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Abstract
Image texture extraction and analysis are fundamental steps in computer vision. 
In particular, considering the biomedical field, quantitative imaging methods are 
increasingly gaining importance because they convey scientifically and clinically 
relevant information for prediction, prognosis, and treatment response assessment. 
In this context, radiomic approaches are fostering large-scale studies that can have a 
significant impact in the clinical practice. In this work, we present a novel method, 
called CHASM (Cuda, HAralick & SoM), which is accelerated on the graphics pro-
cessing unit (GPU) for quantitative imaging analyses based on Haralick features 
and on the self-organizing map (SOM). The Haralick features extraction step relies 
upon the gray-level co-occurrence matrix, which is computationally burdensome on 
medical images characterized by a high bit depth. The downstream analyses exploit 
the SOM with the goal of identifying the underlying clusters of pixels in an unsu-
pervised manner. CHASM is conceived to leverage the parallel computation capa-
bilities of modern GPUs. Analyzing ovarian cancer computed tomography images, 
CHASM achieved up to ∼ 19.5× and ∼ 37× speed-up factors for the Haralick feature 
extraction and for the SOM execution, respectively, compared to the corresponding 
C++ coded sequential versions. Such computational results point out the potential 
of GPUs in the clinical research.
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1  Introduction

The use of high-performance computing (HPC) is gaining ground in high-dimen-
sional imaging data processing [16], as in the context of hyperspectral image pro-
cessing [5, 35] and medical image analysis [12]. In particular, for the specific case 
of medical imaging, along with the acceleration of the training of deep neural 
networks [47], graphics processing unit (GPU)-powered implementations allowed 
for real-time performance in image reconstruction [46, 59], segmentation [2], as 
well as feature extraction [42] and classification [22]. Moreover, multi-core and 
many-core architectures were exploited to accelerate computationally expensive 
medical image enhancement and quantification tasks [41, 52, 53].

Feature extraction is the first phase in quantitative imaging as it allows us to 
perform fundamental tasks in computer vision, such as object detection [55] and 
representation [48]. Even though deep learning has recently gained ground, con-
ventional machine learning models built on top of handcrafted texture features 
still play a key role in practical applications, especially relying upon the interpret-
ability of the results [54]. With particular reference to biomedicine, quantitative 
imaging methods are increasingly gaining importance since they convey scientifi-
cally and clinically relevant information for prediction, prognosis, and treatment 
response assessment [62]. In this context, radiomic approaches are endorsing the 
transition towards large-scale studies with a relevant impact in the clinical prac-
tice [26]. Indeed, radiomics involves the extraction and the analysis of a huge 
amount of features mined from medical images [25]. The ultimate goal is the 
objective and quantitative description of tumor phenotypes [13, 26]. Assuming 
that radiomic features convey information about the different cancer phenotypes, 
their combination with genomics can enable intra- and inter-tumor heterogeneity 
studies [45]. Among the radiomic texture feature classes [50], Haralick features 
are the most well-established and interpretable [18, 19]. These second-order sta-
tistics are based on the gray-level co-occurrence matrix (GLCM) that stores the 
co-occurrence frequency of similar intensity levels over the region (i.e., inten-
sity value pairs). In radiology, Haralick features allow clinicians to assess image 
regions characterized by heterogeneous/homogeneous areas or local intensity var-
iations [6]. GLCM-based texture features have been extensively exploited in sev-
eral medical image analysis tasks, such as breast ultrasound (US) classification 
[15], brain tissue and tumor segmentation on magnetic resonance (MR) images 
[36, 49], and volume-preserving non-rigid lung computed tomography (CT) 
image registration [37]. Unfortunately, the computation of these features is con-
siderably burdensome on images characterized by a high bit depth (e.g., 16 bits), 
such as in the case of medical images that have to convey detailed visual informa-
tion [31, 43]. As a matter of fact, with the existing computational tools, the range 
of intensity values of an image must be reduced and limited to achieve an efficient 
radiomic feature computation [63].

