接操作。 

3.4.1 基于 GPU 的嵌套循环连接 

 

 
           图 3-3 嵌套循环连接 

 

嵌套循环连接的核心思想是对两个关系表中的元组进行循环遍历，根据匹

配结果生成最后的新元组。上文说过，GPU 最大的优点在于其强大的并行性，

因此 GPU 上处理嵌套循环连接应该充分利用其丰富的线程资源。基于嵌套循环

连接需要循环遍历两个表，因此采用二维的线程模型，即线程格中线程块的组

织形式以及线程块中线程的组织形式均为二维的。图 3-3 为一个线程格的组织

形式，其中共包含四个线程块，每个线程块又都包含四个线程，并且均是以 2*2

Figure 6: Thread grid organization of nested loop join

When multi-threads process nested loop join, each thread needs to deal with
part of the data. Only when all threads have completed their tasks, the GPU
will return results to the CPU. Obviously, the total processing time for tasks on
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the GPU depends on the last thread. Under this situation, something needs to
be done to balance the task for each thread.

In this paper, for table T and table S, assuming that the organization of
thread blocks in thread grids is m ∗n, the organization of each thread in blocks
is x ∗ y. So the organization of whole threads in thread grids is mx ∗ ny. The
number of tuples to be processed in each table by each thread is given by
equation 1 and equation 2:

NBS =
|S|
m ∗ x

+ 1 (1)

NBT =
|T |
n ∗ y

+ 1 (2)

Suppose that a thread is located in a thread block with the index (a, b), the
index of the thread in the thread block is (c, d). The position, where to read
NBS and NBT tuples from table S and T, is shown in equation 3 and 4:

IDS = (a ∗ x+ c) ∗NBS (3)

IDT = (b ∗ y + d) ∗NBT (4)

IDS and IDT are the starting positions of the data in two tables. In Figure 6,
the red box represents the thread, which handles the join operation between T1
and S3. In CUDA, the thread block, the index of the thread in the block, sizes
of grid and block can be obtained directly, making it easy to connect the data.

During thread execution, whenever a match is successful and a new tuple
is generated, new tuple needs to be cached, and the result is returned when
all threads have finished executing. The biggest problem of multithreading
writing data into memory is writing memory conflicts. In order to prevent the
conflict, each thread can be allocated a fixed storage space. Whenever a thread
generates a result, the results will be written to its corresponding storage space.
And when all threads have completed the task, the result will be summed and
then returned. At the same time, a local variable is set in each thread to record
the number of results generated in the thread.

Since the exact number of join results is not known until the join operation
is performed, when allocating storage space for each thread, space is set to a
maximum possible number of results, that is, NBS ∗NBT .

3.3.2. GPU-Based Hash Join

According to Section 2.3, hash join only needs to loop through one data
table. So one-dimensional organization of both blocks in grid and threads in
the block are more suitable for CUDA. As shown in Figure 7, the grid contains
four thread blocks, and each thread block contains two threads.

Assuming that each thread grid contains nblocks thread blocks, each thread
block contains nthreads threads, and if the table S is the larger table, the number
of tuples in the table S allocated to each thread is given by the equation 7:

NBS =
|S|
m ∗ x

+ 1 (5)
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加获得最终连接结果个数。 
由于在连接操作执行之前，并不知道连接结果的确切个数。因此，当为每

个线程分配存储空间时，可按照最大可能结果数量进行分配，即分配 NBS*NBT

个结果所占大小的存储空间。 

3.4.2 基于 GPU 的哈希连接 

 

 
图 3-4 哈希连接 

 

 哈希连接的核心思想是对较小表建立哈希表，接着对另一个较大数据表进

行循环遍历，对大表中的每一个元组都探测哈希表，进行匹配判断以及连接操

作。与嵌套循环连接不同的是，哈希连接仅仅需要循环遍历一个数据表。此种

情况下，CUDA 中线程采用一维组织形式较为适合。即线程格中线程块的组织

形式以及线程块中线程的组织形式均为一维的。如图 3-4 所示，线程格中包含

4 个线程块，且线程块的 ID 是一个自然数字；每个线程块中含有 2 个线程，线

程的组织形式同样是一维的。 
 假设每个线程格包含 n_blocks 个线程块，每个线程块包含 n_threads 个线

程，不妨假设 S 表是较大表，每个线程分配的 S 表中元组个数由公式(3-5)给出： 

                                                     𝑁𝐵ௌ = |ୗ|
௡_௕௟௢௖௞௦∗௡_௧௛௥௘௔ௗୱ

+ 1                   (3-5) 

实际上，除了最后一个线程块中最后一个线程之外，每个线程均会处理 NBS个
S 表元组，剩下的元组全部由最后一个线程负责。 
 假设某个线程位于索引为 p 的线程块内，该线程在所属线程块中的索引为

q，该线程由公式(3-6)所给出的位置读取 NBS个 S 表中的元组。 
                                                   𝐼𝐷ௌ = (𝑝 ∗ 𝑛_𝑡ℎ𝑟𝑒𝑎𝑑𝑠 + 𝑞)* NBS               (3-6) 
 上述所有参数均可以在 CUDA 内核程序中直接获得，每个线程只需遍历其

对应的部分元组即可。基于哈希表的尺寸可能会很大，因此将哈希表存储在

Figure 7: Thread grid organization of hash join

In fact, in addition to the last thread in the last thread block, each thread
handles NBS tuples of table S, and the remaining tuples are handled by the
last thread. If a block index in the grid is p, and the index of thread in the
block is q, the location from where to start reading NBS tuples in table S can
be calculated by equation 6:

IDS = (p ∗ nthreads + q) ∗NBS (6)

This paper introduces the hash bucket to handle hash conflicts. Whenever a
tuple is detected, it is first positioned to the corresponding hush bucket through
the hash function, followed by a small range of detection in the bucket. Hash
bucket size is fixed, so the space utilization is slightly inadequate, but the de-
tection efficiency is as good as others.

As it shown in Algorithm 1, when the data is sent to the GPU, NBT and
NBS are sent as well. So NBT ∗NBS is set as the maximum storage space.

3.3.3. Estimation of Join Results Size

As mentioned earlier, before the kernel program performs the actual join
operation, it is necessary to preallocate enough memory in the CPU for the
result. But before the join is completed, we can not know the specific number of
results. Usually, memory is set with regard to the size of the Cartesian product.
But obviously, when tables are too large, the size of the Cartesian product will
be far larger than that of device memory. The existing research is based on
the experiments on small data set, so even if the distribution of memory is in
accordance with the Cartesian product, it does not exceed the device memory.
Although the method proposed in this paper is based on the Cartesian product
as well, due to the data pre-filtering and Map-Reduce structure, the performance
of the estimation is far better than that of the existing results.

