Skip to main content
Log in

Parallel source separation system for heart and lung sounds

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In this paper, we propose a parallel source separation system designed to extract heart and lung sounds from single-channel mixtures. The proposed system is based on a non-negative matrix factorization (NMF) approach and a clustering strategy together with a soft-masking filtering. Furthermore, we propose an offline and online implementation of the framework which can be applied in many real-time scenarios, such as the extraction of clinical parameters, remote auscultation and breath sound analysis. Experimental results show that it is possible to achieve fast execution times, which enable a real-time behavior, combining parallel and high-performance techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. https://www.openblas.net.

  2. http://www.fftw.org.

References

  1. Alonso P, Cortina R, Rodríguez-Serrano FJ, Vera-Candeas P, Alonso-González M, Ranilla J (2017) Parallel online time warping for real-time audio-to-score alignment in multi-core systems. J Supercomput 73(1):126–138. https://doi.org/10.1007/s11227-016-1647-5

    Article  Google Scholar 

  2. Alonso P, Vera-Candeas P, Cortina R, Ranilla J (2016) An efficient musical accompaniment parallel system for mobile devices. J Supercomput 73(1):1–11. https://doi.org/10.1007/s11227-016-1865-x

    Article  Google Scholar 

  3. Ayari F, Ksouri M, Alouani AT (2012) Lung sound extraction from mixed lung and heart sounds FASTICA algorithm. In: 2012 16th IEEE Mediterranean Electrotechnical Conference, pp 339–342. IEEE. https://doi.org/10.1109/MELCON.2012.6196444

  4. Barabasa C, Jafari M, Plumbley MD (2012) A robust method for S1, S2 heart sounds detection without ECG reference based on music beat tracking. In: 2012 10th International Symposium on Electronics and Telecommunications, pp 307–310. IEEE. https://doi.org/10.1109/ISETC.2012.6408110

  5. Blackford LS, Demmel J, Dongarra J, Duff I, Hammarling S, Henry G, Heroux M, Kaufman L, Lumsdaine A, Petitet A, Pozo R, Remington K, Whaley RC (2001) An updated set of basic linear algebra subprograms (BLAS). ACM Trans Math Softw 28:135–151

    MathSciNet  Google Scholar 

  6. Canadas-Quesada F, Ruiz-Reyes N, Carabias-Orti J, Vera-Candeas P, Fuertes-Garcia J (2017) A non-negative matrix factorization approach based on spectro-temporal clustering to extract heart sounds. Appl Acoust 125:7–19. https://doi.org/10.1016/j.apacoust.2017.04.005. https://linkinghub.elsevier.com/retrieve/pii/S0003682X16304923

  7. Charbonneau G, Racineux JL, Sudraud M, Tuchais E (1983) An accurate recording system and its use in breath sounds spectral analysis. J Appl Physiol 55(4):1120–1127. https://doi.org/10.1152/jappl.1983.55.4.1120

    Article  Google Scholar 

  8. Charleston-Villalobos S, Dominguez-Robert LF, Gonzalez-Camarena R, Aljama-Corrales AT (2006) Heart sounds interference cancellation in lung sounds. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp 1694–1697. IEEE. https://doi.org/10.1109/IEMBS.2006.259357

  9. Chien JC, Huang MC, Lin YD, Chong FC (2006) A study of heart sound and lung sound separation by independent component analysis technique. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp 5708–5711. IEEE. https://doi.org/10.1109/IEMBS.2006.260223. http://ieeexplore.ieee.org/document/4463102/

  10. Dagum L, Menon R (1998) OpenMp: an industry standard API for shared-memory programming. IEEE Comput Sci Eng 5(1):46–55

    Article  Google Scholar 

  11. Févotte C, Bertin N, Durrieu JL (2009) Nonnegative matrix factorization with the Itakura–Saito divergence: with application to music analysis. Neural Comput 21(3):793–830. https://doi.org/10.1162/neco.2008.04-08-771

    Article  MATH  Google Scholar 

  12. Frigo M, Johnson SG (2005) The design and implementation of fftw3. Proc IEEE 93(2):216–231

    Article  Google Scholar 

  13. Gavriely N, Palti Y, Alroy G (1981) Spectral characteristics of normal breath sounds. J Appl Physiol 50(2):307–314. https://doi.org/10.1152/jappl.1981.50.2.307

