
Journal of Supercomputing manuscript No.
(will be inserted by the editor)

PyDTNN: A User-Friendly and Extensible
Framework for Distributed Deep Learning

Sergio Barrachina · Adrián Castelló ·
Mar Catalán · Manuel F. Dolz ·
Jose I. Mestre

the date of receipt and acceptance should be inserted later

Abstract We introduce a framework for training deep neural networks on
clusters of computers with the following appealing properties: 1) it is devel-
oped in Python, exposing an amiable interface that provides an accessible
entry point for the newcomer; 2) it is extensible, offering a customizable tool
for the more advanced user in deep learning; 3) it covers the main functional-
ity appearing in convolutional neural networks; and 4) it delivers reasonable
inter-node parallel performance exploiting data parallelism by leveraging MPI
via MPI4Py for communication and NumPy for the efficient execution of (mul-
tithreaded) numerical kernels.

Keywords Deep neural networks, distributed parallel training, Python

1 Introduction

The recent outburst in machine learning via deep neural networks (DNNs)
is largely due to the combined effect of new algorithmic techniques, vast
amounts of computational capacity in current hardware, and the explosion
in the amount of training data [1,2]. The myriad of applications of deep learn-
ing (DL) and the computational complexity of the training process have pushed
the industry to design customized architectures and hardware components
as well as very sophisticated frameworks for DL. In the latter category, we
can identify Google’s TensorFlow, Facebook’s PyTorch and Caffe2, Microsoft’s
CNTK, Theano, and Keras, among others.

While these frameworks have doubtless contributed to the adoption of DL,
we also find that the level of internal intricacy of these packages turns their
customization into a fairly difficult task. A particular problem that we are con-
cerned with is the realization of distributed training for DNNs, which entails

Sergio Barrachina · Adrián Castelló · Mar Catalán · Manuel F. Dolz · Jose I. Mestre
E-mail: {barrachi,adcastel,catalama,dolzm,jmiravet}@uji.es
Universitat Jaume I, Castellón de la Plana, Spain

2 Sergio Barrachina et al.

an extra degree of complexity to DL frameworks. To tackle this, we present a
light-weight framework for distributed DL training and inference, named Py-

DTNN (Python Distributed Training of Neural Networks),1 with the following
features:

1. Amiable user interface: PyDTNN is developed in a high-level language, such
as Python, offering an interface that is similar to that exposed by popular
packages, such as Keras, to provide a flat accessing curve for the novice.

2. Extensible: PyDTNN prioritizes simplicity while facilitating user customiza-
tion of the framework.

3. Functional: PyDTNN covers fully-connected, convolutional and pooling lay-
ers, dropout, batch normalization, a variety of popular non-linear functions,
etc.

4. Moderately efficient: PyDTNN exploits data parallelism, using MPI for me-
ssage-passing and multithreaded kernels for the major linear algebra oper-
ations.

Note that we do not claim about PyDTNN offering an alternative for dis-
tributed training that is competitive, for example, with TensorFlow enhanced
with Horovod from the point of view of parallel performance. Instead, we
claim that PyDTNN offers an accessible solution for basic training of simple
DNN models on clusters that can be more easily customized to prototype and
experiment with new ideas.

The rest of the paper is organized as follows. In Section 2 we provide a
brief overview of distributed training for DNNs and the exploitation of data
parallelism. In Section 3 we discuss the internal organization and functionality
of PyDTNN, and in Section 4 we describe its user interface. Next, in Section 5
we illustrate the flexibility of PyDTNN as a tool to prototype ideas, and in
Section 6 we elaborate on its efficiency. Finally, in Section 7 we summarize the
main properties of PyDTNN as part of our concluding remarks.

2 Distributed Training of DNNs

In this section, we provide a short review of DNNs and distributed training.

Overview of DNNs. Consider a collection of input vectors (or samples)
given by x1, x2, . . . , xs ∈ Rn, respectively classified using labels y1, y2, . . . , ys ∈
Rm (also known as target outputs or ground truth). A neural network com-
prises a number of interconnected neurons, organized into multiple layers,
which define a nonlinear function F : Rn → Rm performing the mapping
F(xr) = ỹr, where we expect that ỹr ≈ yr, r = 1, 2, . . . , s. For performance
reasons, the input-output mapping realized by a DNN (also known as forward
pass, or FP) is performed in batches of b samples at a time [3].