Assuming that the ratio of tuples participating in the join of table T and
table S is α and β. So, after pre-filtering, β ∗ |S| and γ ∗ |T | tuples respectively
perform the actual join operation. As mentioned before, tuples with the same
key value are passed to the same Reducer. If there are k Reducers, each Reducer
deals with ω1 ∗β ∗ |S|, ω2 ∗β ∗ |S|......ωk ∗β ∗ |S| S-tuples and λ1 ∗γ ∗ |T |, λ2 ∗γ ∗
|T |...λk ∗ γ ∗ |T | T-tuples, and the parameters satisfy the following conditions:

ω1 + ω2 + ......ωk = 1

λ1 + λ2 + ......λk = 1
(7)
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Rsize results need to be allocated storage space:

Rsize = γ ∗ β ∗ |S| ∗ |T |
k∑

i=1

ωi ∗ λi (8)

Because parameters in equation 8 are all below 1, it will save a lot of space
for pre-allocating memory.

3.3.4. Thread Hierarchy

In the standard CUDA program, the thread is organized in the form of thread
block-thread hierarchy, where the number of thread blocks and the number of
threads in each thread grid can be set, but there is only one thread grid. The
algorithm in this paper combines Hadoop with the GPU. The Map-Reduce
architecture is also a multi-threaded task. Multiple Reducers perform tasks in
parallel. Each Reducer corresponds to a thread. Therefore, the hierarchy of the
proposed algorithm is thread grid (Reducer)-thread block-thread.

In CUDA programming, the number of threads in each block is usually set
to a multiple of 32, the number of blocks is based on the amount of data,
usually the more the better. Assuming that the GPU has a total of N threads,
the reducer number is nreducers, and each grid contains nblocks of blocks. Each
thread block contains nthreads threads. The parameter relationship must satisfy
the relationship 9

nreducers ∗ nthreads ∗ nblocks < N (9)

That is, in the case where the relationship is established, the bigger product
of parameters the better. When the total number of set threads is greater than
the number of threads on the GPU, some tasks need to wait for a free thread.
In this way, the task waiting and the creation of multiple threads will bring a
lot of additional overhead. As shown in Algorithm 1, the number of Reducers
can be changed by modifying the parameter α.

3.4. Mixed Programming of GPU and Hadoop

The Map-Reduce program runs on CPU and is based on Java language.
While, the GPU kernel program runs on GPU, based on the CUDA program-
ming model and the C language. Therefore, the combination of Hadoop and
GPU involves a compatibility problem between Java and C. This experiment
is programmed through the JNI interface to complete this work. Since the file
format of the CUDA program is .cu, and the traditional C language is the .c
file, there is a need of an additional .c file as a middleware. Through this mid-
dleware, GPU kernel function can be called. And then Map-Reduce will call the
middleware, so as to achieve the join of CPU and GPU. Because the memory
cannot be shared between CPU and GPU, the same data from Java to C needs
a copy, and then another copy from C memory space to GPU device memory.
That is, to transfer data from Map-Reduce to GPU, and a total of two copies are
required. Obviously, this introduces additional overhead and memory footprint,
so future research should continue to solve this problem.
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4. GPU-Based Theta Join with Hadoop

Given the importance of Hadoop, there are many research focused on using
Map-Reduce to deal with theta join operations. Koumarelas[29], Okcan[30]
and Penar[31] achieved theta join operations of two tables on Map-Reduce,
meanwhile Yan[32], Zhang[33] and Changchun[34, 35] achieved a multi-table
theta join. Augustyn[36] used the GPU to estimate the join selectivity for theta
join of two tables.

This section focuses on how to combine Hadoop with a GPU to handle theta
join operations based on two data tables, multi-table join will be studied later.

4.1. Classic Theta Join Algorithm on Hadoop

For theta joins, simply passing tuples with the same join key to the same
Reducer is not sufficient to get the full result. Because in theta join a tuple
does not only need to match its tuples with the same join keys, but also need
to match the tuples that are greater or less than the join key. As shown in
Figure 8, the areas represented by the shaded parts all need to be matched.
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匹配。如图 4-1 所示，阴影部分所代表的区域均需要进行匹配。 
 Okcan [28]ᨀ出了一种经典的 Map-Reduce 下处理非等值连接操作算法。如

图 4-2 a）所示，用一个二维矩阵表示两个关系表的笛卡尔乘积。将此二维矩阵

划分成许多个区域，每个区域均对应一个 reducer，并且每个区域均有一个 ID。

在 map 函数中，对于任意一个元组，对与其相交的每个区域均生成一个（ID, 
<Record, tag>）键值对，其中 tag 即为标识该元组来源的标识。如此一来，具有

相同 ID 的元组，即位于同一个区域的元组，会被传递到相同的 reducer 中进行

处理。通过此种方式，能够保证二维矩阵中每一个元素均能够得到处理，从而

获得正确的结果。 
 

 

                       图 4-1 非等值连接 

 

 目前，所有 Map-Reduce 下处理两表非等值连接操作的算法均采用类似的

思想，即将代表两个表笛卡尔乘积的矩阵划分成若干个区域，每个 reducer 处

理一个区域中数据的非等值连接。实际上，部分区域中可能并没有任何的结果

产生，如图 4-1 所示，空白的方格中并不产生任何结果。Okcan [28]等人同样ᨀ

出了一种称为 M-Bucket-I 改进版本的算法，在此算法中，只对确定会产生结果

的区域进行处理，对确定不会产生结果区域中的数据不进行任何实际的处理操

作。但是此种算法需要事先知道一些关于原始数据的统计信息，通常需要引入

额外的开销来获取这些统计信息。 

4.2.2 改进 Map-Reduce 处理非等值连接算法 

 如上一节所说，M-Bucket-I 算法仅仅对能确定产生结果的区域进行非等值

Figure 8: Matrix in classic algorithm

Okcan[30] proposed a classic Map-Reduce processing theta join operation
algorithm, named M-Bucket-I. As shown in Figure 9(a), the Cartesian product
of two tables is represented by a two-dimensional matrix. The matrix is divided
into many areas, each region corresponds to a Reducer, and each region has an
ID. In Map function, for each tuple, a (ID,< Record, tag >) key-value pair is
generated for each region intersecting it, where tag is the identity that identifies
the tuple source. As a result, tuples with the same ID, that is, tuples located
in the same area, are passed to the same Reducer for processing. In this way, it
is possible to ensure that each element in the matrix can be processed and led
to the correct result.
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连接操作。本文所ᨀ出的算法在此基础上，进一步确定出某些区域，该区域中