In addition, considering the downstream analyses of the extracted (handcrafted 
or learned) features, numerous machine learning models can be employed in the 
context of computer vision [32]. Kohonen self-organizing maps (SOMs) [24] are 
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one of most effective techniques that were applied to biomedical data clustering 
[3]. A SOM is a special class of artificial neural networks based on the idea of 
“competitive” learning, able to self-organize the weights in an unsupervised fash-
ion, leading to a spontaneous partitioning of the dataset according to the mutual 
similarities of the input vectors. SOMs have been used for the analysis of medical 
images, especially in segmentation tasks in combination with unsupervised clus-
tering [1, 27] or evolutionary computation techniques [36].

Several radiomics toolboxes are available, such as MaZda [51], written in C++, 
the Computational Environment for Radiological Research (CERR) in MATLAB [4, 
10], PyRadiomics in Python [58], and Local Image Feature Extractor (LIFEx) in 
Java [33]. Importantly, considering 16-bit images, these tools are not suitable for 
the extraction of the voxel-based feature maps by preserving the initial grayscale 
range. This limitation is emphasized when dealing with feature extraction tasks on 
the whole input image, especially for image classification purposes [30].

In this work, we propose a novel GPU-powered pipeline, called CHASM, for the 
Haralick feature extraction and the downstream unsupervised SOM-based analy-
sis of the feature maps computed on medical images. CHASM exploits HaraliCU 
[42], a GPU-enabled approach, capable of overcoming the issues of existing tools 
by effectively computing the feature maps for high-resolution images with their full 
dynamics of grayscale levels, and CUDA-SOM, a GPU-based implementation of 
the SOMs for the identification of clusters of pixels in the image. CHASM offloads 
the computations onto the cores of GPUs, thus allowing us to drastically reduce the 
running time of the analyses executed on central processing units (CPUs). In the 
experimental tests performed on ovarian cancer CT images [39], CHASM allowed 
us to achieved up to 20× speed-up with respect to the corresponding sequential 
implementation.

The remainder of the manuscript is organized as follows: Section 2 introduces the 
basic concepts on Haralick features extraction and on the SOMs. Section 3 describes 
the proposed GPU-accelerated pipeline, and the obtained results are shown and dis-
cussed in Sect. 4. Finally, concluding remarks and future directions are provided in 
Sect. 5.

2 � Background

2.1 � Haralick features extraction

Haralick features are GLCM-based texture descriptors that are used to analyze the 
textural characteristics of an image according to second-order statistics [18, 19]. In 
medical imaging, these features have shown an appropriate characterization of the 
cancer imaging phenotype [42]. For instance, the entropy feature is the most promis-
ing quantitative imaging biomarker for the analysis of the heterogeneity character-
izing cancer imaging [11].

Haralick features are computed from the GLCM, which denotes the co-occur-
rence frequency of similar intensity levels over the analyzed region. The study con-
ducted in [14] pointed out the existing dependencies among the Haralick features, 
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highlighting how they can be exploited to perform calculations pertaining to other 
features or intermediate results [42]. Nevertheless, a quantization step (i.e., the com-
pression of the initial intensity range) is generally applied for practical reasons [64], 
leading to an irreversible loss of information. Even though Brynolfsson et al. stated 
that the impact of noise is reduced by quantizing the grayscale levels, allowing for 
obtaining more descriptive Haralick features in MR images, this compression could 
remarkably affect the discriminative power of the feature-based classification tasks 
[20]. In any case, the grayscale compression is mostly applied to deal with the com-
putational costs that would be required to calculate these features considering the 
full grayscale dynamics.

In order to speed up the calculation of Haralick features, HPC solutions can 
be exploited. For instance, GPUs have been intensively leveraged, being effective 
computational solutions in life sciences [12, 34]. In the context of Haralick fea-
ture extraction on GPUs, different optimization strategies have been presented. For 
instance, a packed representation of the symmetric GLCM was proposed to only 
store nonzero elements [14]. By so doing, a simple lookup table, which maps the 
index of the packed co-matrix, was used to calculate the features reducing the laten-
cies due to memory reads and increasing the overall performances. This efficient 
implementation allowed for calculating the Haralick features on 12-bit intensity 
depth images. Another strategy to store the GLCM consists in the meta-GLCM 
array proposed by Tsai et al. [56], which uses an indirect encoding scheme that fully 
exploits the GPU memory hierarchy.

