
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:8514–8531
https://doi.org/10.1007/s11227-020-03565-8

1 3

A CUDA‑powered method for the feature extraction
and unsupervised analysis of medical images

Leonardo Rundo1,2,3  · Andrea Tangherloni3,4,5,6  · Paolo Cazzaniga7,8  ·
Matteo Mistri3 · Simone Galimberti3 · Ramona Woitek1,2,9  · Evis Sala1,2  ·
Giancarlo Mauri3,8  · Marco S. Nobile3,8,10 

Accepted: 10 December 2020 / Published online: 21 January 2021
© The Author(s) 2021

Abstract
Image texture extraction and analysis are fundamental steps in computer vision.
In particular, considering the biomedical field, quantitative imaging methods are
increasingly gaining importance because they convey scientifically and clinically
relevant information for prediction, prognosis, and treatment response assessment.
In this context, radiomic approaches are fostering large-scale studies that can have a
significant impact in the clinical practice. In this work, we present a novel method,
called CHASM (Cuda, HAralick & SoM), which is accelerated on the graphics pro-
cessing unit (GPU) for quantitative imaging analyses based on Haralick features
and on the self-organizing map (SOM). The Haralick features extraction step relies
upon the gray-level co-occurrence matrix, which is computationally burdensome on
medical images characterized by a high bit depth. The downstream analyses exploit
the SOM with the goal of identifying the underlying clusters of pixels in an unsu-
pervised manner. CHASM is conceived to leverage the parallel computation capa-
bilities of modern GPUs. Analyzing ovarian cancer computed tomography images,
CHASM achieved up to ∼ 19.5× and ∼ 37× speed-up factors for the Haralick feature
extraction and for the SOM execution, respectively, compared to the corresponding
C++ coded sequential versions. Such computational results point out the potential
of GPUs in the clinical research.

Keywords  Haralick features · Self-organizing maps · GPU computing · Medical
imaging · Radiomics · Unsupervised learning

L. Rundo and A. Tangherloni have contributed equally to this work.

 *	 Giancarlo Mauri
	 giancarlo.mauri@unimib.it

Extended author information available on the last page of the article

http://orcid.org/0000-0003-3341-5483
http://orcid.org/0000-0002-5856-4453
http://orcid.org/0000-0001-7780-0434
http://orcid.org/0000-0002-9146-9159
http://orcid.org/0000-0002-5518-9360
http://orcid.org/0000-0003-3520-4022
http://orcid.org/0000-0002-7692-7203
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03565-8&domain=pdf

8515

1 3

A CUDA‑powered method for the feature extraction and…

1  Introduction

The use of high-performance computing (HPC) is gaining ground in high-dimen-
sional imaging data processing [16], as in the context of hyperspectral image pro-
cessing [5, 35] and medical image analysis [12]. In particular, for the specific case
of medical imaging, along with the acceleration of the training of deep neural
networks [47], graphics processing unit (GPU)-powered implementations allowed
for real-time performance in image reconstruction [46, 59], segmentation [2], as
well as feature extraction [42] and classification [22]. Moreover, multi-core and
many-core architectures were exploited to accelerate computationally expensive
medical image enhancement and quantification tasks [41, 52, 53].

Feature extraction is the first phase in quantitative imaging as it allows us to
perform fundamental tasks in computer vision, such as object detection [55] and
representation [48]. Even though deep learning has recently gained ground, con-
ventional machine learning models built on top of handcrafted texture features
still play a key role in practical applications, especially relying upon the interpret-
ability of the results [54]. With particular reference to biomedicine, quantitative
imaging methods are increasingly gaining importance since they convey scientifi-
cally and clinically relevant information for prediction, prognosis, and treatment
response assessment [62]. In this context, radiomic approaches are endorsing the
transition towards large-scale studies with a relevant impact in the clinical prac-
tice [26]. Indeed, radiomics involves the extraction and the analysis of a huge
amount of features mined from medical images [25]. The ultimate goal is the
objective and quantitative description of tumor phenotypes [13, 26]. Assuming
that radiomic features convey information about the different cancer phenotypes,
their combination with genomics can enable intra- and inter-tumor heterogeneity
studies [45]. Among the radiomic texture feature classes [50], Haralick features
are the most well-established and interpretable [18, 19]. These second-order sta-
tistics are based on the gray-level co-occurrence matrix (GLCM) that stores the
co-occurrence frequency of similar intensity levels over the region (i.e., inten-
sity value pairs). In radiology, Haralick features allow clinicians to assess image
regions characterized by heterogeneous/homogeneous areas or local intensity var-
iations [6]. GLCM-based texture features have been extensively exploited in sev-
eral medical image analysis tasks, such as breast ultrasound (US) classification
[15], brain tissue and tumor segmentation on magnetic resonance (MR) images
[36, 49], and volume-preserving non-rigid lung computed tomography (CT)
image registration [37]. Unfortunately, the computation of these features is con-
siderably burdensome on images characterized by a high bit depth (e.g., 16 bits),
such as in the case of medical images that have to convey detailed visual informa-
tion [31, 43]. As a matter of fact, with the existing computational tools, the range
of intensity values of an image must be reduced and limited to achieve an efficient
radiomic feature computation [63].

In addition, considering the downstream analyses of the extracted (handcrafted
or learned) features, numerous machine learning models can be employed in the
context of computer vision [32]. Kohonen self-organizing maps (SOMs) [24] are

8516	 L. Rundo et al.

1 3

one of most effective techniques that were applied to biomedical data clustering
[3]. A SOM is a special class of artificial neural networks based on the idea of
“competitive” learning, able to self-organize the weights in an unsupervised fash-
ion, leading to a spontaneous partitioning of the dataset according to the mutual
similarities of the input vectors. SOMs have been used for the analysis of medical
images, especially in segmentation tasks in combination with unsupervised clus-
tering [1, 27] or evolutionary computation techniques [36].

Several radiomics toolboxes are available, such as MaZda [51], written in C++,
the Computational Environment for Radiological Research (CERR) in MATLAB [4,
10], PyRadiomics in Python [58], and Local Image Feature Extractor (LIFEx) in
Java [33]. Importantly, considering 16-bit images, these tools are not suitable for
the extraction of the voxel-based feature maps by preserving the initial grayscale
range. This limitation is emphasized when dealing with feature extraction tasks on
the whole input image, especially for image classification purposes [30].

In this work, we propose a novel GPU-powered pipeline, called CHASM, for the
Haralick feature extraction and the downstream unsupervised SOM-based analy-
sis of the feature maps computed on medical images. CHASM exploits HaraliCU
[42], a GPU-enabled approach, capable of overcoming the issues of existing tools
by effectively computing the feature maps for high-resolution images with their full
dynamics of grayscale levels, and CUDA-SOM, a GPU-based implementation of
the SOMs for the identification of clusters of pixels in the image. CHASM offloads
the computations onto the cores of GPUs, thus allowing us to drastically reduce the
running time of the analyses executed on central processing units (CPUs). In the
experimental tests performed on ovarian cancer CT images [39], CHASM allowed
us to achieved up to 20× speed-up with respect to the corresponding sequential
implementation.

The remainder of the manuscript is organized as follows: Section 2 introduces the
basic concepts on Haralick features extraction and on the SOMs. Section 3 describes
the proposed GPU-accelerated pipeline, and the obtained results are shown and dis-
cussed in Sect. 4. Finally, concluding remarks and future directions are provided in
Sect. 5.