来自于两表的任意一对元组均满足连接条件。因此，对于这些区域中的数据无

须进行任何判断，直接生成连接结果。 

   

a）经典 Map-Reduce 算法               b）改进 Map-Reduce 算法 

图 4-2Map-Reduce 处理非等值连接 

 
类似于 M-Bucket-I 算法，本文所ᨀ出的方法需要首先对两个原始数据表进

行统计，分别统计出两个表连接键的取值范围，并分别计算出两个范围的 k 分

位数。图 4-2 b）展示了当 k 取值为 4 时，二维矩阵的组织形式。在图 4-2 b）
所示二维矩阵中，每个元素并不代表一个元组对，而是代表着一个取值范围对。

与 M-Bucket-I 算法不同的是，M-Bucket-I 算法中划分出的区域是一个任意规模

的矩形，而本文所ᨀ出算法所划分的区域是一个严格的正方形，即每个区域的

横纵轴的长度相同。如此划分的好处在于，对于某些区域来说，其中任意一个

元组对均符合连接条件，因此可以不用对这些区域中的数据进行连接判断。如 

   
a)S 表大于（等于）T 表             b)S 表小于（等于）T 表 

(a) Classic algorithm
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元组对均符合连接条件，因此可以不用对这些区域中的数据进行连接判断。如 

   
a)S 表大于（等于）T 表             b)S 表小于（等于）T 表 

(b) Developed algorithm

Figure 9: Theta join algorithm on Map-Reduce

In this algorithm, only the area where the result is determined is processed,
and no actual processing is performed on the data that does not produce the re-
sult area. However, this algorithm requires some information about the original
data in advance, which means additional overhead is needed.

哈尔滨工业大学工学硕士学位论文 

 - 35 - 

连接操作。本文所ᨀ出的算法在此基础上，进一步确定出某些区域，该区域中

来自于两表的任意一对元组均满足连接条件。因此，对于这些区域中的数据无

须进行任何判断，直接生成连接结果。 

   

a）经典 Map-Reduce 算法               b）改进 Map-Reduce 算法 

图 4-2Map-Reduce 处理非等值连接 

 
类似于 M-Bucket-I 算法，本文所ᨀ出的方法需要首先对两个原始数据表进

行统计，分别统计出两个表连接键的取值范围，并分别计算出两个范围的 k 分

位数。图 4-2 b）展示了当 k 取值为 4 时，二维矩阵的组织形式。在图 4-2 b）
所示二维矩阵中，每个元素并不代表一个元组对，而是代表着一个取值范围对。

与 M-Bucket-I 算法不同的是，M-Bucket-I 算法中划分出的区域是一个任意规模

的矩形，而本文所ᨀ出算法所划分的区域是一个严格的正方形，即每个区域的

横纵轴的长度相同。如此划分的好处在于，对于某些区域来说，其中任意一个

元组对均符合连接条件，因此可以不用对这些区域中的数据进行连接判断。如 

   
a)S 表大于（等于）T 表             b)S 表小于（等于）T 表 (a) Greater and greater or

equal
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a)S 表大于（等于）T 表             b)S 表小于（等于）T 表 

(b) Less and less or equal
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               c)S 表不等于 T 表 

图 4-3 不同连接条件下结果分布情况 

 

图 4-3 a）所示，当连接条件为 S 表连接键属性值大于或者大于等于 T 表连接键

属性值时，绿色区域内的任意一对元组对均满足连接条件，而红色区域内的元

组对需要进行判断，白色区域内的元组对一定不满足连接条件。图 4-3 b）所示

S 表连接键属性值小于或者小于等于 T 表连接键属性值以及图 4-3 c）所示 S 表

连接键属性值不等于 T 表连接键属性值等情况同样可如此判断。我们仅仅需要

将红色区域的数据下发到 GPU 上去进行非等值连接处理。即，仅仅对角线上的

区域需要下发到 GPU 上执行，其它区域可根据区域 ID 直接进行判断。算法伪

代码如算法 7 所示。 
 
算法 7：Map-Reduce 处理非等值连接 
Map(Key:null,Value: a tuple from a split of either table) 

join_key ← extract the join key from Value; 
if Value ∈ S then 

RegionID.x ←bucket ID of Value according to its join key; 
for all possible RegionID.y according to the join condition do  

emit (<RegionID.x, RegionID.y >,<Value, "S">); 
end if 
if Value ∈ T then 

        RegionID.y ←bucket ID of Value according to its join key; 
for all possible RegionID.x according to the join condition do  

emit (<RegionID.x, RegionID.y >,<Value, "T">); 

(c) Not equal

Figure 10: Organization of matrix under different join conditions

4.2. Improved Theta Join Algorithm on Hadoop and GPU

To solve this problem, this paper presents an improved algorithm. On the
basis of the classic algorithm, this algorithm can further identify certain areas,
where tuples from two tables satisfy the join condition.

Similar to the M-Bucket-I, this algorithm calculates the range of each table
join key and k quantiles of each range. Figure 9(b) shows the organization of
the two-dimensional matrix when k is 4. In this matrix, each element does
not represent a tuple pair, but a range pair. Unlike the M-Bucket-I where the
divided area is the rectangle of any size, this algorithm divides the area into
strict squares. The advantage of this division is, for some regions, if any one of
the tuple pairs meets the join condition, there is no need to judge the data in
this region for the join.
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As shown in Figure 10(a), when the join condition is that join key attribute
value of S-table is greater than or greater than or equal to that of T-table, any
pair of tuple pairs in the green region satisfies the join condition, and the tuple
pair in the red region needs to be judged. While the tuple pair in the white
region must not satisfy the join condition. Figure 10(b) shows that of S-table
is less than or less than or equal to that of T-table. And Figure 10(c) show the
condition that two values are not equal. So only the red area of the data needs
to be sent to the GPU for theta join processing. And the other areas can be
judged directly by the area ID. The pseudo code is shown in algorithm 3.

Algorithm 3: theta join on Map-Reduce

1: Map(key:null, value: a tuple from a split of either table)
2: join key ← extract the join key from value;
3: if value ∈ S then
4: RegionID.x← bucket ID of value according to its join key;
5: for all possible RegionID.y according to the join condition do
6: emit(< RegionID.x,RegionID.y >,< value, ”S” >);
7: if value ∈ T then
8: RegionID.y ← bucket ID of value according to its join key;
9: for all possible RegionID.x according to the join condition do

10: emit(< RegionID.x,RegionID.y >,< value, ”T” >);
11: Reduce(key,:RegionID, value list: tagged tuples corresponding in RegionID)
12: T ← null;
13: S ← null;
14: for each tuple t in value list do
15: add t to S or T according to its tag;
16: if RegionID.x == RegionID.y then
17: result← GPU theta join(S, T );
18: for each record in result do
19: emit(null, record);
20: else if RegionID.x matches RegionID.y according to the join condition then
21: cartesian result← do cross join for S and T ;
22: for each record in cartesian result do
23: emit(null, record);

As shown in Figure 10(a), the A region coordinates are (3, 1) and the abscissa
is greater than the ordinate. Therefore, any tuple in the A region satisfies the
condition, that join key attribute value of table S is greater than that of table
T. When the abscissa is equal to the ordinate, the region may have a join result,
so it is necessary to send it to the GPU for theta join judgment.