The goal of the training process is to minimize the difference between the
output(s) computed by the NN and the ground truth, given by

∑s
r=1

1
s‖yr −

1 The source code for PyDTNN is available at https://github.com/hpca-uji/PyDTNN.

https://github.com/hpca-uji/PyDTNN

PyDTNN: A Framework for Distributed Deep Learning 3

ỹr‖. This optimization problem is usually solved via the stochastic gradient de-
scent (SGD) method, which implements an iterative “back-propagation” (BP)
procedure that realizes the gradient computation (GC) which minimizes the
difference and performs the corresponding weight updates (WU).

In practice, current DNNs often combine convolutional layers (Conv) in the
initial stages followed by fully-connected layers (FC) layers in the last ones. A
Conv layer consists of multiple filters that operate on a (sub)tensor of the in-
puts, of the same dimension as the filters, to produce a single scalar value. The
filters are repeatedly applied in a sliding window manner to the whole input,
in order to produce all the output values [1]. An efficient realization of Conv
can be obtained by means of a re-organization of the proper input operand
via an im2col transform [4,5,3]. The result of the convolution operation can
then be achieved using a general matrix-matrix multiplication (Gemm).

Distributed training. There exist strict data dependencies between the out-
puts of one layer and the inputs to the next layer, both in the FP and BP stages
of DNN training. Thus, the only parallelization option is to exploit the intra-
layer concurrency, which corresponds to parallelizing the individual Gemm
inside each layer.

In the data-parallel (DP) scheme [3], concurrency is extracted across the
batch dimension. This benefits from the fact that, provided some algorithmic
issues related to the training convergence are conveniently tackled, the batch
dimension (b) can be linearly increased with the number of processes, up to
values of b in the range 32k–64k [6,7].

In short detail, the DP scheme replicates the weight matrices that define the
NN model in all processes while the remaining matrix operands (input/output
activations to each layer) are distributed in the batch dimension by blocks of
columns. Therefore, in the FP and GC stages, there is no need for any inter-
process communication. In contrast, the WU stage requires an Allreduce [8]
exchange to aggregate the local updates, across all processes into the model
(weights) before the computation with the next batch.

The current version of PyDTNN comprises a distributed DP realization of
the training that relies on the MPI4Py Python package for the inter-node com-
munication layer. The development of an alternative model-parallel scheme is
part of on-going work.

3 A Glimpse of PyDTNN

In this section, we provide an overview of PyDTNN and describe how this frame-
work exploits data parallelism.

3.1 Overview

Functionality. PyDTNN supports basic DL modules to create, train and per-
form inference with MLPs and CNNs such as, for example, the VGG models,

4 Sergio Barrachina et al.

- FC
- Convolutional
- BatchNormalization
- MaxPool
- Dropout
- Flatten
- AdditionBlock
- ConcatenationBlock

- SGD
- RMSProp

- Adam
- Nadam

- Sigmoid
- ReLU
- Tanh
- Arctanh
- Log
- Softmax

- WarmUp
- EarlyStopping
- ReduceLROnPlateau
- ReduceLREveryNEpochs
- StopAtLoss
- ModelCheckpoint

+ GlorotUniform
+ GlorotNormal
+ HeUniform
+ HeNormal
+ LecunUniform
+ LecunNormal

- Generic
- MNIST
- CIFAR-10

- CIFAR-100
- TinyImagenet
- ImageNet

Layer

Activation

Optimizer
Dataset

LRScheduler

+ __compute_loss_funcs
+ __update_running_average
+ __train_batch
+ __evaluate_batch
+ show
+ add
+ load_weights_and_biases
+ store_weights_and_biases
+ train
+ train_dataset
+ evaluate
+ evaluate_dataset

Model

+ im2col
+ col2im
+ ReLU

+ Add
+ Argmax

Cython modules

Initializers

- cProfile - Extrae

Profiler/Tracer

Multi-Layer Perceptrons, Convolutional Neural Networks, etc.

+ Categorical Cross-Entropy
+ Binary Cross-Entropy
+ Accuracy, MSE, Hinge, etc.

Loss func./Metrics

A
PI

Py
th

on
 D

is
tri

bu
te

d
Tr

ai
ni

ng
 o

f N
eu

ra
l N

et
w

or
ks

B
ac

ke
nd

s

Sequential Model Parallel
(OpenMP)

Distributed Data
Parallel (MPI4Py)

Model Parallel +
Distributed Data Parallel

(OpenMP + MPI4Py)

Fig. 1 PyDTNN architecture.

and the residual neural networks (ResNet), among other types of convolutional
DNNs. We have oriented our design to obtain a customizable environment.
Some plans toward extending the current functionality, for example, in order
to cover more involved models, include developing the classes of modules that
appear in recurrent DNNs.