2 � Background

2.1 � Haralick features extraction

Haralick features are GLCM-based texture descriptors that are used to analyze the
textural characteristics of an image according to second-order statistics [18, 19]. In
medical imaging, these features have shown an appropriate characterization of the
cancer imaging phenotype [42]. For instance, the entropy feature is the most promis-
ing quantitative imaging biomarker for the analysis of the heterogeneity character-
izing cancer imaging [11].

Haralick features are computed from the GLCM, which denotes the co-occur-
rence frequency of similar intensity levels over the analyzed region. The study con-
ducted in [14] pointed out the existing dependencies among the Haralick features,

8517

1 3

A CUDA‑powered method for the feature extraction and…

highlighting how they can be exploited to perform calculations pertaining to other
features or intermediate results [42]. Nevertheless, a quantization step (i.e., the com-
pression of the initial intensity range) is generally applied for practical reasons [64],
leading to an irreversible loss of information. Even though Brynolfsson et al. stated
that the impact of noise is reduced by quantizing the grayscale levels, allowing for
obtaining more descriptive Haralick features in MR images, this compression could
remarkably affect the discriminative power of the feature-based classification tasks
[20]. In any case, the grayscale compression is mostly applied to deal with the com-
putational costs that would be required to calculate these features considering the
full grayscale dynamics.

In order to speed up the calculation of Haralick features, HPC solutions can
be exploited. For instance, GPUs have been intensively leveraged, being effective
computational solutions in life sciences [12, 34]. In the context of Haralick fea-
ture extraction on GPUs, different optimization strategies have been presented. For
instance, a packed representation of the symmetric GLCM was proposed to only
store nonzero elements [14]. By so doing, a simple lookup table, which maps the
index of the packed co-matrix, was used to calculate the features reducing the laten-
cies due to memory reads and increasing the overall performances. This efficient
implementation allowed for calculating the Haralick features on 12-bit intensity
depth images. Another strategy to store the GLCM consists in the meta-GLCM
array proposed by Tsai et al. [56], which uses an indirect encoding scheme that fully
exploits the GPU memory hierarchy.

The valuable amount of information conveyed by medical images, in terms of
both image resolution and pixel depth, should be maintained for automated process-
ing [43], since clinically useful pictorial content could be identified in addition to
the naked eye perception. For these motivations, HaraliCU [42] was developed aim-
ing at efficiently keeping the full dynamics of the gray levels (i.e., 16 bits in the
case of biomedical images). HaraliCU was tested on brain metastatic tumor MR and
ovarian cancer CT images.

2.2 � The Self‑Organizing Map

The Kohonen SOM [24] is an unsupervised machine learning approach used to per-
form classification tasks according to the similarity of the data. Technically, a SOM
is a class of artificial neural network able to produce low-dimensional (traditionally,
bi-dimensional) and discrete representation of the input space.

One important distinction compared to other neural networks is that SOMs
exploit a paradigm named competitive learning, which is radically different with
respect to classic methods relying upon the minimization of the error by means of
gradient descent approaches. Specifically, a SOM is composed of a network of K
artificial neurons named units. Usually, the units are all interconnected and logically
organized as a M × N square or hexagonal grid. Additionally, an input layer com-
posed of D artificial neurons is fully connected to all the units in the SOM, where D
is equal to the length of the input samples.

8518	 L. Rundo et al.

1 3

At the beginning of the learning phase, K random weight vectors, �k ∈ ℝ
D ,

k = 1,… ,K , are initialized and associated with the units of the network. Then,
each input vector � ∈ ℝ

D in the data set is presented to all units in the SOM. The
unit with the most similar weights to the input vector becomes the best matching
unit ( BMU ). In our implementation, we assume a similarity based on an Euclid-
ean distance, i.e.,

Once the BMU is identified, the weights in the network are adjusted toward the
input vector using Eq. (2):

where �(t) is the learning rate at the iteration t. In this work, we used a linearly
decreasing learning rate defined as:

with �(0) = 1 ⋅ 10−1 and �(tmax) = 1 ⋅ 10−3 . The function �k(BMU, t) denotes the lat-
eral interaction between the BMU and the unit k during the iteration t. Note that only
the units in the set of neighbors of the BMU are updated using Eq. (2). In this work,
we exploited the following interaction function:

where �(t) = �(0) − (�(0)
t

tmax

) . In our implementation, we also used an internal heu-
ristics that calculates the initial � as:

and sets �(tmax) = 0.
Once all weights are updated, the SOM proceeds by analyzing the next sample.

The learning algorithm iterates until a stopping criterion is met. In this work, we
run the algorithm for tmax = 100 iterations.

Relying upon this peculiar type of learning algorithm—which does not require
the samples to be labeled as units that spontaneously self-organize to represent
prototypes of the input vectors—SOMs are well-suited for unsupervised learning.
As a matter of fact, at the end of the learning process, the samples will be associ-
ated with their BMUs in such a way that similar input vectors (with respect to the
Euclidean distance) will find place in similar units.

There exist several implementations of SOMs, e.g., the kohonen package for R
[61]; the KNLL and SOMpp for C++; the MiniSom and PyCluster libraries for
Python [9]. These CPU-based implementations suffer from two main limitations:

(1)BMU = argmin
k

||� − �k||.

(2)�k(t + 1) = �k(t) + �(t)�k(BMU, t)(� − �k(t)),

(3)�(t) = �(0) − (�(0) − �(tmax))

(
t

tmax

)
,

(4)�k(BMU, t) = exp

(
−
||k − BMU||2

2�(t)2

)
,

(5)�(0) = 1 +

(
max{M,N}

3

)
,

8519

1 3

A CUDA‑powered method for the feature extraction and…

(1) the computational burden associated with the SOM learning algorithm and (2)
the data structures employed, resulting in a very high memory footprint, which
increases along with the size of the network.

Various GPU-based implementations of the SOM have been presented in the lit-
erature; for instance, in [29], the authors assessed the performance of their GPU
version, which parallelizes distance finding, reduction operation to identify the mini-
mum value, and weights adjust, allowing them to speed up the computation up to
∼ 32× with respect to the CPU. In [8], the authors proposed a parallelization of both
the learning and clustering algorithms and applied it to MR image segmentation,
achieving up to 90× speed up with respect to a MATLAB implementation running
on the CPU. Unfortunately, both previous works present custom GPU implemen-
tations of the SOM, tailored to specific problems. We thus propose here CUDA-
SOM as a general-purpose implementation of the SOM accelerated on GPUs using
CUDA, freely, and publicly available.

3 � The proposed GPU‑accelerated method

In this section, we first outline the main CUDA characteristics; then, our GPU
implementations of the Haralick feature extraction and SOMs are described in
detail. Finally, we present the CHASM framework for medical image analysis.

3.1 � CUDA

NVIDIA CUDA is a parallel computing platform and programming model based on
many-core streaming multiprocessors (SMs), which adheres to the single instruc-
tion multiple data (SIMD) architecture [28]. In CUDA, the CPU (host) offloads the
parallel calculations onto one or more GPUs (devices) by using kernels, which are
functions launched from the host and replicated so that each GPU thread can run the
same code at the same time.

