Skip to main content
Log in

Deep learning and case-based reasoning for predictive and adaptive traffic emergency management

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

An efficient traffic signal control system (TSCS) should not only be reactive to the current traffic but also be predictive by anticipating future traffic disturbances. In this study, we investigate the potential of using convolution neural network (CNN) in detecting emergency cases and forecasting events that can interrupt the traffic flow. Case-based reasoning (CBR) is then exploited to react to detected and forecasted events. We further develop an adapted Reinforcement Leaning (RL) algorithm in building and enhancing the case bases. The proposed system inherits the advantages of CNN, CBR, and RL, which allow detection, prediction, control, evaluation, and learning in a unified framework. To assess the proposed TSCS, we compare our approach with a set of state-of-art algorithms (e.g., multi-agent preemptive case-based reasoning algorithm and multi-agent preemptive longest queue first—maximal weight matching). The proposed TSCS outperforms the benchmarking algorithms through experiments in various traffic scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Araghi S, Khosravi A, Creighton D (2015) A review on computational intelligence methods for controlling traffic signal timing. Expert Syst Appl 42(3):1538–1550

    Article  Google Scholar 

  2. Louati A, Elkosantini S, Darmoul S, Louati H (2018) Multi-agent preemptive longest queue first system to manage the crossing of emergency vehicles at interrupted intersections. Eur Transp Res Rev 10(2):52. https://doi.org/10.1186/s12544-018-0317-5

    Article  MATH  Google Scholar 

  3. Qin X, Khan AM (2012) Control strategies of traffic signal timing transition for emergency vehicle preemption. Transp Res Part C Emerg Technol 25:1–17

    Article  Google Scholar 

  4. Westgate BS, Woodard DB, Matteson DS, Henderson SG (2013) Travel time estimation for ambulances using bayesian data augmentation 1. Ann Appl Stat 7(2):1139–1161

    Article  MathSciNet  Google Scholar 

  5. Houli D et al (2010) Multiobjective reinforcement learning for traffic signal control using vehicular ad hoc network. EURASIP J Adv Signal Process 2010(1):724035

    Article  Google Scholar 

  6. Huang Y-S, Shiue J-Y, Luo J (2015) A traffic signal control policy for emergency vehicles preemption using timed petri nets. IFAC-PapersOnLine 48(3):2183–2188

    Article  Google Scholar 

  7. Marcianò G, Musolino FA, Vitetta A (2014) Signal setting optimization on urban road transport networks: the case of emergency evacuation. Saf Sci 72:209–220

    Article  Google Scholar 

  8. Eichler M, Daganzo CF (2006) Bus lanes with intermittent priority: strategy formulae and an evaluation. Transp Res Part B Methodol 40(9):731–744

    Article  Google Scholar 

  9. Guler SI, Gayah VV, Menendez M (2016) Bus priority at signalized intersections with single-lane approaches: a novel pre-signal strategy. Transp Res Part C Emerg Technol 63:51–70

    Article  Google Scholar 

  10. Dogan E, Akgungor AP, Arslan T (2016) Estimation of delay and vehicle stops at signalized intersections using artificial neural network. Eng Rev 36(2):157–165

    Google Scholar 

  11. Raj J, Bahuleyan H, Vanajakshi LD (2016) Application of data mining techniques for traffic density estimation and prediction. Transp Res Procedia 17:321–330

    Article  Google Scholar 

  12. Kumar SV, Vanajakshi L (2015) Short-term traffic flow prediction using seasonal ARIMA model with limited input data. Eur Transp Res Rev 7(3):21

    Article  Google Scholar 

  13. Louati Ali (2020) A hybridization of deep learning techniques to predict and control traffic disturbances. Artif Intell Rev 53(8):5675–5704. https://doi.org/10.1007/s10462-020-09831-8

    Article  Google Scholar 

  14. Louati A, Louati H, Nusir M et al (2020) Multi-agent deep neural networks coupled with LQF-MWM algorithm for traffic control and emergency vehicles guidance. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-020-01921-3

    Article  Google Scholar 

  15. Silver D et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529(7587):484–489

    Article  Google Scholar 

  16. Hammami M, Bechikh S, Louati A et al (2020) Feature construction as a bi-level optimization problem. Neural Comput & Applic 32:13783–13804. https://doi.org/10.1007/s00521-020-04784-z

    Article  Google Scholar 

  17. Said R, Bechikh S, Louati A, Aldaej A, Said LB (2020) Solving Combinatorial Multi-Objective Bi-Level Optimization Problems Using Multiple Populations and Migration Schemes. In IEEE Access, vol 8, pp 141674–141695. https://doi.org/10.1109/ACCESS.2020.3013568.