In the theta join operation on the GPU, nested loop join algorithm can be
used, the thread organization form and the processing mode are the same as
those of the GPU in Chapter 3.

The method used in this article only applies the data in the diagonal area
to the GPU, so it is only necessary to allocate storage space for the data in the
diagonal area, which can increase the storage space utilization.

5. Experimental Results

This section compares the methods proposed in this paper, through the exist-
ing GPU accelerated join operation algorithm to verify whether it has improved
performance, being more efficient. At the same time, compared with the CPU
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implementation of the proposed algorithm in this paper, to verify whether the
GPU implementation has the speedup for the join operation.

The experiments done in this section are based on larger datasets. Unless
special instructions, all experimental raw data are TPC-H data sets. GPU
devices running on the Linux operating system, the version of Ubuntu 14.04,
and Hadoop is version 2.6.0.

5.1. Nested Loop Join

This section focuses on the experiments of the nested loop join. It is com-
pared separately with the GPU accelerated nested loop join with a single device
and the proposed algorithm in CPU. At the same time by changing the value
of α in algorithm 1 to change the number of Reducers started by Map-Reduce,
changes in the execution time can be observed. At the same time, through the
synthetic data, the performance of the method can be observed. If there is no
special description, the value of α is 100. This experiment is based on the small
dataset, because the cost of the nested loop join is very large, the traditional
GPU acceleration method is not able to effectively support large data sets.

5.1.1. Comparison of Nested Loop Join with Single GPU

In this experiment, in order to ensure the reliability of the experimental
results, the proposed method is also implemented on a single GPU device, and
Hadoop is a pseudo-distributed structure. As shown in Figure 16, when the
data set is small, the efficiency of the proposed method is lower than that of
the traditional one. However, the execution time of the traditional method is
significantly increased with the increase of the original dataset, which is different
to the proposed algorithm. As shown in the figure, it will have at least one times
the speedup over the traditional one, which means under the same accelerating
condition of GPU, the proposed method is more efficient.
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不会出现在最终结果中的数据过滤掉，实际执行连接操作的数据远远小于原始

数据集。经过预过滤后，实际处理连接操作的时间大大降低，但预过滤过程同

样引入了额外的时间开销。因此，当数据集比较小时，预过滤所带来的增益效  

 

图 5-1 与单一 GPU 下嵌套循环连接对比 

 

果低于其所带来的额外开销，此时本文ᨀ出的方法执行时间较长；随着数据集

尺寸的增加，当预过滤带来的增益效果超过其所带来的开销时，本文所ᨀ出的

方法执行时间明显低于传统方法。本次实验是基于小数据集上进行，是因为嵌

套循环连接的代价十分庞大，传统的 GPU 加速方法并不能够有效地支持大数据

集，因此本次实验选择小数据集进行。 

5.2.2 TPC-H 数据集上与 CPU 处理嵌套循环连接对比实验 

 图 5-2 所示为 TPC-H 数据集下本文所ᨀ出的加速嵌套循环连接算法 GPU

版本与 CPU 版本对比实验结果。GPU 版本中，算法 5 中 α 取值为 100，而 CPU

版本中 α 取值为 1，从而保证了 CPU 版本的执行效率最佳，使得对比实验结果

更加公正。除 α 取值不同以外，GPU 版本与 CPU 版本的执行流程完全一样，

仅仅是执行实际连接操作的设备不同，保证了本次实验结果的可靠性。从图 5-2

可以看出，相比于 CPU 实现，用 GPU 实现本文所ᨀ出的嵌套循环连接算法并

无明显的加速效果。这是因为本文所ᨀ出的算法的 CPU 版本中，在第二轮任务

的 reduce 阶段，只有具有相同连接键值的元组才会传递到相同的 reducer 中。

而本次实验采用的是 TPC-H 数据集，连接键的分布较为均匀，每个连接键值仅
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Figure 11: Comparison of nested loop join with single GPU

Data that does not appear in the final result is filtered out, and the data
that actually performs the join operation is much smaller than the original data
set. After pre-filtration, the actual processing time is greatly reduced, but the
pre-filtration process also introduces additional time overhead.
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Therefore, when the data set is small, the gain effect of the pre-filtering is
lower than that of the additional cost, so the method proposed in this paper has
a long execution time at first. With the increase of the data set, the gain effect
exceeds the overhead, so the method proposed in this paper is significantly lower
than the traditional method.

5.1.2. Comparison of Nested Loop Join with CPU on TPC-H Data Set

The value of α in the CPU is 1, which ensures the best execution efficiency.
Except for the value of α and the equipment, the implementation process of
GPA and CPU is exactly the same. As shown in Figure 12, compared with
the CPU implementation, using the GPU to achieve the proposed nested loop
join algorithm has no obvious speedup. This is because, in Reduce phase of the
second round of Map-Reduce of CPU version, only tuples with the same join key
will be passed to the same Reducer. In this experiment, the distribution of the
TPC-H data join keys is even. Each join key value corresponds to only a small
number of tuples. Therefore, the actual execution time of the join operation in
the CPU version is very small, most of the time is taken by data pre-filtering.
And GPU can only accelerate small proportion of data, so the effect is not
obvious.
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仅对应少量的元组，因此在 CPU 版本中连接操作的实际执行时间占总时间的比

例很小，大部分时间用于处理数据预过滤。GPU 可加速的部分占比小，所以加

速效果不明显。 

 

图 5-2 TPC-H 数据集上与 CPU 处理嵌套循环连接对比 

 

5.2.3 人工合成数据集上与 CPU 处理嵌套循环连接对比实验 

 基于在 TPC-H 数据集上本文所ᨀ算法加速效果不明显，为此我们在人工合

成数据集上进行了另一次实验。在人工合成的数据集中，每个连接键值所对应

的元组个数较 TPC-H 数据集多。为保证实验结果可靠性，我们在图 5-2 所示实

验数据集的基础上对连接键的分布进行了修改，具体来说就是将连接键值除以

一个正整数，从而增加了每个连接键值对应的元组个数。基于原始 TPC-H 数据

集上连接键值的分布十分均匀，因此人工合成的数据集连接键分布同样均匀，

且除了连接键值不同以外，两个数据集其它所有性质均相同，保证了实验结果

的可靠性。从图 5-3 可以看出，在人工合成的数据集上，相比于 CPU，采用 GPU

能获得接近 1 倍的加速效果。从图 5-1 与图 5-2 可以看出，本文所ᨀ方法相比

于传统的 GPU 算法，能适用于更加大的数据集。由于人工合成的数据集中，连

接键的取值范围要远远小于 TPC-H 数据集，因此在 GPU 算法中，α 取值较小

时即可获得良好的加速效果，本次实验中 α 取值 5。 
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Figure 12: Comparison of nested loop join with CPU on TPC-H data set