In CUDA, the threads are organized into three-dimensional structures called
blocks, which, in turn, compose three-dimensional grids. The CUDA scheduler
assigns blocks to the different SMs, which ultimately run them. In each SM, the
threads are divided into warps, which are tight groups of 32 threads, executed in
locksteps. Considering the CUDA execution pattern, any possible divergent path
taken by some threads in a warp should be removed to avoid the serialization of the
execution, which would result in a decrease in the overall performance.

CUDA has a complex memory hierarchy divided into multiple memory types,
which have their own advantages and drawbacks. For instance, the shared memory
is very small but has very low access latency, and it is generally used for intra-block
communications. The global memory is large and characterized by high access
latency; however, it is visible by all threads and can be used for inter-block commu-
nications as well as for communications between the host and the devices. Consider-
ing these peculiarities, the data structures should be carefully optimized to reach the
theoretical peak performance of the GPU [34].

8520	 L. Rundo et al.

1 3

3.2 � HaraliCU

HaraliCU is a GPU-powered tool that realizes an efficient computation of the
GLCM and the extraction of an exhaustive set of the Haralick features [42]. The
user has granted full control over the settings of HaraliCU, i.e., the distance offset
� , the orientation � , and the window size � × � , while the neighborhood N is
defined according to � and � . In addition, the user can decide the padding con-
ditions (e.g., zero padding or symmetric padding) and the number of quantized
gray-level Q.

HaraliCU exploits an effective and efficient encoding, to mitigate the memory
requirements related to the allocation of a GLCM having 216 rows and columns for
each sliding window, and to the size of each GLCM, which is strictly related to
the number of different gray levels inside the considered sliding window. Such an
encoding removes all zero elements inside the GLCM and consists in storing each
GLCM in a list-based data structure where each element is a pair ⟨��������, ����⟩ ,
with �������� being a couple ⟨i, j⟩ of gray levels and ���� the corresponding fre-
quency of the considered sliding window. Overall, the number of elements com-
posing the GLCM is equal to the number of pairs ⟨���������, ��������⟩ that can
be identified inside the sliding window, considering the distance � (see [42] for
additional information).

The parallelization on the GPU is realized by assigning each pixel of the input
image to a thread, since there are no dependencies between the sliding win-
dows. By so doing, each thread computes all features related to its pixel, which
is the center of the corresponding window. To fully exploit the GPU accelera-
tion, HaraliCU makes use of a bi-dimensional structure for both the number of
blocks and the number of threads. In particular, the number of threads is set to
16 for both the components of the bi-dimensional structure, taking into account
the CUDA warp size (i.e., 32 threads) and the limited number of registers, while
the number of blocks is set according to the number of the pixels ( #pixels ) of the
input image.

HaraliCU is an open-source software that can be freely downloaded from
GitHub at the following address: https​://githu​b.com/andre​a-tango​/Haral​iCU.
Instructions for the compilation and execution of HaraliCU are provided in the
same Web page. HaraliCU requires a NVIDIA GPU along with the version 8 of
CUDA (or greater) and the OpenCV library [23] version 3.4.1 (or greater).

3.3 � CUDA‑SOM

CUDA-SOM is a GPU-based implementation of the self-organizing map [24],
where the learning algorithm of the network is parallelized by means of specific ker-
nels that deal with the calculations required to compute the distance between sam-
ples and neuron’s weights and to update the network when the BMU is identified.

CUDA-SOM supports two GPU-accelerated learning modalities, named online
and batch:

https://github.com/andrea-tango/HaraliCU

8521

1 3

A CUDA‑powered method for the feature extraction and…

•	 In the online mode, the weights of the network are updated after each input
vector is processed;

•	 In the batch mode, the network is updated after the whole training set is ana-
lyzed.

Although the batch mode is characterized by a slower convergence compared to
online mode, it allows for a higher degree of parallelization, since all calculations of
the BMUs for all input vectors can be parallelized across the CUDA cores. For this
reason, in this work we exploited the batch mode.

The CUDA kernels implemented in CUDA-SOM allow us to minimize the data
transfer between host and device, to the results of the computation, thus reducing the
impact of moving data across the PCI-e bus. Moreover, our implementation exploits
the Thrust library of CUDA for array scan and reduction, so that the computational
time can be further reduced.

CUDA-SOM implements numerous variants of the Kohonen maps. Moreover,
even though it integrates several heuristics for the automatic configurations, the user
can select a wide array of optional parameters, notably number of neurons; rows and
columns of the network; initial and final learning rates; maximum number of itera-
tions of the learning process; radius of the updating function; type of distances used
for BMU (e.g., Euclidean, Manhattan, Tanimoto); type of neighbor function (Gauss-
ian, bubble, Mexican hat); type of lattice (square or hexagonal); type of boundary
conditions (e.g., toroidal); linear of exponential decay, for both the radius and the
learning rate; whether to perform a normalization on the input vectors or not. More-
over, CUDA-SOM gives control on some CUDA-specific settings, e.g., the GPU to
be used for the calculations (in the case of multi-GPU systems), or the number of
threads per block.

CUDA-SOM is open source and available for downloading on GitHub at the fol-
lowing address: https​://githu​b.com/mistr​ello9​6/CUDA-SOM.

3.4 � CHASM

The proposed pipeline begins by extracting the features from the input image by
using HaraliCU, which exploits the GPU acceleration. Then, the features of all pix-
els are transferred on the CPU for further processing. For each pixel, the features
are averaged across all directions and linearized. The feature vectors of all pixels are
then fed to CUDA-SOM, which performs the unsupervised learning on the GPU.
The information about the BMUs for each pixel is returned to the CPU, where it is
clustered and mapped onto the original image. The overall functioning of CHASM
is schematized in Fig. 1.

In this work, we extract the following 16 Haralick features [18, 19], which are
then considered for the unsupervised learning [42]: angular second moment, auto-
correlation, cluster prominence, cluster shade, contrast, difference entropy, differ-
ence variance, dissimilarity, entropy, homogeneity, inverse difference moment, max-
imum probability, sum of average, sum of entropy, sum of squares, sum of variance.

https://github.com/mistrello96/CUDA-SOM

8522	 L. Rundo et al.

1 3

The mathematical definitions of the features are provided in Supplemen-
tary Materials. Since all the medical images analyzed by CHASM have
size 512 × 512 pixels, each pixel yields an input vector characterized by
16 × 512 × 512 = 4, 194, 304 features.

Once the learning process is completed and the BMUs for each input vector
are identified, a count plot can be created. In this particular graphical representa-
tion, each sample is plotted and assigned to its corresponding BMU. A darker
color corresponds to a higher number of samples assigned to the same BMU (see
Fig. 2a). Another representation of the outcome of a learning process is the so-
called U-matrix, wherein the regions with high inter-neighbor distance are rep-
resented with a lighter color. The U-matrix is helpful to provide a visual insight
into the boundaries between groups of similar neurons (see Fig. 2b). By using
agglomerative clustering, these groups can be identified, and the samples belong-
ing to each unit can be automatically assigned to the proper cluster. The outcome
of this process is shown in Fig. 2c. In this work, we exploited the agglomerative
clustering implemented in the scikit-learn package, using Euclidean affinity and
the Ward linkage criterion [60].