  18. Liu H, Simonyan K, Vinyals O, Fernando C, Kavukcuoglu K (2017) Hierarchical representations for efficient architecture search. In: 6th International Conference on Learning Representation, ICLR 2018

  19. Darwish A, Hassanien AE, Das S (2020) A survey of swarm and evolutionary computing approaches for deep learning. Artif Intell Rev 53(3):1767–1812

    Article  Google Scholar 

  20. Zhao T, Nevatia R (2001) Car detection in low resolution aerial image. In: Proceedings eighth IEEE International Conference on Computer Vision, ICCV 2001, vol 1, pp 710–717

  21. Moranduzzo T, Melgani F (2014) Automatic car counting method for unmanned aerial vehicle images. IEEE Trans Geosci Remote Sens 52(3):1635–1647

    Article  Google Scholar 

  22. Moranduzzo T, Melgani F (2014) Detecting cars in uav images with a catalog-based approach. IEEE Trans Geosci Remote Sens 52(10):6356–6367

    Article  Google Scholar 

  23. Shao W, Yang W, Liu G, Liu J (2012) Car detection from high-resolution aerial imagery using multiple features. In: IEEE international geoscience and remote sensing symposium, pp 4379–4382

  24. Swietojanski P, Ghoshal A, Renals S (2014) Convolutional neural networks for distant speech recognition. IEEE Signal Process Lett 21(9):1120–1124

    Article  Google Scholar 

  25. Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113

    Article  Google Scholar 

  26. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst

  27. Wang P, Cao Y, Shen C, Liu L, Shen HT (2015) Temporal pyramid pooling based convolutional neural networks for action recognition. IEEE Trans Circuits Syst Video Technol 27(12):2613–2622

    Article  Google Scholar 

  28. Simard PY, Steinkraus D, Platt JC (2003) Best practices for convolutional neural networks applied to visual document analysis

  29. Pinheiro PHO, Collobert R (2014) Recurrent convolutional neural networks for scene labeling

  30. Jain A, Tompson J, Andriluka M, Taylor GW, Bregler C (2013) Learning human pose estimation features with convolutional networks

  31. Chen X, Xiang S, Liu C-L, Pan C-H (2014) Vehicle detection in satellite images by hybrid deep convolutional neural networks. IEEE Geosci Remote Sens Lett 11(10):1797–1801

    Article  Google Scholar 

  32. Vedaldi A, Gulshan V, Varma M, Zisserman A (2009) Multiple kernels for object detection. In: 2009 IEEE 12th International Conference on Computer Vision, 2009, pp 606–613

  33. Lampert CH, Blaschko MB, Hofmann T (2008) Beyond sliding windows: object localization by efficient subwindow search. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 1–8

  34. Wang X, Yang M, Zhu S, Lin Y (2015) Regionlets for generic object detection. IEEE Trans Pattern Anal Mach Intell 37(10):2071–2084

    Article  Google Scholar 

  35. Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39(6):1137–1149

    Article  Google Scholar 

  36. Nagy AM, Simon V (2018) Survey on traffic prediction in smart cities. Pervas Mob Comput 50:148–163

    Article  Google Scholar 

  37. de Gier J, Garoni TM, Rojas O (2010) Traffic flow on realistic road networks with adaptive traffic lights

  38. Huisken G, van Berkum EC (2003) A comparative analysis of short-range travel time prediction methods

  39. Yu H, Wu Z, Wang S, Wang Y, Ma X (2017) Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks

  40. Sun S, Zhang C, Zhang Y (2017) Traffic flow forecasting using a spatio-temporal Bayesian network predictor

  41. Li Y, Yu R, Shahabi C, Liu Y (2017) Graph convolutional recurrent neural network: data-driven traffic forecasting

  42. Zhang J, Zheng Y, Qi D, Li R, Yi X, Li T (2018) Predicting citywide crowd flows using deep spatio-temporal residual networks. Artif Intell 259:147–166

    Article  MathSciNet  Google Scholar 

  43. Pan R, Yang Q, Pan SJ (2007) Mining competent case bases for case-based reasoning. Artif Intell 171(16–17):1039–1068

    Article  MathSciNet  Google Scholar 

  44. Ros R, Arcos JL, Lopez de Mantaras R, Veloso M (2009) A case-based approach for coordinated action selection in robot soccer. Artif Intell 173(9–10):1014–1039

    Article  Google Scholar 

  45. Lu N, Lu J, Zhang G, Lopez de Mantaras R (2016) A concept drift-tolerant case-base editing technique. Artif Intell 230:108–133

    Article  MathSciNet  Google Scholar 

  46. Louati A, Elkosantini S, Darmoul S, Said LB (2019) An immune memory inspired case-based reasoning system to control interrupted flow at a signalized intersection. Artif Intell Rev 52(3):2099–2129. https://doi.org/10.1007/s10462-017-9604-0

    Article  MATH  Google Scholar 

  47. Sadek AW, Smith BL, Demetsky MJ (2001) A prototype case-based reasoning system for real-time freeway traffic routing. Transp Res Part C Emerg Technol 9(5):353–380

    Article  Google Scholar 

  48. De Schutter B, Hoogendoorn SP, Schuurman H, Stramigioli S (2003) A multi-agent case-based traffic control scenario evaluation system. In: Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems, pp 678–683