5.1.3. Comparison of Nested Loop Join with CPU on Synthetic Data Set

Based on the unobvious effect of the proposed algorithm on the TPC-H data
set, the synthetic data set is made for another experiment. In the synthetic data
set, the number of tuples corresponding to each join key is more than that of
the TPC-H data set. To ensure the reliability of the experimental results, the
distribution of join keys has been modified on the basis of the experimental
data set shown in Figure 12. Specifically, dividing the join key by a positive
integer, the number of tuples corresponding to each join key increases. As can
be seen from Figure 13, in the synthetic dataset, compared to the CPU, using
the GPU can get nearly 2 times the speedup. Through Figure 16 and Figure 12,
the proposed method can be applied to larger data sets than traditional GPU
algorithms. Because the join key value range in the synthetic data set is much
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smaller than that in the TPC-H dataset, when the value of α is small, a good
speedup can be obtained. Therefore, α is 5 in this experiment.
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5.2.4 α 取值对嵌套循环连接算法执行效率的影响 

 算法 5 中 α 取值会影响到算法整体的并行数，为弄清 α 取值对算法的性能

影响，我们通过改变 α 的值，来观测算法的执行时间。本次实验采用 TPC-H 数

据集，数据集大小分别为 1.75GB 以及 1.2GB。实验结果如图 5-4 所示，当 α 取

值较小时，随着 α 增加，算法的执行时间逐渐减少；当 α 增大到一定程度时，

随着 α 取值的增大，算法的执行时间也随之而增加。之所以会出现这样的现象  
 

 

图 5-3 人工合成数据集上与 CPU 处理嵌套循环连接对比 

 
是因为，当 α 取值较小时，reducer 的个数较多，从而导致算法整体的线程个数

超出了 GPU 设备的总线程数。部分任务需要等待其它任务完成之后，才能分配

到空闲线程执行任务。等待的时间加上线程多次创建所引入的额外开销，使得

当 α 取值较少时，算法的执行时间较高。当 α 值增加到一定程度时，算法的总

线程个数小于 GPU 设备总线程数时，随着 α 的不断增加，reducer 个数减少，

从而导致算法总线程数降低，每个线程处理的数据量增加，因此算法执行时间

会随着 α 增加而增加。从图 5-4 可以看出，在本次实验所采用的数据集上，α

取值在 100 至 250 之间时，算法会获得较为理想的执行效果。 

5.3 哈希连接 

 本小节主要介绍加速哈希连接算法的实验。通过与单一 GPU 上实现哈希连
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Figure 13: Comparison of nested loop join with CPU on synthetic data set

5.1.4. Effect of α on the Execution Efficiency of Nested Loop Join

In the algorithm refprefilteringalgo, the value of α will affect the parallel
number of the algorithm. To clarify the influence of α on the performance of
the algorithm, we can observe the execution time of the algorithm by changing
the value of α. This experiment uses a TPC-H data set, the data set size is
1.75GB and 1.2GB. The experimental results are shown in Figure 14. When α
is small, with the increase of α, the execution time of the algorithm decreases
gradually. When α increases to a certain extent, with the increase of α value,
time also increases.

哈尔滨工业大学工学硕士学位论文 

 - 43 - 

接算法以及 CPU 实现进行对比实验，观测实验结果。同时也在人工合成的数据

集上，观测本文所ᨀ出方法的执行效率以及加速效果。并在最后，通过改变 α

值，观测 α 取值对本文所ᨀ出的加速哈希连接操作算法的影响。若无特殊说明，

本小节实验 α 取值均为 10000。 

5.3.1 与单一 GPU 下哈希连接对比实验 

 图 5-5 所示为本文所ᨀ出的处理哈希连接算法与传统的基于 GPU 上的哈希

连接算法对比实验结果。从图中可以看出，当数据集较小时，本文所ᨀ出的方

法相比于传统的 GPU 算法，效率更低。当数据集增大时，本文所ᨀ出的方法效

果要优于传统的 GPU 算法。本次实验结果显示，本文所ᨀ出的方法能取得 1
倍的加速效果。 

 
图 5-4 α 取值对嵌套循环连接执行时间影响 

 

   图 5-5 与单一 GPU 下哈希连接对比 
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Figure 14: Effect of α on the execution efficiency of nested loop join

When the value of α is small, the number of Reducers is larger, resulting in
the total number of threads of the algorithm beyond the total number of GPU
devices. Some tasks need to wait for the other tasks to be completed before
they can be assigned to the free thread to perform the task. The waiting time
plus the overhead of creating multiple threads make the execution time of the
algorithm higher when the value of α is less. When the value of α is large enough
that the number of total threads of the algorithm is smaller than that of the
total number of GPU devices, with the increase of α, the number of Reducer
decreases. It leads to the decrease of the total number of threads, the increase
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of data amount processed by each thread, so the algorithm execution time will
increase with the increase of α. It can be seen from Figure 14 that the algorithm
will obtain the ideal execution effect when the value of α is between 100 and
250.

5.2. Hash Join

This section focuses on the experiment of accelerating the hash join algo-
rithm. The experimental results are observed by comparing the hash algorithm
with the single GPU and the CPU implementation. And in the synthetic data
set, the efficiency and the speedup of the proposed method can be observed.
Additionally, by changing the α value, this section observes the influence of α
on the algorithm. If there is no special instruction, α value is 10000.

5.2.1. Comparison of Hash Join with Single GPU

In this experiment, the value of α is 10000, which is much larger than the
α when dealing with nested loop join. This is because the hash join calcula-
tion task is much smaller than the nested loop join, so larger amounts of data
processed in each Reducer can give full play to the advantages of GPU.