Extract image features
with HaraliCU

Calculate mean features
in all directions

for all pixels

Create feature vectors
for all pixels

Process the feature
vectors with CUDA-SOM

Cluster the SOM units
according to

weight distances

Map the pixels in each
cluster on the
original image

Steps performed on the CPU

Steps performed on the GPU

Fig. 1   Scheme of CHASM’s functioning. The green blocks are executed on the GPU, while the blue
dashed blocks are executed on the CPU

Fig. 2   Examples of results of the unsupervised learning process: a count plot, created according to the
number of input vectors assigned to each unit; b corresponding U-matrix; c result of the clustering of the
units according to weight distances. The information about which pixels are assigned to each cluster is
then mapped onto the original figure

8523

1 3

A CUDA‑powered method for the feature extraction and…

4 � Experimental results

As described in the previous section, we validated HaraliCU by comparing the
values of the features contrast, correlation, energy, and homogeneity with those
extracted using the built-in functions graycomatrix.

4.1 � Imaging dataset and tumoral habitats

For the tests presented here, we considered a medical dataset composed of axial con-
trast-enhanced CT series of patients with high-grade serous ovarian cancer (matrix
size: 512 × 512 pixels, pixel spacing: ∼ 0.65 × 0.65mm2 , slice thickness: 5.0 mm).
All the CT images were encoded in the Digital Imaging and Communications in
Medicine (DICOM) format with an intensity depth of 16 bits. Texture features have
shown the ability of evaluating intra- and inter-tumor heterogeneity [39, 57]. Pelvic
lesions only were selected for this work.

Figure 3 shows two examples of the input CT images along with the correspond-
ing tumoral habitats. In order to simplify the visual interpretation of the results, we
used a uniform color coding for the spurious pixels included in disconnected clus-
ters. It is appreciable how CHASM can find patterns to represent both intra-tumoral
(Fig. 3a) and inter-tumoral heterogeneity (Fig. 3a) across disconnected lesions.

4.2 � Computational results

The computational performance of the pipeline presented in this work was assessed
by independently considering the two steps parallelized on the GPU: Haralick fea-
ture extraction and unsupervised SOM-based image pixel clustering.

Fig. 3   Examples of CT images with the pelvic lesions outlined by the green contour. The corresponding
tumoral habitats, resulting from the unsupervised SOM-based clustering, are overimposed onto the input
CT image and displayed at the bottom right of each sub-figure: a tumor composed of a single connected
component; b tumor composed of two connected components

8524	 L. Rundo et al.

1 3

HaraliCU The CUDA-based version of the Haralick feature extraction,
employed in our pipeline, was tested against a CPU version coded in C++, which
resulted extremely efficient with respect to the MATLAB version, based on the
graycomatrix and graycoprops functions, to extract Haralick features on
brain metastasis MR images [42]. As a matter of fact, by varying the grayscale
range from 24 to 29 levels, we achieved speed-up values around 50× and 200× ,
respectively.

The GPU version of HaraliCU was executed on an NVIDIA GeForce GTX Titan
X (3072 cores, clock 1.075 GHz, 12 GB of RAM), CUDA toolkit version 8 (driver
387.26), running on a workstation with Ubuntu 16.04 LTS, equipped with a CPU
Intel Core i 7 − 2600 (clock 3.4 GHz) and 8 GB of RAM. The CPU version was
run on the same workstation, relying upon the computational power provided by the
CPU Intel Core i 7 − 2600 . The CPU version was compiled by using the GNU C++
compiler (version 5.4.0) with optimization flag -O3, while the GPU version was
compiled with the CUDA Toolkit 8 by exploiting the optimization flag -O3 for both
CPU and GPU codes.

In order to collect statistically sound results and take into consideration the vari-
ability and heterogeneity typically characterizing medical images, we randomly
selected 30 images from 3 different patients (10 per patient) affected by brain metas-
tases and 30 images from 3 different patients affected by ovarian cancer. We tested
both the CPU and GPU versions by considering various window sizes, that is,
� ∈ {3, 7, 11, 15, 19, 23, 27, 31} , as well as two different intensity levels (i.e., 28 and
216 ). For each combination of � and intensity levels, we also enabled and disabled
the GLCM symmetry to evaluate how the symmetry affects the running time.

The speed-up achieved by HaraliCU considering only 28 intensity levels increases
almost linearly up to � = 19 (data not shown, see [42] for details); by disabling the
GLCM symmetry and using � = 31 , we obtained the highest speed-ups of 12.74×
and 12.71× on brain metastasis ( 256 × 256 pixels) and ovarian cancer images
( 512 × 512 pixels), respectively. When the full dynamics of the grayscale levels
(i.e., 216 ) is considered, HaraliCU outperforms the sequential counterpart, achiev-
ing speed-ups up to 15.80× with � = 31 and 19.50× with � = 23 , on brain metas-
tasis and ovarian cancer images, respectively. Taking into account ovarian cancer
images, when � is greater than 23 pixels, the speed-up decreases for two reasons.
First, since a thread is launched for each pixel, it must consider more neighbor pixels
that might have very different gray-level intensities. This corresponds with increas-
ing the required workload that each thread must perform; however, considering that
the GPU cores have a lower clock frequency than the CPU cores, the speed-up is
clearly reduced. Second, the GPU resources are saturated as the GLCM size asso-
ciated with each thread may increase due to the high full-dynamic range. In this
specific situation, the total GLCM size might overwhelm the capacity of the global
memory and some threads might handle different pixels, thus computing the corre-
sponding Haralick features in a sequential way.

CUDA-SOM The performance of CUDA-SOM was assessed by comparing it to
a C++ version, running on a single core of the CPU, specifically developed for this
work, since the available R implementation of the SOM is limited to a network size
of 150 × 150 neurons.

8525

1 3

A CUDA‑powered method for the feature extraction and…

We first run a batch of tests to the aim of analyzing the impact of the number
of samples and the size of the SOM on the computational time. We employed a
machine equipped with 16 GB of RAM, a CPU Intel Core i7 4790k (clock 4.4 Ghz),
and an NVIDIA GeForce 1050ti (768 cores, clock 1.392 GHz, 4 GB of RAM).

As reported in Table 1, the running time of the C++ version is lower in the case
of small size SOMs (i.e., 20 × 20 neurons), while the GPU allows us to reduce
the computation time, up to 5.75× , when a SOM having size 300 × 300 neurons
is trained with 120,000 samples. Additional tests (data not shown) confirmed the
trend observed, as the speed-up further increases to ∼ 7× with a SOM having size
400 × 400 neurons.

As a second batch of tests, we compared the performance of different NVIDIA
GPUs, i.e., Titan Z ( 2 × 2880 cores, clock 0.876 GHz, 6 GB of RAM), Titan X
(GM200, 3072 cores, clock 1.075 GHz, 12 GB of RAM), GeForce 1050ti (768 cores,
clock 1.392 GHz, 4 GB of RAM), GeForce 1080ti (3584 cores, clock 1582 GHz,
11 GB of RAM), when executing CUDA-SOM with different SOM sizes, consider-
ing 60,000 samples and 7 features.

Table 2 reports the speed-up values achieved by each GPU with respect to the
C++ implementation. As expected, in the case of small-size SOMs, the CPU was
more convenient than the GPUs; moreover, the GeForce 1080ti obtained the best
results, by exploiting its highest clock frequency, achieving 10× speed-up in the case
of the SOM with 400 × 400 neurons.

