Skip to main content

Advertisement

Log in

Two-phase node deployment for target coverage in rechargeable WSNs using genetic algorithm and integer linear programming

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Node deployment is a matter of considerable concern in designing wireless sensor networks (WSNs). This paper studies this issue in the context of rechargeable WSNs (RWSNs). We propose an efficient algorithm, namely node deployment for target coverage in RWSNs (NDTCR), which determines the number and positions of installed sensors in two phases. The first phase applies genetic algorithm to construct a mesh over a subset of positions. The mentioned mesh covers the targets and connects them to the sink. In the second phase of NDTCR, we propose an integer linear programming (ILP) model to install some sensors at each position of the mesh. The advantage of applying the first phase is that it prunes the solution space considerably. Therefore, the proposed ILP model can be solved in a reasonable time. The experimental results demonstrate that NDTCR requires 29% fewer sensors on average in comparison with the previous approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yick J, Mukherjee B, Ghosal D (2008) Wireless sensor network survey. Comput Netw 52(12):2292–2330. https://doi.org/10.1016/j.comnet.2008.04.002

    Article  Google Scholar 

  2. Sah DK, Amgoth T (2020) Renewable energy harvesting schemes in wireless sensor networks: a Survey. Inform Fusion 63:223–247. https://doi.org/10.1016/j.inffus.2020.07.005

    Article  Google Scholar 

  3. Wu Y, Liu W, Shen O (2017) Joint optimal placement, routing, and energy allocation in wireless sensor networks with a shared energy harvesting module. Int J Distrib Sens N. https://doi.org/10.1177/1550147717709440

    Article  Google Scholar 

  4. Sengupta S, Das S, Nasir MD, Panigrahi BK (2013) Multi-objective node deployment in WSNs: in search of an optimal trade-off among coverage, lifetime, energy consumption, and connectivity. Eng Appl Artif Intel 26:405–416. https://doi.org/10.1016/j.engappai.2012.05.018

    Article  Google Scholar 

  5. Benatia MA, Sahnoun M, Baudry D, Louis A, El-Hami A, Mazari B (2017) Multi-objective WSN deployment using genetic algorithms under cost, coverage, and connectivity constraints. Wirel Pers Commun 94(4):2739–2768. https://doi.org/10.1007/s11277-017-3974-0

    Article  Google Scholar 

  6. Zhang Y-H, Gong Y-J, Gu T-L, Li Y, Zhang J (2017) Flexible genetic algorithm: a simple and generic approach to node placement problems. Appl Soft Comput 52:457–470. https://doi.org/10.1016/j.asoc.2016.10.022

    Article  Google Scholar 

  7. Li Q, Liu N (2020) Monitoring area coverage optimization algorithm based on nodes perceptual mathematical model in wireless sensor networks. Comput Commun 155:227–234. https://doi.org/10.1016/j.comcom.2019.12.040

    Article  Google Scholar 

  8. Yang C, Chin K-W (2017) On nodes placement in energy harvesting wireless sensor networks for coverage and connectivity. IEEE Trans Ind Inform 13(1):27–36. https://doi.org/10.1109/TII.2016.2603845

    Article  Google Scholar 

  9. Li Y, Chen Y, Chen CS, Wang Z, Zhu Y-H (2019) Simultaneous sensor placement and scheduling for fusion-based detection in RF-powered sensor networks. IEEE Internet Things J 6(3):5595–5606. https://doi.org/10.1109/JIOT.2019.2903847

    Article  Google Scholar 

  10. Zhu X, Li J, Zhou M, Chen X (2019) Optimal deployment of energy-harvesting directional sensor networks for target coverage. IEEE Syst J 13(1):377–388. https://doi.org/10.1109/JSYST.2018.2820085

    Article  Google Scholar 

  11. Liu Y, Chin K-W, Yang C, He T (2019) Nodes deployment for coverage in rechargeable wireless sensor networks. IEEE Trans Veh Technol 68(6):6064–6073. https://doi.org/10.1109/TVT.2019.2912188