As can be seen from the Figure 15, when the data set is small, the pro-
posed method has lower efficiency, compared to the traditional GPU algorithm.
When the data set size is good enough, the proposed method is better than the
traditional GPU algorithm. The experimental results show that the proposed
method can achieve 2 times the speedup over traditional one, which means under
the same accelerating condition of GPU, the proposed method is more efficient.
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接算法以及 CPU 实现进行对比实验，观测实验结果。同时也在人工合成的数据

集上，观测本文所ᨀ出方法的执行效率以及加速效果。并在最后，通过改变 α

值，观测 α 取值对本文所ᨀ出的加速哈希连接操作算法的影响。若无特殊说明，

本小节实验 α 取值均为 10000。 

5.3.1 与单一 GPU 下哈希连接对比实验 

 图 5-5 所示为本文所ᨀ出的处理哈希连接算法与传统的基于 GPU 上的哈希

连接算法对比实验结果。从图中可以看出，当数据集较小时，本文所ᨀ出的方

法相比于传统的 GPU 算法，效率更低。当数据集增大时，本文所ᨀ出的方法效

果要优于传统的 GPU 算法。本次实验结果显示，本文所ᨀ出的方法能取得 1
倍的加速效果。 

 
图 5-4 α 取值对嵌套循环连接执行时间影响 
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Figure 15: Comparison of hash join with single GPU

5.2.2. Comparison of Hash Join with CPU on TPC-H Data Set

When the data set is small, most of the time is used to process the data
pre-filter. When the data pre-filter takes longer than the time it reduces on
the actual join operation, the total time will increase. While as the data set
continues to increase, the method proposed in this paper will achieve better
results, because the data pre-filter is less time-consuming. By comparing with
Figure 16, it is found that traditional GPU processing algorithms can handle
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larger amounts of data when handling hash joins. This is because when the
data set is large, the hash join algorithm performance is much higher than the
nested loop join, so it can handle more data sets.
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不会出现在最终结果中的数据过滤掉，实际执行连接操作的数据远远小于原始

数据集。经过预过滤后，实际处理连接操作的时间大大降低，但预过滤过程同

样引入了额外的时间开销。因此，当数据集比较小时，预过滤所带来的增益效  

 

图 5-1 与单一 GPU 下嵌套循环连接对比 

 

果低于其所带来的额外开销，此时本文ᨀ出的方法执行时间较长；随着数据集

尺寸的增加，当预过滤带来的增益效果超过其所带来的开销时，本文所ᨀ出的

方法执行时间明显低于传统方法。本次实验是基于小数据集上进行，是因为嵌

套循环连接的代价十分庞大，传统的 GPU 加速方法并不能够有效地支持大数据

集，因此本次实验选择小数据集进行。 

5.2.2 TPC-H 数据集上与 CPU 处理嵌套循环连接对比实验 

 图 5-2 所示为 TPC-H 数据集下本文所ᨀ出的加速嵌套循环连接算法 GPU

版本与 CPU 版本对比实验结果。GPU 版本中，算法 5 中 α 取值为 100，而 CPU

版本中 α 取值为 1，从而保证了 CPU 版本的执行效率最佳，使得对比实验结果

更加公正。除 α 取值不同以外，GPU 版本与 CPU 版本的执行流程完全一样，

仅仅是执行实际连接操作的设备不同，保证了本次实验结果的可靠性。从图 5-2

可以看出，相比于 CPU 实现，用 GPU 实现本文所ᨀ出的嵌套循环连接算法并

无明显的加速效果。这是因为本文所ᨀ出的算法的 CPU 版本中，在第二轮任务

的 reduce 阶段，只有具有相同连接键值的元组才会传递到相同的 reducer 中。

而本次实验采用的是 TPC-H 数据集，连接键的分布较为均匀，每个连接键值仅
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Figure 16: Comparison of hash join with CPU on TPC-H data set

5.2.3. Comparison of Hash Join with CPU on Synthetic Data Set

Data is synthesized in the same way as nested loops. As shown in Figure 17,
in the synthetic data, the proposed GPU algorithm is better than its CPU
version, with 1.3 times speedup. Hash join speedup is not good as nested loop
join, because the nested loop join spends more time in the actual join processing,
so it can be optimized in the proportion of large.
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5.3.3 人工合成数据集上与 CPU 处理哈希连接对比实验 

我们同样在人工合成的数据集上对哈希连接算法进行了实验。数据合成的

方式与嵌套循环连接中相同。如图 5-7 所示，在人工合成的数据上，本文所ᨀ

出的 GPU 算法优于其 CPU 版本，加速效果在 0.3 倍左右。哈希连接的加速效

果不如嵌套循环连接，是因为嵌套循环连接中实际连接操作处理时间占比较大，

可优化的比例大，因此加速效果明显。 

 
图 5-7 人工合成数据集上与 CPU 处理哈希连接对比 

5.3.4 α 取值对哈希连接算法执行效率的影响 

 为研究 α 取值变化对本文所ᨀ出的哈希连接算法执行效果的影响，我们同

样进行了实验，通过改变 α 取值，观测实验结果。图 5-8 所示为，当 α 取值变

化时，本文所ᨀ出的哈希连接算法执行时间的变化情况。由图 5-8 可以看出当

α 取值较小时，随着 α 变大，算法的执行时间明显减少。这与嵌套循环连接中

原因相同，当 α 取值过小时，算法总线程个数超过了 GPU 设备的线程总数，

因此执行时间较长。由于哈希连接的计算任务远远小于嵌套循环连接，因此当

α 值继续增加时，虽然每个 reducer 中处理数据量增加，但是总体执行时间并没

有显著增加。若 α 值继续增加，当增加到某种程度时，算法的总体执行时间依

然会随之而增加。本次实验采用 TPC-H 数据集，数据集大小分别为 1.75GB 以

及 1.2GB。 

5.3 非等值连接 

 前两节对等值连接操作进行了实验，本小节对非等值连接进行对比实验。
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Figure 17: Comparison of hash join with CPU on synthetic data set

5.2.4. Effect of α on Execution Efficiency of Hash Join

This experiment uses TPC-H data set, the data set size is 1.75GB and 1.2GB.
Similarly, α is changed in the experiment to observe its effect on algorithm
performance. Figure 18 shows the change in the execution time of the hash join
algorithm proposed in this paper when the value of α changes. When α is small,
the execution time of the algorithm decreases obviously as α becomes larger.
When the value of α is too small, the total number of threads of the algorithm
exceeds the total number of threads of the GPU device, so the execution time
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is longer. Since the computational task of the hash join is much smaller than
the nested loop join, the overall execution time does not increase significantly
when the α value continues to increase, although the amount of data processed
in each Reducer increases. If the value of α continues to increase to a certain
extent, the algorithm’s overall execution time will continue to increase.
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基于目前尚没有关于 GPU 加速非等值连接的成果，因此我们选择与 CPU 进行

对比。 

 

图 5-8 α 取值对哈希连接执行时间影响 

 与等值连接不同的是，非等值连接的选择率要很高，因此非等值连接结果

的尺寸要大于输入数据数个数量级，本次实验基于小数据集上进行。实验结果

如图 5-9 所示，从图中可以看出，本文所ᨀ出的 GPU 上的基于 Hadoop 的非等

值连接算法执行效果要优于其 CPU 版本，加速效果大约在 1 倍左右。为了保证 

 