    Article  Google Scholar 

  14. Grais EM, Erdogan H (2011) Single channel speech music separation using nonnegative matrix factorization and spectral masks. In: 2011 17th International Conference on Digital Signal Processing (DSP), pp 1–6. IEEE. https://doi.org/10.1109/ICDSP.2011.6004924

  15. Hedayioglu FL, Jafari MG, Mattos SS, Plumbley MD, Coimbra MT (2011) Separating sources from sequentially acquired mixtures of heart signals. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 653–656. IEEE. https://doi.org/10.1109/ICASSP.2011.5946488

  16. Hossain I, Moussavi Z (2003) An overview of heart-noise reduction of lung sound using wavelet transform based filter. In: Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), pp 458–461. IEEE. https://doi.org/10.1109/IEMBS.2003.1279719

  17. Lin C, Hasting E (2013) Blind source separation of heart and lung sounds based on nonnegative matrix factorization. In: 2013 International Symposium on Intelligent Signal Processing and Communication Systems, pp 731–736. IEEE. https://doi.org/10.1109/ISPACS.2013.6704646

  18. Peeters G (2004) A large set of audio features for sound description. Tech. rep. https://doi.org/10.1234/12345678

  19. Pourazad M, Moussavi Z, Farahmand F, Ward R (2005) Heart sounds separation from lung sounds using independent component analysis. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp 2736–2739. IEEE. https://doi.org/10.1109/IEMBS.2005.1617037

  20. Rudnitskii AG (2014) Using nonlocal means to separate cardiac and respiration sounds. Acoust Phys 60(6):719–726. https://doi.org/10.1134/S1063771014050121

    Article  Google Scholar 

  21. Salazar AJ, Alvarado C, Lozano FE (2012) System of heart and lung sounds separation for store-and-forward telemedicine applications. Rev Fac Ingen 64:175–181

    Google Scholar 

  22. San Juan P, Vidal A, Garcia-Molla V (2017) Updating/downdating the nonnegative matrix factorization. J Comput Appl Math 318:59–68. https://doi.org/10.1016/j.cam.2016.11.048. https://www.sciencedirect.com/science/article/pii/S0377042716305908

  23. Shah G, Koch P, Papadias CB (2015) On the blind recovery of cardiac and respiratory sounds. IEEE J Biomed Health Inf 19(1):151–157. https://doi.org/10.1109/JBHI.2014.2349156. http://ieeexplore.ieee.org/document/6879427/

  24. Shah G, Papadias C (2013) Separation of cardiorespiratory sounds using time-frequency masking and sparsity. In: 2013 18th International Conference on Digital Signal Processing (DSP), pp 1–6. IEEE. https://doi.org/10.1109/ICDSP.2013.6622792

  25. Sibu T, Nishi S (2012) Detection and elimination of heart sound from lung sound based on wavelet multi resolution analysis technique and linear prediction. Int J Res Publ 1(10):28–33

    Google Scholar 

  26. Tracey BH, Miller EL (2012) Nonlocal means denoising of ECG signals. IEEE Trans Biomed Eng 59(9):2383–2386. https://doi.org/10.1109/TBME.2012.2208964. http://ieeexplore.ieee.org/document/6242391/

  27. Virtanen T (2007) Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Trans Audio, Speech Lang Process 15(3):1066–1074. https://doi.org/10.1109/TASL.2006.885253. http://ieeexplore.ieee.org/document/4100700/

Download references

Acknowledgements

This work was supported by the Regional Ministry of the Principality of Asturias under Grant FC-GRUPIN-IDI/2018/000226, by the Ministry of Economy, Knowledge and University of the Government of the Junta de Andalucía under Project P18-RT-1994 and by the “Programa Operativo FEDER Andalucía 2014-2020” under Project with Reference 1257914.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Muñoz-Montoro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Montoro, A.J., Suarez-Dou, D., Cortina, R. et al. Parallel source separation system for heart and lung sounds. J Supercomput 77, 8135–8150 (2021). https://doi.org/10.1007/s11227-020-03616-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03616-0

Keywords

Navigation