  49. Karim A, Adeli H (2003) CBR model for freeway work zone traffic management. J Transp Eng 129(2):134–145

    Article  Google Scholar 

  50. Louati A, Elkosantini S, Darmoul S, Said LB (2016) A case-based reasoning system to control traffic at signalized intersections. IFAC-PapersOnLine 49(5):149–154. https://doi.org/10.1016/j.ifacol.2016.07.105  

    Article  Google Scholar 

  51. Louati A, Elkosantini S, Darmoul S, Said LB (2017) An immune memory inspired case-based reasoning system to control interrupted flow at a signalized intersection. Artif Intell Rev, 1–31

  52. Salimans T, Ho J, Chen X, Sidor S, Sutskever I (2017) Evolution strategies as a scalable alternative to reinforcement learning

  53. Glick J (2015) Reinforcement learning for adaptive traffic signal control, Stanford, USA

  54. Mannion P, Duggan J, Howley E (2016) An experimental review of reinforcement learning algorithms for adaptive traffic signal control. In: Autonomic road transport support systems, Springer International Publishing, Cham, pp 47–66

  55. Marsetič R, Šemrov D, Žura M (2014) Road artery traffic light optimization with use of the reinforcement learning. PROME Traffic Transp 26(2):101–108

    Google Scholar 

  56. Leottau DL, Ruiz-del-Solar J, Babuška R (2018) Decentralized reinforcement learning of robot behaviors. Artif Intell 256:130–159

    Article  MathSciNet  Google Scholar 

  57. El-Tantawy S, Abdulhai B, Abdelgawad H (2014) Design of reinforcement learning parameters for seamless application of adaptive traffic signal control. J Intell Transp Syst 18(3):227–245

    Article  Google Scholar 

  58. Louati A, Darmoul S, Elkosantini S, Said LB (2018) An artificial immune network to control interrupted flow at a signalized intersection. Inf Sci 433–434:70–95. https://doi.org/10.1016/j.ins.2017.12.033

    Article  MathSciNet  MATH  Google Scholar 

  59. Darmoul Saber, Elkosantini Sabeur, Louati Ali, Said Lamjed Ben (2017) Multi-agent immune networks to control interrupted flow at signalized intersections. Transp Res Part C Emerg Technol 82:290–313. https://doi.org/10.1016/j.trc.2017.07.003

    Article  MATH  Google Scholar 

  60. Genders W, Razavi S (2016) Using a deep reinforcement learning agent for traffic signal control

  61. Ordóñez F, Roggen D, Ordóñez FJ, Roggen D (2016) Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1):115

    Article  Google Scholar 

  62. Kim T-Y, Cho S-B (2018) Web traffic anomaly detection using C-LSTM neural networks. Expert Syst Appl 106:66–76

    Article  Google Scholar 

  63. Wunderlich R, Elhanany I, Urbanik T (2007) A stable longest queue first signal scheduling algorithm for an isolated intersection. In: IEEE International Conference on Vehicular Electronics and Safety, pp 1–6

  64. Wunderlich R, Elhanany I, Urbanik T (2008) A novel signal-scheduling algorithm with quality-of-service provisioning for an isolated intersection. IEEE Trans Intell Transp Syst 9(3):536–547

    Article  Google Scholar 

  65. De Castro LN, Timmis J (2002) Artificial immune systems: a new computational intelligence approach. Springer, London

    MATH  Google Scholar 

  66. Diala D, Sid-Ali A, Abderrahman EM, Habib C (2012) A dynamic multi-criteria aid for process driving using case-based reasoning. J Decis Syst 18(4):459–484

    Article  Google Scholar 

  67. Marichal J-L (2004) Tolerant or intolerant character of interacting criteria in aggregation by the Choquet integral. Eur J Oper Res 155(3):771–791

    Article  MathSciNet  Google Scholar 

  68. Labreuche C (2003) The Choquet integral for the aggregation of interval scales in multicriteria decision making. Fuzzy Sets Syst 137(1):11–26

    Article  MathSciNet  Google Scholar 

  69. Bouhana A, Fekih A, Abed M, Chabchoub H (2013) An integrated case-based reasoning approach for personalized itinerary search in multimodal transportation systems. Transp Res Part C Emerg Technol 31:30–50

    Article  Google Scholar 

  70. Python Software Foundation, SPADE 2.3: Python Package Index (2017)

Download references

Acknowledgements

The authors want to thank the Deanship of Scientific Research in Prince Sattam Bin Abdulaziz University for supporting and funding the corresponding author research related to traffic control and emergency management since 2018 until 2020. Moreover, the authors want to thank the nine reviewers for; 1) the time spent on evaluating the manuscript, 2) appreciating the novelty of our suggestions, and 3) finding the contributions interesting and innovative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Louati.

Ethics declarations

Conflict of interest

The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no financial support from any institution that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louati, A., Louati, H. & Li, Z. Deep learning and case-based reasoning for predictive and adaptive traffic emergency management. J Supercomput 77, 4389–4418 (2021). https://doi.org/10.1007/s11227-020-03435-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03435-3

Keywords

Navigation