图 5-9 输出结果的非等值连接实验 

实验结果公正性，CPU 版本与 GPU 版本的算法实现细节完全按照算法 7 所述。 

 我们同样在较大数据集上进行了实验。由于当数据集较大时，连接结果超

出了内存容量，因此我们不对连接结果进行存储。实验结果如图 5-10 所示，当
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Figure 18: Effect of α on the execution efficiency of hash join

5.3. Theta Join

This section compares the theta joins. Because there is no available mature
GPU accelerating theta join, this experiment compares with the CPU. This
experiment is based on a small dataset. In order to ensure the validity of
the experimental results, implementation details are exactly as described in
Algorithm 3

In contrast to the equi join, the theta join has a high selectivity, so the size of
the theta join results is larger than the magnitude of input data. The results of
the experiment are shown in Figure 19. It can be seen from the figure that the
Hadoop-based theta join algorithm on the GPU is better than its CPU version,
and the speedup is about twice as much as the latter, which means under the
same accelerating condition of GPU, the proposed method is more efficient.
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Figure 19: Comparison of theta join on small data set

We also experimented on larger datasets. Since the join results are out of
memory when the data set is large, we do not store the results. As shown in
Figure 20, when the data set is large, GPU implementation is still better than
the CPU implementation.
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数据集较大时，GPU 实现依然优于 CPU 实现。 

  
图 5-10 不输出结果的非等值连接实验 

5.4 本章小结 

 本章节对本文所ᨀ出的嵌套循环连接、哈希连接以及非等值连接进行了对

比实验。通过与现有 GPU 加速成果对比，本文ᨀ出的嵌套循环连接以及哈希连

接方法在处理效率以及可扩展性上均有明显的改进。同时，在与 CPU 算法进行

对比实验时，发现本文所ᨀ出的处理等值连接方法在 TPC-H 数据集上并没有取

得明显的加速效果，但在人工合成的数据集上，取得了明显的加速效果，加速

效果在 0.5 倍到 1 倍之间。本章节同样对算法 5 中 α 取值对执行效果的影响进

行了实验，发现当 α 过小或者过大时，均会降低算法性能。最后，我们对非等

值连接进行了对比实验，得出结论 GPU 处理非等值连接相比于 CPU 处理加速

1 倍左右。 
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Figure 20: Comparison of theta join on small data set

6. Conclusion

This paper focuses on Hadoop-based join operation acceleration tasks on im-
age processors (GPUs). GPU was originally developed as an image processing,
and nowadays, more and more GPU applications appear in general comput-
ing tasks, such as machine learning, data mining and other fields. Based on the
GPU’s powerful computing power and high parallelism, there is a lot of research
focused on using it to speed up database operations. In the field of the modern
database, the join operation as a computationally intensive task is the main
problem.

In research results of existing GPU accelerating join operations, although the
use of its strong parallelism significantly increases the efficiency of join execution,
it is not good because of the limited storage resources of the GPU device and
the limited functionality of the universal programming language CUDA. The
existing research results are based on smaller data sets, and therefore can not
be applied to the practical application on a large scale.

Based on this idea, the distributed computing platform Hadoop is combined
with the GPU, by referring to the idea of a CPU filtering join algorithm. By
initially filtering the raw data table through the first round of the Map-Reduce
task at the CPU, it will filter the tuple that does not appear in the results, and
only send the connectable tuples to the GPU device for actual join operations.
By reducing the amount of data actually processed, it is possible to reduce the
utilization of the storage space on the device while improving the efficiency of
the algorithm execution so that it can handle a larger amount of data. At the
same time, it is possible to estimate the number of join results more accurately
without introducing additional overhead, to allocate accurate storage in advance
and reduce the storage space occupancy rate. In addition to the equi join, this
article is the first to use the GPU to accelerate the theta join operation, which
still uses the combination of Hadoop and GPU.

The followings are the conclusions:

• The proposed algorithm is more efficient than the existing single GPU de-
vice, and it can be applied to the larger dataset. Compared with the CPU
implementation, the GPU algorithm proposed in this paper has no obvious

23



speedup on the dataset with fewer key numbers and fewer tuples corre-
sponding to each join key. However, the algorithm proposed in this paper
can achieve 2 times the speedup on a dataset with more corresponding
tuples.

• The accelerating hash join algorithm proposed in this paper can achieve
2 times the speedup, compared with the existing GPU acceleration hash
join. Similarly, the GPU implementation of the algorithm proposed in
this paper has no obvious speedup compared to the CPU implementation,
when the number of connected keys is large, but each join key value cor-
responds to a few tuples. When the number of corresponding tuples is big
enough, GPU implementation can get 1.3 times the speedup.

• In this paper, the theta join processing algorithm, compared to the CPU
implementation, GPU implementation can get 2 times the speedup.

Compared with the existing research results, the research content of this paper
has achieved the following innovative achievements:

• This article is the first to use the filter join algorithm on the GPU to
deal with the equi join operation. One round of Map-Reduce filters out
non-connectable tuples and sends only connectable tuples to the GPU
device. By reducing the processing time of the actual join operation and
the occupancy rate of the device memory, it can handle more data.

• The proposed method can accurately estimate the size of the equi join
result without introducing additional overhead, and allocate the appro-
priate storage space for the result, making the GPU storage space more
efficient, more suitable for large-scale data sets.

• Among the existing GPU accelerating equi join operation, this article is
the first to have an experiment on a larger data set (GB level).

• This article is the first to use GPU to accelerate theta join operations.

Although there are a lot of research results on GPU accelerating join, these
results are not enough to be applied to the commercial database system. So
the future work should continue to conduct in-depth research, including the
following:

• The future work should use multiple GPU devices to deal with large
datasets on the join operation, in a distributed architecture. Although in
this article Hadoop and GPU were combined, because of limited resources,
the experiment is not completed in the real large data set. Future research
should deal with TB-level datasets on multiple GPU devices.