    Article  Google Scholar 

  12. Mini S, Udgata SK, Sabat SL (2014) Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sens J 14(3):636–644. https://doi.org/10.1109/JSEN.2013.2286332

    Article  Google Scholar 

  13. Gupta SK, Kuila P, Jana PK (2016) Genetic algorithm approach for k-coverage and m-connected node placement in target based wireless sensor networks. Comput Electr Eng 56:544–556. https://doi.org/10.1016/j.compeleceng.2015.11.009

    Article  Google Scholar 

  14. Yarinezhad R, Hashemi SN (2020) A sensor deployment approach for target coverage problem in wireless sensor networks. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-02195-5

    Article  Google Scholar 

  15. Karatas M (2018) Optimal deployment of heterogeneous sensor networks for a hybrid point and barrier coverage application. Comput Netw 132:129–144. https://doi.org/10.1016/j.comnet.2018.01.001

    Article  Google Scholar 

  16. Priyadarshi R, Gupta B, Anurag A (2020) Deployment techniques in wireless sensor networks: a survey, classification, challenges, and future research issues. J Supercomput 76:7333–7373. https://doi.org/10.1007/s11227-020-03166-5

    Article  Google Scholar 

  17. Boukerche A, Sun P (2018) A novel hierarchical two-tier node deployment strategy for sustainable wireless sensor networks. IEEE Trans Sustain Comput 3(4):236–247. https://doi.org/10.1109/TSUSC.2018.2816465

    Article  Google Scholar 

  18. Mehajabin N, Razzaque MA, Hassan MM, Almogren A, Alamri A (2016) Energy-sustainable relay node deployment in wireless sensor networks. Comput Netw 104:108–121. https://doi.org/10.1016/j.comnet.2016.05.014

    Article  Google Scholar 

  19. Meng Y, Aimin W, Sun G, Zhang Y (2018) Deploying charging nodes in wireless rechargeable sensor networks based on improved firefly algorithm. Comput Electr Eng 72:719–731. https://doi.org/10.1016/j.compeleceng.2017.11.021

    Article  Google Scholar 

  20. He T, Chin K-W, Soh S (2018) On maximizing min flow rates in rechargeable wireless sensor networks. IEEE Trans Ind Inform 14(7):2962–2972. https://doi.org/10.1109/TII.2017.2771288

    Article  Google Scholar 

  21. Ding X, Wang Y, Sun G, Luo C, Li D, Chen W, Hu Q (2020) Optimal charger placement for wireless power transfer. Comput Netw 170:107123. https://doi.org/10.1016/j.comnet.2020.107123

    Article  Google Scholar 

  22. Yang F, Shu L, Huang K, Li K, Han G, Liu Y (2020) A partition-based node deployment strategy in solar insecticide lamp internet of things. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2020.2996514

    Article  Google Scholar 

  23. Lin C-C, Chen Y-C, Chen J-L, Deng D-J, Wang S-B, Jhong S-Y (2017) Lifetime enhancement of dynamic heterogeneous wireless sensor networks with energy-harvesting sensors. Mobile Netw Appl 22(5):931–942. https://doi.org/10.1007/s11036-017-0861-6

    Article  Google Scholar 

  24. DeWitt J, Shi H (2017) Barrier coverage in energy harvesting sensor networks. Ad Hoc Netw 56:72–83. https://doi.org/10.1016/j.adhoc.2016.11.014

    Article  Google Scholar 

  25. Yang C, Chin K-W, Liu Y, Zhang J, He T (2019) Robust targets coverage for energy harvesting wireless sensor networks. IEEE Trans Veh Technol 68(6):5884–5892. https://doi.org/10.1109/TVT.2019.2908584

    Article  Google Scholar 

  26. Li C, Chin K-W, Yang C (2020) Complete target coverage in radio frequency and solar-powered sensor networks. IEEE Syst J. https://doi.org/10.1109/JSYST.2020.2997300