Considering the analysis performed on medical images, in the case of ovar-
ian cancer CT, the running time (including file loading) was of 79 and 1020 s in
the case of 100 and 1000 iterations, respectively. To understand the advantage of

Table 1   Running time required
by the C++ and GPU versions
of SOM, by varying the number
of samples used to train the
network and the number of
neurons

Samples SOM size CPU (s) GPU (s) Speed-up

30,000 20 × 20 50 144 0.34×

60,000 20 × 20 101 288 0.35×

120,000 20 × 20 859 2479 0.34×

30,000 150 × 150 1424 486 2.93×

60,000 150 × 150 2928 980 2.98×

120,000 150 × 150 5736 1950 2.94×

30,000 300 × 300 10318 1798 5.73×

60,000 300 × 300 19978 3478 5.74×

120,000 300 × 300 39920 6940 5.75×

Table 2   Speed-up achieved by
CUDA-SOM using different
GPUs compared to the C++
implementation

SOM size Titan Z Titan X 1050ti 1080

20 × 20 0.16 0.21 0.33 0.34
80 × 80 1.48 1.72 2.27 2.85
250 × 250 4.98 4.78 5.00 7.66
400 × 400 6.86 6.61 6.70 10.03

8526	 L. Rundo et al.

1 3

CUDA-SOM, consider that the running time of the same SOM algorithm, imple-
mented with C++ and OpenMP, is 2956 s to complete 100 iterations. This reduction
in the running time corresponds to a 37× speed-up.

CUDA-SOM was executed on an NVIDIA Tesla P100 (3584 cores, clock
1.329 GHz, 16 GB of RAM), CUDA toolkit version 8 (driver 440.95.01), running on
a computer node of the Cambridge Service for Data Driven Discovery (CSD3) with
Scientific Linux 7. Each node is equipped with a single CPU Intel Xeon E5-2650 v4
(clock 2.2 GHz), 94 GB of RAM, and up to 4 NVIDIA Tesla P100 GPUs. The CPU
version was run on the same node, relying upon the computational power provided
by the CPU Intel Xeon E5-2650 v4. The CPU version was compiled by using the
GNU C++ compiler (version 5.4.0) with optimization flag -O3, while the GPU ver-
sion was compiled with the CUDA Toolkit 8.0 by exploiting the optimization flag
-O3 for both CPU and GPU codes.

5 � Conclusion

Image texture extraction and analysis is playing a key role in quantitative biomedi-
cine, leading to valuable applications in radiomics [13, 25, 26] and radiogenomics
[38, 44] research, by also combining heterogeneous sources of information. There-
fore, advanced computerized medical image analysis methods, specifically designed
to deal with the massive amount of extracted features, as well as to discover intrinsic
patterns in the analyzed data, could be beneficial for the definition of imaging bio-
markers, which support clinical decision making towards precision medicine [40].
However, these large-scale studies need efficient techniques to drastically reduce the
prohibitive running time that is typically required.

In this work, we presented a novel method, named CHASM, which combines two
CUDA-based computationally efficient approaches capable of effectively exploiting
the power of the modern GPUs: (i) HaraliCU, which is used for Haralick features
extraction and allows for accelerating the GLCM computation while keeping the full
dynamic range in medical images; (ii) CUDA-SOM, which is exploited for unsuper-
vised image pixel clustering, reduces the running time by leveraging the paralleli-
zation of the learning process of the network. Our pipeline was tested on a dataset
composed of ovarian cancer CT images. Exploiting the GPU used during the two
most computationally demanding phases of the pipeline, we achieved speed-ups up
to 19.50× with HaraliCU and up to 37× with CUDA-SOM, compared to the CPU
version implemented in C++, on our dataset.

As a future development, we plan to improve HaraliCU by exploiting the vec-
torization of the input image matrices for a better GPU thread block managing. In
order to enhance the scalability of the proposed approach, the dynamic parallelism,
supported by CUDA, could be exploited to further parallelize the computations as
soon as the workload increases (e.g., high window size). Moreover, even though
the spatial and temporal locality are already exploited during the GLCM construc-
tion process, based on the sliding window, the usage of the GPU memory hierarchy
might be optimized [17]. For what concerns CUDA-SOM, the main limitation of
the tool is that it currently loads the whole dataset before launching the learning

8527

1 3

A CUDA‑powered method for the feature extraction and…

process. Because of that, CUDA-SOM might crash when the dataset exceeds the
available GPU memory. We are therefore improving the implementation to read
and stream the input vectors during the learning phase, in order to work with data-
sets of arbitrary size. To further accelerate the learning process, we will also extend
CUDA-SOM to leverage low-latency memories (i.e., shared memory and constant
memory). Finally, all the computational steps, depicted by the blue dashed blocks
in Fig. 1, are currently executed on the CPU and represent a bottleneck of CHASM.
We plan to develop them in CUDA to additionally accelerate the whole pipeline.

Considering the biological validation of the texture-derived tumoral habitats [7],
the combination of the imaging phenotype and genotype might unravel intra-/inter-
tumor heterogeneity, as well as provide valuable insights into treatment response
[21, 45], by effectively exploiting advanced computational techniques in oncology
[3].

Acknowledgements  This work was partially supported by The Mark Foundation for Cancer Research
and Cancer Research UK Cambridge Centre [C9685/A25177]. The views expressed are those of the
authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.
This work was performed using resources provided by the Cambridge Service for Data Driven Discov-
ery (CSD3) operated by the University of Cambridge Research Computing Service (www.csd3.cam.
ac.uk), provided by Dell EMC and Intel using Tier-2 funding from the Engineering and Physical Sciences
Research Council (capital Grant EP/P020259/1), and DiRAC funding from the Science and Technology
Facilities Council (www.dirac​.ac.uk).

Funding  Open Access funding provided by Università degli Studi di Milano - Bicocca.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Aghajari E, Chandrashekhar GD (2017) Self-organizing map based extended fuzzy c-means
(SEEFC) algorithm for image segmentation. Appl Soft Comput 54:347–363. https​://doi.
org/10.1016/j.asoc.2017.01.003

	 2.	 Al-Ayyoub M, Abu-Dalo AM, Jararweh Y, Jarrah M, Al Sa’d M (2015) A GPU-based implementa-
tions of the fuzzy c-means algorithms for medical image segmentation. J Supercomput 71(8):3149–
3162. https​://doi.org/10.1007/s1122​7-015-1431-y

	 3.	 Ali HR, Jackson HW, Zanotelli VR, Danenberg E, Fischer JR, Bardwell H et al (2020) Imaging
mass cytometry and multiplatform genomics define the phenogenomic landscape of breast cancer.
Nat Cancer 1(2):163–175. https​://doi.org/10.1038/s4301​8-020-0026-6

	 4.	 Apte AP, Iyer A, Crispin-Ortuzar M, Pandya R, van Dijk LV, Spezi E et al (2018) Extension of
CERR for computational radiomics: a comprehensive MATLAB platform for reproducible radiom-
ics research. Med Phys 45(8):3713–3720. https​://doi.org/10.1002/mp.13046​

	 5.	 Bascoy PG, Quesada-Barriuso P, Heras DB, Argüello F, Demir B, Bruzzone L (2019) Extended
attribute profiles on GPU applied to hyperspectral image classification. J Supercomput 75(3):1565–
1579. https​://doi.org/10.1007/s1122​7-018-2690-1

http://www.csd3.cam.ac.uk
http://www.csd3.cam.ac.uk
http://www.dirac.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.asoc.2017.01.003
https://doi.org/10.1016/j.asoc.2017.01.003
https://doi.org/10.1007/s11227-015-1431-y
https://doi.org/10.1038/s43018-020-0026-6
https://doi.org/10.1002/mp.13046
https://doi.org/10.1007/s11227-018-2690-1