Figure 1 offers an overview of the PyDTNN architecture. The top box illus-
trates the application programming interface (API) exposed to the user, that
he/she can then leverage to create, train, and evaluate DNNs. The middle
(gray) box comprises the distinct PyDTNN modules, such as layers, activations,
and models, among others, that realize the training and inference processes.
In addition to Python, Cython is used to exploit intra-node parallelism via
OpenMP. As shown in the bottom boxes, these DNNs can be trained while
exploiting: 1) model parallelism at intra-node level; 2) DP at inter-/intra-node
levels; or a combination of both 1) and 2), for example, for clusters of nodes
equipped with multicore processors.

Basic classes and methods. The PyDTNN framework defines two main classes:
Model and Layer. The former class contains the model features and defines
the most relevant methods including, among others, train dataset() for per-
forming the training. This method receives several input parameters –such as
the dataset and optimizer objects, the number of epochs, the batch size b (per
process), and a list of loss metrics and learning rate schedulers–, which set
the training configuration. The fragments of code in Listings 1 and 2 illustrate
the main aspects of this method. The first listing shows the implementation
of the training cycle over the epochs and training batches, returned by the
corresponding dataset generator. The second one corresponds to the training
of a single batch.

The Layer class contains a generic definition of the three main meth-
ods: forward(), backward(), and update weights() (for FP, GC, and WU,
respectively). Each type of layer specializes these functions. For example,

PyDTNN: A Framework for Distributed Deep Learning 5

only those layers that operate with weights (Conv and FC) will re-define the
update weights() method. The main methods of the FC layer, derived from
the Layer class, are shown in Listing 3. (The methods of the Conv layer are
omitted for brevity.)

1 def train_dataset(self, dataset , nepochs , local_batch_size ,
2 val_split , loss, metrics , optimizer , lr_schedulers):
3 # ...
4 for epoch in range(nepochs):
5 train_batch_generator , val_batch_generator = \
6 dataset.get_train_val_generator(local_batch_size , self.rank,
7 self.nprocs, val_split)
8 # ...
9 for X_batch , Y_batch , batch_size in train_batch_generator:

10 train_batch_loss = \
11 self.__train_batch(X_batch , Y_batch ,
12 batch_size , loss_func , metrics_funcs , optimizer ,
13 lr_schedulers)
14 train_total_loss , train_batch_count , status = \
15 self.__update_running_average(train_batch_loss , train_total_loss ,
16 train_batch_count , batch_size , loss_metrics)
17 # ...

Listing 1 Method train dataset() of the Model class.

1 def __train_batch(self, X_batch , Y_batch , batch_size , loss_func ,
2 metrics_funcs , optimizer , lr_schedulers):
3 # Forward propagation (FP)
4 x = X_batch
5 for l in range(1, len(self.layers)):
6 x = self.layers[l].forward(x)
7

8 # Gradient computation (GC)
9 loss, dx = loss_func(x, Y_batch)

10 for l in range(len(self.layers)-1, 0, -1):
11 dx = self.layers[l].backward(dx)
12

13 # Weight update (WU)
14 for l in range(len(self.layers)-1, 0, -1):
15 self.layers[l].update_weights(optimizer)

Listing 2 Method train batch() of the Model class.

3.2 Exploiting DP in PyDTNN

In the DP version of the training process, the batch has to be distributed
among the processes (cluster nodes), while the model (defined by the values
of weights and biases) needs to be replicated in all the processes [3].

1 class Layer():
2 # ... Other methods omitted for brevity
3 def update_weights(self, optimizer):
4 optimizer.update(self)
5

6 class FC(Layer):
7 # ... Other methods omitted for brevity
8 def forward(self, x):
9 self.x = x

10 y = x @ self.weights + self.biases
11 return y
12

13 def backward(self, dy):
14 self.dw = self.x.T @ dy
15 self.db = dy.sum(axis=0)
16 dx = dy @ self.weights.T
17 return dx

Listing 3 Main training methods of the Layer and FC classes.

6 Sergio Barrachina et al.

Distributed batch. In the application, the user specifies the dataset object
and the batch size, passing these values to the train dataset() function.
During the parallel execution, batch size is the dimension (number of sam-
ples) of the local batch that each process will tackle. The dimension of the
global batch is then roughly obtained as the product between the size of the
local batches and the number of processes.