    Article  Google Scholar 

  27. Lu T, Liu G, Li W, Chang S, Guo W (2017) Distributed sampling rate allocation for data quality maximization in rechargeable sensor networks. J Netw Comput Appl 80:1–9. https://doi.org/10.1016/j.jnca.2016.12.021

    Article  Google Scholar 

  28. Ashraf N, Hasan A, Khaliq Qureshi H, Lestas M (2019) Combined data rate and energy management in harvesting enabled tactile IoT sensing devices. IEEE Trans Ind Inform 15(5):3006–3015. https://doi.org/10.1109/TII.2019.2900795

    Article  Google Scholar 

  29. Lu T, Liu G, Chang S (2018) Energy-efficient data sensing and routing in unreliable energy-harvesting wireless sensor network. Wirel Netw 24(2):611–625. https://doi.org/10.1007/s11276-016-1360-6

    Article  Google Scholar 

  30. Li F, Xiong M, Wang L, Peng H, Hua J, Liu X (2018) A novel energy-balanced routing algorithm in energy harvesting sensor networks. Phys Commun-AMST 27:181–187. https://doi.org/10.1016/j.phycom.2018.02.010

    Article  Google Scholar 

  31. Hu J, Luo J, Zheng Y, Li K (2019) Graphene-grid deployment in energy harvesting cooperative wireless sensor networks for green IoT. IEEE Trans Ind Inform 15(3):1820–1829. https://doi.org/10.1109/TII.2018.2871183

    Article  Google Scholar 

  32. Li S, Fu L, He S, Sun Y (2018) Near-optimal co-deployment of chargers and sink stations in rechargeable sensor networks. ACM Trans Embed Comput S. https://doi.org/10.1145/3070721

    Article  Google Scholar 

  33. Heinzelman WB, Chandrakasan AP, Balakrishnan H (2002) An application-specific protocol architecture for wireless microsensor networks. IEEE Trans Wirel Commun 1:660–670. https://doi.org/10.1109/TWC.2002.804190

    Article  Google Scholar 

  34. Tabibi S, Ghaffari A (2019) Energy-efficient routing mechanism for mobile sink in wireless sensor networks using particle swarm optimization algorithm. Wirel Pers Commun 104:199–216. https://doi.org/10.1007/s11277-018-6015-8

    Article  Google Scholar 

  35. Mosavvar I, Ghaffari A (2019) Data aggregation in wireless sensor networks using firefly algorithm. Wirel Pers Commun 104:307–324. https://doi.org/10.1007/s11277-018-6021-x

    Article  Google Scholar 

  36. Asorey-Cacheda R, Garcia-Sanchez A-J, Garcia-Sanchez F, Garcia-Haro J (2017) A survey on non-linear optimization problems in wireless sensor networks. J Netw Comput Appl 82:1–20

    Article  Google Scholar 

  37. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning, 1st edn. Addison-Wesley Professional, Boston. https://doi.org/10.1016/j.jnca.2017.01.001

    Book  MATH  Google Scholar 

  38. Nikokheslat HD, Ghaffari A (2017) Protocol for controlling congestion in wireless sensor networks. Wireless Pers Commun 95:3233–3251. https://doi.org/10.1007/s11277-017-3992-y

    Article  Google Scholar 

  39. Ghaffari A (2015) Congestion control mechanisms in wireless sensor networks: a survey. J Netw Comput Appl 52:101–115. https://doi.org/10.1016/j.jnca.2015.03.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leili Farzinvash.

Ethics declarations

Conflict of interest

Dear Editor, The authors declare that they have no competing financial, professional, or personal interests that might have influenced the work described in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zameni, M., Rezaei, A. & Farzinvash, L. Two-phase node deployment for target coverage in rechargeable WSNs using genetic algorithm and integer linear programming. J Supercomput 77, 4172–4200 (2021). https://doi.org/10.1007/s11227-020-03431-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03431-7

Keywords

Navigation