• This paper only implements the join operation of two tables. Future re-
search work should include more complicated join operations, such as ac-
celerating multi-table join and similarity join.
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28

http://search.ieice.org/bin/summary.php?id=e99-d_5_1316
http://search.ieice.org/bin/summary.php?id=e99-d_5_1316
http://search.ieice.org/bin/summary.php?id=e99-d_5_1316
https://doi.org/10.1016/j.procs.2014.05.014
https://doi.org/10.1016/j.procs.2014.05.014
http://dx.doi.org/10.1016/j.procs.2014.05.014
https://doi.org/10.1016/j.procs.2014.05.014
http://ceur-ws.org/Vol-1378/AMW_2015_paper_13.pdf
http://ceur-ws.org/Vol-1378/AMW_2015_paper_13.pdf
http://ceur-ws.org/Vol-1378/AMW_2015_paper_13.pdf
http://arxiv.org/abs/1512.03921
http://arxiv.org/abs/1512.03921
http://arxiv.org/abs/1512.03921
http://arxiv.org/abs/1512.03921
http://sites.computer.org/debull/A12mar/apollo.pdf
http://sites.computer.org/debull/A12mar/apollo.pdf
http://ceur-ws.org/Vol-1133/paper-02.pdf
http://ceur-ws.org/Vol-1133/paper-02.pdf
http://ceur-ws.org/Vol-1133/paper-02.pdf
http://doi.acm.org/10.1145/1989323.1989423
http://dx.doi.org/10.1145/1989323.1989423
http://doi.acm.org/10.1145/1989323.1989423
https://doi.org/10.1007/978-3-319-34099-9_15
https://doi.org/10.1007/978-3-319-34099-9_15


31 - June 3, 2016, Proceedings, Vol. 613 of Communications in Com-
puter and Information Science, Springer, 2016, pp. 204–215. doi:10.1007/
978-3-319-34099-9_15.
URL https://doi.org/10.1007/978-3-319-34099-9_15

[32] K. Yan, H. Zhu, Two mrjs for multi-way theta-join in mapreduce, in:
M. Pathan, G. Wei, G. Fortino (Eds.), Internet and Distributed Computing
Systems - 6th International Conference, IDCS 2013, Hangzhou, China, Oc-
tober 28-30, 2013, Proceedings, Vol. 8223 of Lecture Notes in Computer Sci-
ence, Springer, 2013, pp. 321–332. doi:10.1007/978-3-642-41428-2_26.
URL https://doi.org/10.1007/978-3-642-41428-2_26

[33] X. Zhang, L. Chen, M. Wang, Efficient multi-way theta-join processing
using mapreduce, PVLDB 5 (11) (2012) 1184–1195.
URL http://vldb.org/pvldb/vol5/p1184_xiaofeizhang_vldb2012.

pdf

[34] C. Zhang, J. Li, L. Wu, M. Lin, W. Liu, SEJ: an even approach to multi-
way theta-joins using mapreduce, in: J. Liu, J. Chen, G. Xu (Eds.), 2012
Second International Conference on Cloud and Green Computing, CGC
2012, Xiangtan, Hunan, China, November 1-3, 2012, IEEE, 2012, pp. 73–
80. doi:10.1109/CGC.2012.9.
URL https://doi.org/10.1109/CGC.2012.9

[35] C. Zhang, J. Li, L. Wu, M. Lin, W. Liu, SEJ: an even approach to multi-
way theta-joins using mapreduce, in: J. Liu, J. Chen, G. Xu (Eds.), 2012
Second International Conference on Cloud and Green Computing, CGC
2012, Xiangtan, Hunan, China, November 1-3, 2012, IEEE, 2012, pp. 73–
80. doi:10.1109/CGC.2012.9.
URL https://doi.org/10.1109/CGC.2012.9

[36] D. R. Augustyn, L. Warchal, Gpu-accelerated method of query selectiv-
ity estimation for non equi-join conditions based on discrete fourier trans-
form, in: N. Bassiliades, M. Ivanovic, M. Kon-Popovska, Y. Manolopoulos,
T. Palpanas, G. Trajcevski, A. Vakali (Eds.), New Trends in Database and
Information Systems II - Selected papers of the 18th East European Confer-
ence on Advances in Databases and Information Systems and Associated
Satellite Events, ADBIS 2014 Ohrid, Macedonia, September 7-10, 2014
Proceedings II, Vol. 312 of Advances in Intelligent Systems and Comput-
ing, Springer, 2014, pp. 215–227. doi:10.1007/978-3-319-10518-5_17.
URL https://doi.org/10.1007/978-3-319-10518-5_17

29

http://dx.doi.org/10.1007/978-3-319-34099-9_15
http://dx.doi.org/10.1007/978-3-319-34099-9_15
https://doi.org/10.1007/978-3-319-34099-9_15
https://doi.org/10.1007/978-3-642-41428-2_26
http://dx.doi.org/10.1007/978-3-642-41428-2_26
https://doi.org/10.1007/978-3-642-41428-2_26
http://vldb.org/pvldb/vol5/p1184_xiaofeizhang_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1184_xiaofeizhang_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1184_xiaofeizhang_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1184_xiaofeizhang_vldb2012.pdf
https://doi.org/10.1109/CGC.2012.9
https://doi.org/10.1109/CGC.2012.9
http://dx.doi.org/10.1109/CGC.2012.9
https://doi.org/10.1109/CGC.2012.9
https://doi.org/10.1109/CGC.2012.9
https://doi.org/10.1109/CGC.2012.9
http://dx.doi.org/10.1109/CGC.2012.9
https://doi.org/10.1109/CGC.2012.9
https://doi.org/10.1007/978-3-319-10518-5_17
https://doi.org/10.1007/978-3-319-10518-5_17
https://doi.org/10.1007/978-3-319-10518-5_17
http://dx.doi.org/10.1007/978-3-319-10518-5_17
https://doi.org/10.1007/978-3-319-10518-5_17

	1 Introduction
	2 Preliminary
	2.1 GPU
	2.2 CUDA
	2.3 Join Operation
	2.4 Hadoop

	3 GPU-Based Equi Join with Hadoop
	3.1 Data Pre-filtering through Hadoop
	3.2 Data Preprocessing through Hadoop
	3.2.1 Mapping
	3.2.2 Row and Column Transformation

	3.3 GPU-Accelerated Equi Join Operation
	3.3.1 GPU-Based Nested Loop Join
	3.3.2 GPU-Based Hash Join
	3.3.3 Estimation of Join Results Size
	3.3.4 Thread Hierarchy

	3.4 Mixed Programming of GPU and Hadoop

	4 GPU-Based Theta Join with Hadoop
	4.1 Classic Theta Join Algorithm on Hadoop
	4.2 Improved Theta Join Algorithm on Hadoop and GPU

	5 Experimental Results
	5.1 Nested Loop Join
	5.1.1 Comparison of Nested Loop Join with Single GPU
	5.1.2 Comparison of Nested Loop Join with CPU on TPC-H Data Set
	5.1.3 Comparison of Nested Loop Join with CPU on Synthetic Data Set
	5.1.4 Effect of  on the Execution Efficiency of Nested Loop Join

	5.2 Hash Join
	5.2.1 Comparison of Hash Join with Single GPU
	5.2.2 Comparison of Hash Join with CPU on TPC-H Data Set
	5.2.3 Comparison of Hash Join with CPU on Synthetic Data Set
	5.2.4 Effect of  on Execution Efficiency of Hash Join

	5.3 Theta Join

	6 Conclusion
	7 References