The valuable amount of information conveyed by medical images, in terms of 
both image resolution and pixel depth, should be maintained for automated process-
ing [43], since clinically useful pictorial content could be identified in addition to 
the naked eye perception. For these motivations, HaraliCU [42] was developed aim-
ing at efficiently keeping the full dynamics of the gray levels (i.e., 16  bits in the 
case of biomedical images). HaraliCU was tested on brain metastatic tumor MR and 
ovarian cancer CT images.

2.2 � The Self‑Organizing Map

The Kohonen SOM [24] is an unsupervised machine learning approach used to per-
form classification tasks according to the similarity of the data. Technically, a SOM 
is a class of artificial neural network able to produce low-dimensional (traditionally, 
bi-dimensional) and discrete representation of the input space.

One important distinction compared to other neural networks is that SOMs 
exploit a paradigm named competitive learning, which is radically different with 
respect to classic methods relying upon the minimization of the error by means of 
gradient descent approaches. Specifically, a SOM is composed of a network of K 
artificial neurons named units. Usually, the units are all interconnected and logically 
organized as a M × N square or hexagonal grid. Additionally, an input layer com-
posed of D artificial neurons is fully connected to all the units in the SOM, where D 
is equal to the length of the input samples.
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At the beginning of the learning phase, K random weight vectors, �k ∈ ℝ
D , 

k = 1,… ,K , are initialized and associated with the units of the network. Then, 
each input vector � ∈ ℝ

D in the data set is presented to all units in the SOM. The 
unit with the most similar weights to the input vector becomes the best matching 
unit ( BMU ). In our implementation, we assume a similarity based on an Euclid-
ean distance, i.e.,

Once the BMU is identified, the weights in the network are adjusted toward the 
input vector using Eq. (2):

where �(t) is the learning rate at the iteration t. In this work, we used a linearly 
decreasing learning rate defined as:

with �(0) = 1 ⋅ 10−1 and �(tmax) = 1 ⋅ 10−3 . The function �k(BMU, t) denotes the lat-
eral interaction between the BMU and the unit k during the iteration t. Note that only 
the units in the set of neighbors of the BMU are updated using Eq. (2). In this work, 
we exploited the following interaction function:

where �(t) = �(0) − (�(0)
t

tmax

) . In our implementation, we also used an internal heu-
ristics that calculates the initial � as:

and sets �(tmax) = 0.
Once all weights are updated, the SOM proceeds by analyzing the next sample. 

The learning algorithm iterates until a stopping criterion is met. In this work, we 
run the algorithm for tmax = 100 iterations.

Relying upon this peculiar type of learning algorithm—which does not require 
the samples to be labeled as units that spontaneously self-organize to represent 
prototypes of the input vectors—SOMs are well-suited for unsupervised learning. 
As a matter of fact, at the end of the learning process, the samples will be associ-
ated with their BMUs in such a way that similar input vectors (with respect to the 
Euclidean distance) will find place in similar units.

There exist several implementations of SOMs, e.g., the kohonen package for R 
[61]; the KNLL and SOMpp for C++; the MiniSom and PyCluster libraries for 
Python [9]. These CPU-based implementations suffer from two main limitations: 

(1)BMU = argmin
k

||� − �k||.

(2)�k(t + 1) = �k(t) + �(t)�k(BMU, t)(� − �k(t)),

(3)�(t) = �(0) − (�(0) − �(tmax))

(
t

tmax

)
,

(4)�k(BMU, t) = exp

(
−
||k − BMU||2

2�(t)2

)
,

(5)�(0) = 1 +

(
max{M,N}

3

)
,
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(1) the computational burden associated with the SOM learning algorithm and (2) 
the data structures employed, resulting in a very high memory footprint, which 
increases along with the size of the network.

Various GPU-based implementations of the SOM have been presented in the lit-
erature; for instance, in [29], the authors assessed the performance of their GPU 
version, which parallelizes distance finding, reduction operation to identify the mini-
mum value, and weights adjust, allowing them to speed up the computation up to 
∼ 32× with respect to the CPU. In [8], the authors proposed a parallelization of both 
the learning and clustering algorithms and applied it to MR image segmentation, 
achieving up to 90× speed up with respect to a MATLAB implementation running 
on the CPU. Unfortunately, both previous works present custom GPU implemen-
tations of the SOM, tailored to specific problems. We thus propose here CUDA-
SOM as a general-purpose implementation of the SOM accelerated on GPUs using 
CUDA, freely, and publicly available.

