Skip to main content
Log in

Designing nanotechnology QCA–multiplexer using majority function-based NAND for quantum computing

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCAs) are one of the most significant state-of-the-art technologies that have exhibited the potential to replace the complementary metal oxide semiconductor. QCA offers a variety of benefits over its conventional counterpart, including size, latency, and energy consumption. Meanwhile, multiplexers are crucial to the design of arithmetic and logic circuits, and NOT-AND (NAND) gates are universal gates that allow the design of any circuit. In this paper, we propose a new multiplexer based on three NAND gates in QCA. De Morgan's law is used to derive new equations and to design multiplexers using only NAND logics. The proposed circuit is designed and verified not only to minimize time and space complexity but also to minimize energy loss. Finally, we design an arithmetic circuit that is capable of performing various operations using the proposed multiplexer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Roy A, Chatterjee D, Pal S (2012) Synthesis of quantum multiplexer circuits. Int J Sci 9:67–74

    Google Scholar 

  2. Jeon JC (2016) Low hardware complexity QCA decoding architecture using inverter chain. Int J Control Autom 9:347–358

    Article  Google Scholar 

  3. Rakotonirainy A, Obst P, Loke SW (2012) Socially aware computing constructs. Int J Soc Humanist Comput 1:375–395

    Article  Google Scholar 

  4. Kim KW, Jeon JC (2015) A semi-systolic Montgomery multiplier over GF (2m). IEICE Electron Express 12:1–6

    Google Scholar 

  5. Rahimi E, Nejad SM (2012) Scalable minority gate: a new device in two-dot molecular quantum-dot cellular automata. IET Micro Nano Lett 7:802–805

    Article  Google Scholar 

  6. Kummamuru RK, Orlov AO, Ramasubramaniam R, Lent CS, Bernstein GH, Snider GL (2003) Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Trans Electron Devices 50:1906–1913

    Article  Google Scholar 

  7. Jeon JC (2015) Extendable quantum-dot cellular automata decoding architecture using 5-input majority gate. Int J Control Autom 8:107–118

    Article  Google Scholar 

  8. Orlov AO, Amlani I, Bernstein GH, Lent CS, Snider GL (1997) Realization of a functional cell for quantum-dot cellular automata. Science 277:928–930

    Article  Google Scholar 

  9. Thapliyal H, Ranganathan N (2010) Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans Nanotechnol 9:62–69

    Article  Google Scholar 

  10. Erniyazov S, Jeon JC (2019) Carry save adder and carry look ahead adder using inverter chain based coplanar QCA full adder for low energy dissipation. Microelectron Eng 211:37–43

    Article  Google Scholar 

  11. Jeon JC (2019) Low complexity QCA universal shift register design using multiplexer and D flip-flop based on electronic correlations. J Supercomput. https://doi.org/10.1007/s11227-019-02962-y

    Article  Google Scholar 

  12. Rajmohan V, Renganathan V, Rajomohan M (2011) A novel reversible design of unified single digit BCD adder–subtractor. Int J Comput Theory Eng 3:697–700

    Article  Google Scholar 

  13. Kim K, Wu K, Karri R (2007) The robust adder designs using composable QCA building blocks. IEEE Trans Comput 26:176–183

    Article  Google Scholar 

  14. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75:1818–1825

    Article  Google Scholar 

  15. Lee JS, Jeon JC (2016) Design of low hardware complexity multiplexer using NAND gates on quantum-dot cellular automata. Int J Multimed Ubiquitous Eng 11:307–318

    Article  Google Scholar 

  16. Udhayakumar C, Niranjana MI, Gowrimanohari R, Kumar EA (2014) Design of various logic gates and multiplexer in QCA. Int J Adv Eng Res Technol 2:265–269

    Google Scholar 

  17. Lee JS, Jeon JC (2016) NAND gate based QCA 2-to-1 line multiplexer. Asia Pac Proc Appl Sci Eng Better Hum Life 6:45–48

    Article  Google Scholar 

  18. Safoev N, Jeon JC (2016) Low area complexity demultiplexer based on multilayer quantum-dot cellular automata. Int J Control Autom 9:165–178

    Article  Google Scholar 

  19. Mardiris VA, Karafyllidis IG (2010) Design and simulation of modular 2 to 1 quantum-dot cellular automata (QCA) multiplexers. Int J Circuit Theory Appl 38:771–785

    MATH  Google Scholar 

  20. Mukhopadhyay D, Dinda S, Dutta P (2011) Designing and implementation of quantum cellular automata 2:1 multiplexer circuit. Int J Comput Appl Technol 25:21–24

    Google Scholar 

  21. Hashemi S, Navi K (2012) New robust QCA D flip flop and memory structures. Microelectron J 43:929–940

    Article  Google Scholar 

  22. Roohi A, Khademolhosseini H, Sayedsalehi S, Navi K (2011) A novel architecture for quantum-dot cellular automata multiplexer. Int J Comput Sci 8:55–60

    Google Scholar 

  23. Sen B, Goswami M, Mazumdar S, Sikdar BK (2015) Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput Electr Eng 45:42–54

    Article  Google Scholar 

  24. Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3:26–31

    Article  Google Scholar 

  25. Safoev N, Jeon JC (2020) Design of high-performance QCA incrementer/decrementer circuit based on adder/subtractor methodology. Microprocess Microsyst 72:102927

    Article  Google Scholar 

  26. Safoev N, Jeon JC (2020) A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectron Eng 222:111197

    Article  Google Scholar 

  27. Makanda K, Jeon JC (2013) Improvement of quantum-dot cellular automata decoder using inverter chain. Adv Sci Technol Lett 29:227–229

    Google Scholar 

  28. You YW, Jeon JC (2017) Two dimensional QCA XOR logic using NNI gate. Int J Control Autom 10:217–226

    Article  Google Scholar 

  29. Srivastava S, Asthana A, Bhanja S, Sarkar S (2011) QCAPro-an error power estimation tool for QCA circuit design. In: IEEE International Symposium Circuits System, pp 2377–2380

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF2017R1D1A3B03034346).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Cheol Jeon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, JC. Designing nanotechnology QCA–multiplexer using majority function-based NAND for quantum computing. J Supercomput 77, 1562–1578 (2021). https://doi.org/10.1007/s11227-020-03341-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03341-8

Keywords

Navigation