8528	 L. Rundo et al.

1 3

	 6.	 Brynolfsson P, Nilsson D, Torheim T, Asklund T, Karlsson CT, Trygg J, Nyholm T, Garpebring
A (2017) Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend
on imaging and pre-processing parameters. Sci Rep 7(1):4041. https​://doi.org/10.1038/s4159​8-017-
04151​-4

	 7.	 Cherezov D, Goldgof D, Hall L, Gillies R, Schabath M, Müller H, Depeursinge A (2019) Revealing
tumor habitats from texture heterogeneity analysis for classification of lung cancer malignancy and
aggressiveness. Sci Rep 9(1):1–9. https​://doi.org/10.1038/s4159​8-019-38831​-0

	 8.	 De A, Zhang Y, Guo C (2016) A parallel adaptive segmentation method based on SOM and GPU
with application to MRI image processing. Neurocomputing 198:180–189. https​://doi.org/10.1016/j.
neuco​m.2015.10.129

	 9.	 De Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics
20(9):1453–1454. https​://doi.org/10.1093/bioin​forma​tics/bth07​8

	10.	 Deasy JO, Blanco AI, Clark VH (2003) CERR: a computational environment for radiotherapy
research. Med Phys 30(5):979–985. https​://doi.org/10.1118/1.15689​78

	11.	 Dercle L, Ammari S, Bateson M, Durand PB, Haspinger E, Massard C, Jaudet C, Varga A, Deutsch
E, Soria JC et al (2017) Limits of radiomic-based entropy as a surrogate of tumor heterogeneity:
ROI-area, acquisition protocol and tissue site exert substantial influence. Sci Rep 7(1):7952. https​://
doi.org/10.1038/s4159​8-017-08310​-5

	12.	 Eklund A, Dufort P, Forsberg D, LaConte SM (2013) Medical image processing on the GPU-past,
present and future. Med Image Anal 17(8):1073–1094. https​://doi.org/10.1016/j.media​.2013.05.008

	13.	 Gillies RJ, Kinahan PE, Hricak H (2015) Radiomics: images are more than pictures, they are data.
Radiology 278(2):563–577. https​://doi.org/10.1148/radio​l.20151​51169​

	14.	 Gipp M, Marcus G, Harder N, Suratanee A, Rohr K, König R, Männer R (2012) Haralick’s tex-
ture features computation accelerated by GPUs for biological applications. Modeling simulation and
optimization of complex processes. Springer, Berlin, pp 127–137. https​://doi.org/10.1007/978-3-
642-25707​-011

	15.	 Gómez W, Pereira W, Infantosi AFC (2012) Analysis of co-occurrence texture statistics as a function
of gray-level quantization for classifying breast ultrasound. IEEE Trans Med Imag 31(10):1889–
1899. https​://doi.org/10.1109/TMI.2012.22063​98

	16.	 Gulo CA, Sementille AC, Tavares JMR (2019) Techniques of medical image processing and analy-
sis accelerated by high-performance computing: a systematic literature review. J Real Time Image
Process. https​://doi.org/10.1007/s1155​4-017-0734-z

	17.	 Gupta S, Xiang P, Zhou H (2013) Analyzing locality of memory references in GPU architectures.
In: Proceedings of ACM SIGPLAN Workshop on Memory Systems Performance and Correctness.
ACM, p 12. https​://doi.org/10.1145/24924​08.24924​23

	18.	 Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804.
https​://doi.org/10.1109/PROC.1979.11328​

	19.	 Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE
Trans Syst Man Cybern SMC–3(6):610–621. https​://doi.org/10.1109/TSMC.1973.43093​14

	20.	 Jen CC, Yu SS (2015) Automatic detection of abnormal mammograms in mammographic images.
Expert Syst Appl 42(6):3048–3055. https​://doi.org/10.1016/j.eswa.2014.11.061

	21.	 Jiménez-Sánchez A, Cybulska P, Mager KL, Koplev S, Cast O, Couturier DL et al (2020) Unrave-
ling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of
chemotherapy. Genet Nat. https​://doi.org/10.1038/s4158​8-020-0630-5

	22.	 Junior JRF, Oliveira MC, de Azevedo-Marques PM (2017) Integrating 3D image descriptors of mar-
gin sharpness and texture on a GPU-optimized similar pulmonary nodule retrieval engine. J Super-
comput 73(8):3451–3467. https​://doi.org/10.1007/s1122​7-016-1818-4

	23.	 Kaehler A, Bradski G (2016) Learning OpenCV 3: computer vision in C++ with the OpenCV
library, vol 1. O’Reilly Media, Inc, Sebastopol

	24.	 Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480. https​://doi.
org/10.1109/5.58325​

	25.	 Lambin P, Leijenaar RT, Deist TM, Peerlings J, de Jong EE, van Timmeren J et al (2017) Radi-
omics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol
14(12):749. https​://doi.org/10.1038/nrcli​nonc.2017.141

	26.	 Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM,
Gillies R, Boellard R, Dekker A et al (2012) Radiomics: extracting more information from medi-
cal images using advanced feature analysis. Eur J Cancer 48(4):441–446. https​://doi.org/10.1016/j.
ejca.2011.11.036

https://doi.org/10.1038/s41598-017-04151-4
https://doi.org/10.1038/s41598-017-04151-4
https://doi.org/10.1038/s41598-019-38831-0
https://doi.org/10.1016/j.neucom.2015.10.129
https://doi.org/10.1016/j.neucom.2015.10.129
https://doi.org/10.1093/bioinformatics/bth078
https://doi.org/10.1118/1.1568978
https://doi.org/10.1038/s41598-017-08310-5
https://doi.org/10.1038/s41598-017-08310-5
https://doi.org/10.1016/j.media.2013.05.008
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1007/978-3-642-25707-011
https://doi.org/10.1007/978-3-642-25707-011
https://doi.org/10.1109/TMI.2012.2206398
https://doi.org/10.1007/s11554-017-0734-z
https://doi.org/10.1145/2492408.2492423
https://doi.org/10.1109/PROC.1979.11328
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1016/j.eswa.2014.11.061
https://doi.org/10.1038/s41588-020-0630-5
https://doi.org/10.1007/s11227-016-1818-4
https://doi.org/10.1109/5.58325
https://doi.org/10.1109/5.58325
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036

8529

1 3

A CUDA‑powered method for the feature extraction and…

	27.	 Logeswari T, Karnan M (2010) Hybrid self organizing map for improved implementation of brain
MRI segmentation. In: Proceedings of International Conference on Signal Acquisition and Process-
ing. IEEE, pp 248–252. https​://doi.org/10.1109/ICSAP​.2010.56

	28.	 Luebke D (2008) CUDA: scalable parallel programming for high-performance scientific computing.
In: Proceedings 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro
(ISBI). IEEE, pp 836–838. https​://doi.org/10.1109/ISBI.2008.45411​26

	29.	 McConnell S, Sturgeon R, Henry G, Mayne A, Hurley R (2012) Scalability of self-organiz-
ing maps on a GPU cluster using OpenCL and CUDA. J Phys Conf Ser 341:012018. https​://doi.
org/10.1088/1742-6596/341/1/01201​8

	30.	 Militello C, Rundo L, Minafra L, Cammarata FP, Calvaruso M, Conti V, Russo G (2020) MF2C3:
Multi-feature fuzzy clustering to enhance cell colony detection in automated clonogenic assay eval-
uation. Symmetry 12(5):773. https​://doi.org/10.3390/sym12​05077​3