3 � The proposed GPU‑accelerated method

In this section, we first outline the main CUDA characteristics; then, our GPU 
implementations of the Haralick feature extraction and SOMs are described in 
detail. Finally, we present the CHASM framework for medical image analysis.

3.1 � CUDA

NVIDIA CUDA is a parallel computing platform and programming model based on 
many-core streaming multiprocessors (SMs), which adheres to the single instruc-
tion multiple data (SIMD) architecture [28]. In CUDA, the CPU (host) offloads the 
parallel calculations onto one or more GPUs (devices) by using kernels, which are 
functions launched from the host and replicated so that each GPU thread can run the 
same code at the same time.

In CUDA, the threads are organized into three-dimensional structures called 
blocks, which, in turn, compose three-dimensional grids. The CUDA scheduler 
assigns blocks to the different SMs, which ultimately run them. In each SM, the 
threads are divided into warps, which are tight groups of 32 threads, executed in 
locksteps. Considering the CUDA execution pattern, any possible divergent path 
taken by some threads in a warp should be removed to avoid the serialization of the 
execution, which would result in a decrease in the overall performance.

CUDA has a complex memory hierarchy divided into multiple memory types, 
which have their own advantages and drawbacks. For instance, the shared memory 
is very small but has very low access latency, and it is generally used for intra-block 
communications. The global memory is large and characterized by high access 
latency; however, it is visible by all threads and can be used for inter-block commu-
nications as well as for communications between the host and the devices. Consider-
ing these peculiarities, the data structures should be carefully optimized to reach the 
theoretical peak performance of the GPU [34].
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3.2 � HaraliCU

HaraliCU is a GPU-powered tool that realizes an efficient computation of the 
GLCM and the extraction of an exhaustive set of the Haralick features [42]. The 
user has granted full control over the settings of HaraliCU, i.e., the distance offset 
� , the orientation � , and the window size � × � , while the neighborhood N  is 
defined according to � and � . In addition, the user can decide the padding con-
ditions (e.g., zero padding or symmetric padding) and the number of quantized 
gray-level Q.

HaraliCU exploits an effective and efficient encoding, to mitigate the memory 
requirements related to the allocation of a GLCM having 216 rows and columns for 
each sliding window, and to the size of each GLCM, which is strictly related to 
the number of different gray levels inside the considered sliding window. Such an 
encoding removes all zero elements inside the GLCM and consists in storing each 
GLCM in a list-based data structure where each element is a pair ⟨��������, ����⟩ , 
with �������� being a couple ⟨i, j⟩ of gray levels and ���� the corresponding fre-
quency of the considered sliding window. Overall, the number of elements com-
posing the GLCM is equal to the number of pairs ⟨���������, ��������⟩ that can 
be identified inside the sliding window, considering the distance � (see [42] for 
additional information).

The parallelization on the GPU is realized by assigning each pixel of the input 
image to a thread, since there are no dependencies between the sliding win-
dows. By so doing, each thread computes all features related to its pixel, which 
is the center of the corresponding window. To fully exploit the GPU accelera-
tion, HaraliCU makes use of a bi-dimensional structure for both the number of 
blocks and the number of threads. In particular, the number of threads is set to 
16 for both the components of the bi-dimensional structure, taking into account 
the CUDA warp size (i.e., 32 threads) and the limited number of registers, while 
the number of blocks is set according to the number of the pixels ( #pixels ) of the 
input image.

HaraliCU is an open-source software that can be freely downloaded from 
GitHub at the following address: https​://githu​b.com/andre​a-tango​/Haral​iCU. 
Instructions for the compilation and execution of HaraliCU are provided in the 
same Web page. HaraliCU requires a NVIDIA GPU along with the version 8 of 
CUDA (or greater) and the OpenCV library [23] version 3.4.1 (or greater).

3.3 � CUDA‑SOM

CUDA-SOM is a GPU-based implementation of the self-organizing map [24], 
where the learning algorithm of the network is parallelized by means of specific ker-
nels that deal with the calculations required to compute the distance between sam-
ples and neuron’s weights and to update the network when the BMU is identified.