	31.	 Militello C, Vitabile S, Rundo L, Russo G, Midiri M, Gilardi MC (2015) A fully automatic 2D
segmentation method for uterine fibroid in MRgFUS treatment evaluation. Comput Biol Med
62:277–292. https​://doi.org/10.1016/j.compb​iomed​.2015.04.030

	32.	 Nanni L, Ghidoni S, Brahnam S (2017) Handcrafted versus non-handcrafted features for
computer vision classification. Pattern Recogn 71:158–172. https​://doi.org/10.1016/j.patco​
g.2017.05.025

	33.	 Nioche C, Orlhac F, Boughdad S, Reuzé S, Goya-Outi J, Robert C, Pellot-Barakat C, Soussan
M, Frouin F, Buvat I (2018) LIFEx: a freeware for radiomic feature calculation in multimodal-
ity imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res
78(16):4786–4789. https​://doi.org/10.1158/0008-5472.CAN-18-0125

	34.	 Nobile MS, Cazzaniga P, Tangherloni A, Besozzi D (2016) Graphics processing units in bioin-
formatics, computational biology and systems biology. Brief Bioinform 18(5):870–885. https​://
doi.org/10.1093/bib/bbw05​8

	35.	 Ordóñez Á, Argüello F, Heras DB, Demir B (2020) GPU-accelerated registration of hyperspec-
tral images using KAZE features. J Supercomput. https​://doi.org/10.1007/s1122​7-020-03214​-0

	36.	 Ortiz A, Górriz J, Ramírez J, Salas-Gonzalez D, Llamas-Elvira JM (2013) Two fully-unsuper-
vised methods for MR brain image segmentation using SOM-based strategies. Appl Soft Comput
13(5):2668–2682. https​://doi.org/10.1016/j.asoc.2012.11.020

	37.	 Park S, Kim B, Lee J, Goo JM, Shin YG (2011) GGO nodule volume-preserving nonrigid lung
registration using GLCM texture analysis. IEEE Trans Biomed Eng 58(10):2885–2894. https​://
doi.org/10.1109/TBME.2011.21623​30

	38.	 Pinker K, Shitano F, Sala E, Do RK, Young RJ, Wibmer AG, Hricak H, Sutton EJ, Morris EA
(2018) Background, current role, and potential applications of radiogenomics. J Magn Reson
Imag 47(3):604–620. https​://doi.org/10.1002/jmri.25870​

	39.	 Rundo L, Beer L, Ursprung S, Martin-Gonzalez P, Markowetz F, Brenton JD, Crispin-Ortu-
zar M, Sala E, Woitek R (2020) Tissue-specific and interpretable sub-segmentation of whole
tumour burden on CT images by unsupervised fuzzy clustering. Comput Biol Med. https​://doi.
org/10.1016/j.compb​iomed​.2020.10375​1

	40.	 Rundo L, Pirrone R, Vitabile S, Sala E, Gambino O (2020) Recent advances of HCI in deci-
sion-making tasks for optimized clinical workflows and precision medicine. J Biomed Inform
108:103479. https​://doi.org/10.1016/j.jbi.2020.10347​9

	41.	 Rundo L, Tangherloni A, Cazzaniga P, Nobile MS, Russo G, Gilardi MC et al (2019) A novel
framework for MR image segmentation and quantification by using MedGA. Comput Methods
Progr Biomed 176:159–172. https​://doi.org/10.1016/j.cmpb.2019.04.016

	42.	 Rundo L, Tangherloni A, Galimberti S, Cazzaniga P, Woitek R, Sala E, et al. (2019) HaraliCU:
GPU-powered Haralick feature extraction on medical images exploiting the full dynamics of
gray-scale levels. In: Malyshkin V (ed) Proceedings of International Conference on Parallel
Computing Technologies (PaCT), LNCS, vol 11657. Springer International Publishing, Cham,
Switzerland, pp 304–318. 978-3-030-25636-4_24

	43.	 Rundo L, Tangherloni A, Nobile MS, Militello C, Besozzi D, Mauri G, Cazzaniga P (2019)
MedGA: a novel evolutionary method for image enhancement in medical imaging systems.
Expert Syst Appl 119:387–399. https​://doi.org/10.1016/j.eswa.2018.11.013

	44.	 Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and
diagnostic imaging. Eur J Radiol 70(2):232–241. https​://doi.org/10.1016/j.ejrad​.2009.01.050

	45.	 Sala E, Mema E, Himoto Y, Veeraraghavan H, Brenton JD, Snyder A, Weigelt B, Var-
gas HA (2017) Unravelling tumour heterogeneity using next-generation imaging:

https://doi.org/10.1109/ICSAP.2010.56
https://doi.org/10.1109/ISBI.2008.4541126
https://doi.org/10.1088/1742-6596/341/1/012018
https://doi.org/10.1088/1742-6596/341/1/012018
https://doi.org/10.3390/sym12050773
https://doi.org/10.1016/j.compbiomed.2015.04.030
https://doi.org/10.1016/j.patcog.2017.05.025
https://doi.org/10.1016/j.patcog.2017.05.025
https://doi.org/10.1158/0008-5472.CAN-18-0125
https://doi.org/10.1093/bib/bbw058
https://doi.org/10.1093/bib/bbw058
https://doi.org/10.1007/s11227-020-03214-0
https://doi.org/10.1016/j.asoc.2012.11.020
https://doi.org/10.1109/TBME.2011.2162330
https://doi.org/10.1109/TBME.2011.2162330
https://doi.org/10.1002/jmri.25870
https://doi.org/10.1016/j.compbiomed.2020.103751
https://doi.org/10.1016/j.compbiomed.2020.103751
https://doi.org/10.1016/j.jbi.2020.103479
https://doi.org/10.1016/j.cmpb.2019.04.016
https://doi.org/10.1016/j.eswa.2018.11.013
https://doi.org/10.1016/j.ejrad.2009.01.050

8530	 L. Rundo et al.

1 3

radiomics, radiogenomics, and habitat imaging. Clin Radiol 72(1):3–10. https​://doi.org/10.1016/j.
crad.2016.09.013

	46.	 Schellmann M, Gorlatch S, Meiländer D, Kösters T, Schäfers K, Wübbeling F, Burger M (2011)
Parallel medical image reconstruction: from graphics processing units (GPU) to grids. J Super-
comput 57(2):151–160. https​://doi.org/10.1007/s1122​7-010-0397-z

	47.	 Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng
19:221–248. https​://doi.org/10.1146/annur​ev-bioen​g-07151​6-04444​2

	48.	 Soh LK, Tsatsoulis C (1999) Texture analysis of SAR sea ice imagery using gray level
co-occurrence matrices. IEEE Trans Geosci Remote Sens 37(2):780–795. https​://doi.
org/10.1109/36.75219​4

	49.	 Sompong C, Wongthanavasu S (2017) An efficient brain tumor segmentation based on cel-
lular automata and improved tumor-cut algorithm. Expert Syst Appl 72:231–244. https​://doi.
org/10.1016/j.eswa.2016.10.064

	50.	 Stoyanova R, Takhar M, Tschudi Y, Ford JC, Solórzano G, Erho N, Balagurunathan Y, Punnen S,
Davicioni E, Gillies RJ et al (2016) Prostate cancer radiomics and the promise of radiogenomics.
Transl Cancer Res 5(4):432. https​://doi.org/10.21037​/tcr.2016.06.20