CUDA-SOM supports two GPU-accelerated learning modalities, named online 
and batch:

https://github.com/andrea-tango/HaraliCU
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•	 In the online mode, the weights of the network are updated after each input 
vector is processed;

•	 In the batch mode, the network is updated after the whole training set is ana-
lyzed.

Although the batch mode is characterized by a slower convergence compared to 
online mode, it allows for a higher degree of parallelization, since all calculations of 
the BMUs for all input vectors can be parallelized across the CUDA cores. For this 
reason, in this work we exploited the batch mode.

The CUDA kernels implemented in CUDA-SOM allow us to minimize the data 
transfer between host and device, to the results of the computation, thus reducing the 
impact of moving data across the PCI-e bus. Moreover, our implementation exploits 
the Thrust library of CUDA for array scan and reduction, so that the computational 
time can be further reduced.

CUDA-SOM implements numerous variants of the Kohonen maps. Moreover, 
even though it integrates several heuristics for the automatic configurations, the user 
can select a wide array of optional parameters, notably number of neurons; rows and 
columns of the network; initial and final learning rates; maximum number of itera-
tions of the learning process; radius of the updating function; type of distances used 
for BMU (e.g., Euclidean, Manhattan, Tanimoto); type of neighbor function (Gauss-
ian, bubble, Mexican hat); type of lattice (square or hexagonal); type of boundary 
conditions (e.g., toroidal); linear of exponential decay, for both the radius and the 
learning rate; whether to perform a normalization on the input vectors or not. More-
over, CUDA-SOM gives control on some CUDA-specific settings, e.g., the GPU to 
be used for the calculations (in the case of multi-GPU systems), or the number of 
threads per block.

CUDA-SOM is open source and available for downloading on GitHub at the fol-
lowing address: https​://githu​b.com/mistr​ello9​6/CUDA-SOM.

3.4 � CHASM

The proposed pipeline begins by extracting the features from the input image by 
using HaraliCU, which exploits the GPU acceleration. Then, the features of all pix-
els are transferred on the CPU for further processing. For each pixel, the features 
are averaged across all directions and linearized. The feature vectors of all pixels are 
then fed to CUDA-SOM, which performs the unsupervised learning on the GPU. 
The information about the BMUs for each pixel is returned to the CPU, where it is 
clustered and mapped onto the original image. The overall functioning of CHASM 
is schematized in Fig. 1.

In this work, we extract the following 16 Haralick features [18, 19], which are 
then considered for the unsupervised learning [42]: angular second moment, auto-
correlation, cluster prominence, cluster shade, contrast, difference entropy, differ-
ence variance, dissimilarity, entropy, homogeneity, inverse difference moment, max-
imum probability, sum of average, sum of entropy, sum of squares, sum of variance.

https://github.com/mistrello96/CUDA-SOM
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The mathematical definitions of the features are provided in Supplemen-
tary Materials. Since all the medical images analyzed by CHASM have 
size 512 × 512 pixels, each pixel yields an input vector characterized by 
16 × 512 × 512 = 4, 194, 304 features.

Once the learning process is completed and the BMUs for each input vector 
are identified, a count plot can be created. In this particular graphical representa-
tion, each sample is plotted and assigned to its corresponding BMU. A darker 
color corresponds to a higher number of samples assigned to the same BMU (see 
Fig. 2a). Another representation of the outcome of a learning process is the so-
called U-matrix, wherein the regions with high inter-neighbor distance are rep-
resented with a lighter color. The U-matrix is helpful to provide a visual insight 
into the boundaries between groups of similar neurons (see Fig.  2b). By using 
agglomerative clustering, these groups can be identified, and the samples belong-
ing to each unit can be automatically assigned to the proper cluster. The outcome 
of this process is shown in Fig. 2c. In this work, we exploited the agglomerative 
clustering implemented in the scikit-learn package, using Euclidean affinity and 
the Ward linkage criterion [60].