	51.	 Szczypiński PM, Strzelecki M, Materka A, Klepaczko A (2009) MaZda-a software package for
image texture analysis. Comput Methods Progr Biomed 94(1):66–76. https​://doi.org/10.1016/j.
cmpb.2008.08.005

	52.	 Tangherloni A, Spolaor S, Cazzaniga P, Besozzi D, Rundo L, Mauri G, Nobile MS (2019) Bio-
chemical parameter estimation vs. benchmark functions: a comparative study of optimization
performance and representation design. Appl Soft Comput 81:105494. https​://doi.org/10.1016/j.
asoc.2019.10549​4

	53.	 Tangherloni A, Spolaor S, Rundo L, Nobile MS, Cazzaniga P, Mauri G, Liò P, Merelli I, Besozzi D
(2019) GenHap: a novel computational method based on genetic algorithms for haplotype assembly.
BMC Bioinform 20:172. https​://doi.org/10.1186/s1285​9-019-2691-y

	54.	 Torheim T, Malinen E, Kvaal K, Lyng H, Indahl UG, Andersen EK, Futsæther CM (2014) Clas-
sification of dynamic contrast enhanced MR images of cervical cancers using texture analysis
and support vector machines. IEEE Trans Med Imag 33(8):1648–1656. https​://doi.org/10.1109/
TMI.2014.23210​24

	55.	 Trivedi MM, Harlow CA, Conners RW, Goh S (1984) Object detection based on gray level cooc-
currence. Comput Vis Graph Image Process 28(2):199–219. https​://doi.org/10.1016/S0734​
-189X(84)80022​-5

	56.	 Tsai HY, Zhang H, Hung CL, Min G (2017) GPU-accelerated features extraction from magnetic
resonance images. IEEE Access 5:22634–22646. https​://doi.org/10.1109/ACCES​S.2017.27566​24

	57.	 Vargas HA, Veeraraghavan H, Micco M, Nougaret S, Lakhman Y, Meier AA, Sosa R, Soslow RA,
Levine DA, Weigelt B et al (2017) A novel representation of inter-site tumour heterogeneity from
pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome. Eur
Radiol 27(9):3991–4001. https​://doi.org/10.1007/s0033​0-017-4779-y

	58.	 van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RG, Fillion-
Robin JC, Pieper S, Aerts HJ (2017) Computational radiomics system to decode the radiographic
phenotype. Cancer Res 77(21):e104–e107. https​://doi.org/10.1158/0008-5472.CAN-17-0339

	59.	 Vishnevskiy V, Walheim J, Kozerke S (2020) Deep variational network for rapid 4D flow MRI
reconstruction. Nat Mach Intell 2(4):228–235. https​://doi.org/10.1038/s4225​6-020-0165-6

	60.	 Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc
58(301):236–244. https​://doi.org/10.1080/01621​459.1963.10500​845

	61.	 Wehrens R, Buydens LM et al (2007) Self- and super-organizing maps in R: the Kohonen package. J
Stat Softw 21(5):1–19. https​://doi.org/10.18637​/jss.v021.i05

	62.	 Yankeelov TE, Mankoff DA, Schwartz LH, Lieberman FS, Buatti JM, Mountz JM, Erickson BJ,
Fennessy FM, Huang W, Kalpathy-Cramer J et al (2016) Quantitative imaging in cancer clinical tri-
als. Clin Cancer Res 22(2):284–290. https​://doi.org/10.1158/1078-0432.CCR-14-3336

	63.	 Yip SS, Aerts HJ (2016) Applications and limitations of radiomics. Phys Med Biol 61(13):R150.
https​://doi.org/10.1088/0031-9155/61/13/R150

	64.	 Zwanenburg A, Vallières M, Abdalah MA, Aerts HJ, Andrearczyk V, Apte A, Ashrafinia S, Bakas
S, Beukinga RJ, Boellaard R et al (2020) The image biomarker standardization initiative: standard-
ized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–
338. https​://doi.org/10.1148/radio​l.20201​91145​

https://doi.org/10.1016/j.crad.2016.09.013
https://doi.org/10.1016/j.crad.2016.09.013
https://doi.org/10.1007/s11227-010-0397-z
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1109/36.752194
https://doi.org/10.1109/36.752194
https://doi.org/10.1016/j.eswa.2016.10.064
https://doi.org/10.1016/j.eswa.2016.10.064
https://doi.org/10.21037/tcr.2016.06.20
https://doi.org/10.1016/j.cmpb.2008.08.005
https://doi.org/10.1016/j.cmpb.2008.08.005
https://doi.org/10.1016/j.asoc.2019.105494
https://doi.org/10.1016/j.asoc.2019.105494
https://doi.org/10.1186/s12859-019-2691-y
https://doi.org/10.1109/TMI.2014.2321024
https://doi.org/10.1109/TMI.2014.2321024
https://doi.org/10.1016/S0734-189X(84)80022-5
https://doi.org/10.1016/S0734-189X(84)80022-5
https://doi.org/10.1109/ACCESS.2017.2756624
https://doi.org/10.1007/s00330-017-4779-y
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1038/s42256-020-0165-6
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.18637/jss.v021.i05
https://doi.org/10.1158/1078-0432.CCR-14-3336
https://doi.org/10.1088/0031-9155/61/13/R150
https://doi.org/10.1148/radiol.2020191145

8531

1 3

A CUDA‑powered method for the feature extraction and…

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Leonardo Rundo1,2,3  · Andrea Tangherloni3,4,5,6  · Paolo Cazzaniga7,8  ·
Matteo Mistri3 · Simone Galimberti3 · Ramona Woitek1,2,9  · Evis Sala1,2  ·
Giancarlo Mauri3,8  · Marco S. Nobile3,8,10 

1	 Department of Radiology, University of Cambridge, Cambridge, UK
2	 Cancer Research UK Cambridge Centre, Cambridge, UK
3	 Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan,

Italy
4	 Department of Haematology, University of Cambridge, Cambridge, UK
5	 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
6	 Wellcome Trust – Medical Research Council Cambridge, Stem Cell Institute, Cambridge, UK
7	 Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
8	 SYSBIO/ISBE.IT Centre for Systems Biology, Milan, Italy
9	 Department of Biomedical Imaging and Image‑guided Therapy, Medical University Vienna,

Vienna, Austria
10	 Department of Industrial Engineering and Innovation Sciences, Eindhoven University

of Technology, Eindhoven, The Netherlands

http://orcid.org/0000-0003-3341-5483
http://orcid.org/0000-0002-5856-4453
http://orcid.org/0000-0001-7780-0434
http://orcid.org/0000-0002-9146-9159
http://orcid.org/0000-0002-5518-9360
http://orcid.org/0000-0003-3520-4022
http://orcid.org/0000-0002-7692-7203

	A CUDA-powered method for the feature extraction and unsupervised analysis of medical images
	Abstract
	1 Introduction
	2 Background
	2.1 Haralick features extraction
	2.2 The Self-Organizing Map

	3 The proposed GPU-accelerated method
	3.1 CUDA
	3.2 HaraliCU
	3.3 CUDA-SOM
	3.4 CHASM

	4 Experimental results
	4.1 Imaging dataset and tumoral habitats
	4.2 Computational results

	5 Conclusion
	Acknowledgements
	References