Extract image features 
with HaraliCU

Calculate mean features 
in all directions 

for all pixels

Create feature vectors 
for all pixels

Process the feature 
vectors with CUDA-SOM

Cluster the SOM units 
according to

weight distances

Map the pixels in each 
cluster on the
original image

Steps performed on the CPU

Steps performed on the GPU

Fig. 1   Scheme of CHASM’s functioning. The green blocks are executed on the GPU, while the blue 
dashed blocks are executed on the CPU

Fig. 2   Examples of results of the unsupervised learning process: a count plot, created according to the 
number of input vectors assigned to each unit; b corresponding U-matrix; c result of the clustering of the 
units according to weight distances. The information about which pixels are assigned to each cluster is 
then mapped onto the original figure
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4 � Experimental results

As described in the previous section, we validated HaraliCU by comparing the 
values of the features contrast, correlation, energy, and homogeneity with those 
extracted using the built-in functions graycomatrix.

4.1 � Imaging dataset and tumoral habitats

For the tests presented here, we considered a medical dataset composed of axial con-
trast-enhanced CT series of patients with high-grade serous ovarian cancer (matrix 
size: 512 × 512 pixels, pixel spacing: ∼ 0.65 × 0.65mm2 , slice thickness: 5.0 mm). 
All the CT images were encoded in the Digital Imaging and Communications in 
Medicine (DICOM) format with an intensity depth of 16 bits. Texture features have 
shown the ability of evaluating intra- and inter-tumor heterogeneity [39, 57]. Pelvic 
lesions only were selected for this work.

Figure 3 shows two examples of the input CT images along with the correspond-
ing tumoral habitats. In order to simplify the visual interpretation of the results, we 
used a uniform color coding for the spurious pixels included in disconnected clus-
ters. It is appreciable how CHASM can find patterns to represent both intra-tumoral 
(Fig. 3a) and inter-tumoral heterogeneity (Fig. 3a) across disconnected lesions.

4.2 � Computational results

The computational performance of the pipeline presented in this work was assessed 
by independently considering the two steps parallelized on the GPU: Haralick fea-
ture extraction and unsupervised SOM-based image pixel clustering.

Fig. 3   Examples of CT images with the pelvic lesions outlined by the green contour. The corresponding 
tumoral habitats, resulting from the unsupervised SOM-based clustering, are overimposed onto the input 
CT image and displayed at the bottom right of each sub-figure: a tumor composed of a single connected 
component; b tumor composed of two connected components
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HaraliCU The CUDA-based version of the Haralick feature extraction, 
employed in our pipeline, was tested against a CPU version coded in C++, which 
resulted extremely efficient with respect to the MATLAB version, based on the 
graycomatrix and graycoprops functions, to extract Haralick features on 
brain metastasis MR images [42]. As a matter of fact, by varying the grayscale 
range from 24 to 29 levels, we achieved speed-up values around 50× and 200× , 
respectively.

The GPU version of HaraliCU was executed on an NVIDIA GeForce GTX Titan 
X (3072 cores, clock 1.075 GHz, 12 GB of RAM), CUDA toolkit version 8 (driver 
387.26), running on a workstation with Ubuntu 16.04 LTS, equipped with a CPU 
Intel Core i 7 − 2600 (clock 3.4  GHz) and 8  GB of RAM. The CPU version was 
run on the same workstation, relying upon the computational power provided by the 
CPU Intel Core i 7 − 2600 . The CPU version was compiled by using the GNU C++ 
compiler (version 5.4.0) with optimization flag -O3, while the GPU version was 
compiled with the CUDA Toolkit 8 by exploiting the optimization flag -O3 for both 
CPU and GPU codes.

In order to collect statistically sound results and take into consideration the vari-
ability and heterogeneity typically characterizing medical images, we randomly 
selected 30 images from 3 different patients (10 per patient) affected by brain metas-
tases and 30 images from 3 different patients affected by ovarian cancer. We tested 
both the CPU and GPU versions by considering various window sizes, that is, 
� ∈ {3, 7, 11, 15, 19, 23, 27, 31} , as well as two different intensity levels (i.e., 28 and 
216 ). For each combination of � and intensity levels, we also enabled and disabled 
the GLCM symmetry to evaluate how the symmetry affects the running time.

The speed-up achieved by HaraliCU considering only 28 intensity levels increases 
almost linearly up to � = 19 (data not shown, see [42] for details); by disabling the 
GLCM symmetry and using � = 31 , we obtained the highest speed-ups of 12.74× 
and 12.71× on brain metastasis ( 256 × 256 pixels) and ovarian cancer images 
( 512 × 512 pixels), respectively. When the full dynamics of the grayscale levels 
(i.e., 216 ) is considered, HaraliCU outperforms the sequential counterpart, achiev-
ing speed-ups up to 15.80× with � = 31 and 19.50× with � = 23 , on brain metas-
tasis and ovarian cancer images, respectively. Taking into account ovarian cancer 
images, when � is greater than 23 pixels, the speed-up decreases for two reasons. 
First, since a thread is launched for each pixel, it must consider more neighbor pixels 
that might have very different gray-level intensities. This corresponds with increas-
ing the required workload that each thread must perform; however, considering that 
the GPU cores have a lower clock frequency than the CPU cores, the speed-up is 
clearly reduced. Second, the GPU resources are saturated as the GLCM size asso-
ciated with each thread may increase due to the high full-dynamic range. In this 
specific situation, the total GLCM size might overwhelm the capacity of the global 
memory and some threads might handle different pixels, thus computing the corre-
sponding Haralick features in a sequential way.

CUDA-SOM The performance of CUDA-SOM was assessed by comparing it to 
a C++ version, running on a single core of the CPU, specifically developed for this 
work, since the available R implementation of the SOM is limited to a network size 
of 150 × 150 neurons.
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We first run a batch of tests to the aim of analyzing the impact of the number 
of samples and the size of the SOM on the computational time. We employed a 
machine equipped with 16 GB of RAM, a CPU Intel Core i7 4790k (clock 4.4 Ghz), 
and an NVIDIA GeForce 1050ti (768 cores, clock 1.392 GHz, 4 GB of RAM).

As reported in Table 1, the running time of the C++ version is lower in the case 
of small size SOMs (i.e., 20 × 20 neurons), while the GPU allows us to reduce 
the computation time, up to 5.75× , when a SOM having size 300 × 300 neurons 
is trained with 120,000 samples. Additional tests (data not shown) confirmed the 
trend observed, as the speed-up further increases to ∼ 7× with a SOM having size 
400 × 400 neurons.

As a second batch of tests, we compared the performance of different NVIDIA 
GPUs, i.e., Titan Z ( 2 × 2880 cores, clock 0.876  GHz, 6  GB of RAM), Titan X 
(GM200, 3072 cores, clock 1.075 GHz, 12 GB of RAM), GeForce 1050ti (768 cores, 
clock 1.392 GHz, 4 GB of RAM), GeForce 1080ti (3584 cores, clock 1582 GHz, 
11 GB of RAM), when executing CUDA-SOM with different SOM sizes, consider-
ing 60,000 samples and 7 features.

Table 2 reports the speed-up values achieved by each GPU with respect to the 
C++ implementation. As expected, in the case of small-size SOMs, the CPU was 
more convenient than the GPUs; moreover, the GeForce 1080ti obtained the best 
results, by exploiting its highest clock frequency, achieving 10× speed-up in the case 
of the SOM with 400 × 400 neurons.

Considering the analysis performed on medical images, in the case of ovar-
ian cancer CT, the running time (including file loading) was of 79 and 1020  s in 
the case of 100 and 1000 iterations, respectively. To understand the advantage of 

Table 1   Running time required 
by the C++ and GPU versions 
of SOM, by varying the number 
of samples used to train the 
network and the number of 
neurons

Samples SOM size CPU (s) GPU (s) Speed-up

30,000 20 × 20 50 144 0.34×

60,000 20 × 20 101 288 0.35×

120,000 20 × 20 859 2479 0.34×

30,000 150 × 150 1424 486 2.93×

60,000 150 × 150 2928 980 2.98×

120,000 150 × 150 5736 1950 2.94×

30,000 300 × 300 10318 1798 5.73×

60,000 300 × 300 19978 3478 5.74×

120,000 300 × 300 39920 6940 5.75×

Table 2   Speed-up achieved by 
CUDA-SOM using different 
GPUs compared to the C++ 
implementation

SOM size Titan Z Titan X 1050ti 1080

20 × 20 0.16 0.21 0.33 0.34
80 × 80 1.48 1.72 2.27 2.85
250 × 250 4.98 4.78 5.00 7.66
400 × 400 6.86 6.61 6.70 10.03
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CUDA-SOM, consider that the running time of the same SOM algorithm, imple-
mented with C++ and OpenMP, is 2956 s to complete 100 iterations. This reduction 
in the running time corresponds to a 37× speed-up.

CUDA-SOM was executed on an NVIDIA Tesla P100 (3584 cores, clock 
1.329 GHz, 16 GB of RAM), CUDA toolkit version 8 (driver 440.95.01), running on 
a computer node of the Cambridge Service for Data Driven Discovery (CSD3) with 
Scientific Linux 7. Each node is equipped with a single CPU Intel Xeon E5-2650 v4 
(clock 2.2 GHz), 94 GB of RAM, and up to 4 NVIDIA Tesla P100 GPUs. The CPU 
version was run on the same node, relying upon the computational power provided 
by the CPU Intel Xeon E5-2650 v4. The CPU version was compiled by using the 
GNU C++ compiler (version 5.4.0) with optimization flag -O3, while the GPU ver-
sion was compiled with the CUDA Toolkit 8.0 by exploiting the optimization flag 
-O3 for both CPU and GPU codes.

5 � Conclusion

Image texture extraction and analysis is playing a key role in quantitative biomedi-
cine, leading to valuable applications in radiomics [13, 25, 26] and radiogenomics 
[38, 44] research, by also combining heterogeneous sources of information. There-
fore, advanced computerized medical image analysis methods, specifically designed 
to deal with the massive amount of extracted features, as well as to discover intrinsic 
patterns in the analyzed data, could be beneficial for the definition of imaging bio-
markers, which support clinical decision making towards precision medicine [40]. 
However, these large-scale studies need efficient techniques to drastically reduce the 
prohibitive running time that is typically required.

In this work, we presented a novel method, named CHASM, which combines two 
CUDA-based computationally efficient approaches capable of effectively exploiting 
the power of the modern GPUs: (i) HaraliCU, which is used for Haralick features 
extraction and allows for accelerating the GLCM computation while keeping the full 
dynamic range in medical images; (ii) CUDA-SOM, which is exploited for unsuper-
vised image pixel clustering, reduces the running time by leveraging the paralleli-
zation of the learning process of the network. Our pipeline was tested on a dataset 
composed of ovarian cancer CT images. Exploiting the GPU used during the two 
most computationally demanding phases of the pipeline, we achieved speed-ups up 
to 19.50× with HaraliCU and up to 37× with CUDA-SOM, compared to the CPU 
version implemented in C++, on our dataset.

As a future development, we plan to improve HaraliCU by exploiting the vec-
torization of the input image matrices for a better GPU thread block managing. In 
order to enhance the scalability of the proposed approach, the dynamic parallelism, 
supported by CUDA, could be exploited to further parallelize the computations as 
soon as the workload increases (e.g., high window size). Moreover, even though 
the spatial and temporal locality are already exploited during the GLCM construc-
tion process, based on the sliding window, the usage of the GPU memory hierarchy 
might be optimized [17]. For what concerns CUDA-SOM, the main limitation of 
the tool is that it currently loads the whole dataset before launching the learning 
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process. Because of that, CUDA-SOM might crash when the dataset exceeds the 
available GPU memory. We are therefore improving the implementation to read 
and stream the input vectors during the learning phase, in order to work with data-
sets of arbitrary size. To further accelerate the learning process, we will also extend 
CUDA-SOM to leverage low-latency memories (i.e., shared memory and constant 
memory). Finally, all the computational steps, depicted by the blue dashed blocks 
in Fig. 1, are currently executed on the CPU and represent a bottleneck of CHASM. 
We plan to develop them in CUDA to additionally accelerate the whole pipeline.

Considering the biological validation of the texture-derived tumoral habitats [7], 
the combination of the imaging phenotype and genotype might unravel intra-/inter-
tumor heterogeneity, as well as provide valuable insights into treatment response 
[21, 45], by effectively exploiting advanced computational techniques in oncology 
[3].
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