1 def batch_generator(self, generator , local_batch_size=64, rank=0, nprocs=1,
shuffle=True):

2 batch_size = local_batch_size * nprocs
3

4 for X_data, Y_data in X_train_data , Y_train_data:
5 nsamples = X_data.shape[0]
6 np.random.shuffle(np.arange(nsamples))
7 # ...
8 # Generate batches
9 for batch_num in range(0, end_for , batch_size):

10 start = batch_num + rank * local_batch_size
11 end = batch_num + (rank+1) * local_batch_size
12 indices = s[start:end]
13 X_local_batch = X_data[indices ,...]
14 Y_local_batch = Y_data[indices ,...]
15 yield (X_local_batch , Y_local_batch , batch_size)
16 # ...

Listing 4 Batch generator method of the Dataset class.

When the train dataset() function is executed in parallel, all processes
receive the full dataset (global dataset containing all samples). Listing 4 shows
the batch generator() coroutine that serves as a data generator for the train-
ing loop in line 9 of Listing 1. There, each process selects its subset (or local
batch) depending on its rank. While a true distribution of the samples pro-
vides a more scalable solution, in our design we have prioritized simplicity over
efficiency.

Replicated model. Before the training commences, PyDTNN sets the same
seeds in all processes to generate the same initial random weights and bi-
ases (i.e., the replicated model) at each process. During training, PyDTNN then
ensures that all processes perform a coordinated update of the model, as de-
scribed next, to maintain the inter-process coherence of the NN model.

1 def __train_batch(self, X_batch , Y_batch , batch_size , loss_func ,
2 metrics_funcs , optimizer , lr_schedulers):
3 # Forward propagation (FP)
4 x = X_batch
5 for l in range(1, len(self.layers)):
6 x = self.layers[l].forward(x)
7

8 # Gradient computation (GC)
9 loss, dx = loss_func(x, Y_batch)

10 for l in range(len(self.layers)-1, 0, -1):
11 dx = self.layers[l].backward(dx)
12

13 # Weight update (WU)
14 for l in range(len(self.layers)-1, 0, -1):
15 self.layers[l].reduce_weights_sync(self.comm)
16 self.layers[l].update_weights(optimizer)

Listing 5 Method train batch() of the Model class for distributed training.

PyDTNN: A Framework for Distributed Deep Learning 7

The distributed training of a batch is illustrated in Listing 5. A direct com-
parison of this code with its non-distributed counterpart, in Listing 2, shows
the same actions for the forward pass and gradient computation (initial part
of the codes). The implicit difference between the distributed and “sequential”
versions in these parts is that, in the former, each process acts on the local
part of the batch, while the latter operates with the full batch (as described
earlier in this subsection).

In contrast, the comparison between the weight updates in the sequential
and distributed training codes shows a couple of new routines in the latter
case. (Compare lines 14–15 in Listing 2 and lines 14–16 in Listing 5.) Con-
cretely, in the distributed code 1) each process computes its local contribu-
tion to the weight updates, according to the information in the local batch
that it has processed; and 2) all the contributions are reduced next, before
accumulating them into the global (replicated) weights. This is respectively
achieved in the distributed case via two functions calls: 1) backward() and 2)
reduce weights sync(). The latter function performs a reshape (lineariza-
tion) of the data structures, followed by the reduction, and completes the
process by undoing the reshape; see the code in Listing 6.

1 class Layer():
2 # ...
3 def reduce_weights_sync(self, comm):
4 if comm and self.weights.size > 0:
5 dwb = np.concatenate((self.dw.flatten(), self.db.flatten()))
6 comm.Allreduce(MPI.IN_PLACE , dwb, op=MPI.SUM)
7 self.dw = dwb[:self.weights.size].reshape(self.weights.shape)
8 self.db = dwb[self.weights.size:].reshape(self.biases.shape)

Listing 6 Reduction of local contributions to weights via the MPI Allreduce collective.

4 PyDTNN Amiable User Interface

The PyDTNN framework exposes a Keras-like user interface in order to flatten
the entry learning curve. This decision pursues to help the novice user as well
as motivate the more DL expert to start an interaction with the framework as
there is no need to learn yet-another-interface.

Listing 7 presents the instructions necessary to define a representative con-
volutional neural network: VGG11 [9] for the CIFAR-10 dataset. This code
illustrates the basic interaction cycle with the PyDTNN interface, which is
composed of 4 steps where the user: 1) defines each (individual) layer of the
model; 2) extracts the dataset for training (or inference) from the correspond-
ing file(s); 3) sets a few basic training parameters such as the learning rate,
the number of epochs to train, and the batch size; and, finally, 4) invokes
the training (or inference) routine. Similarly, Listing 8 shows the code neces-
sary to define the ResNet-32 network [10] for the same dataset. In this case,
to permit the construction of the identity shortcut-connections required by
the ResNet-32 model, PyDTNN includes the special AdditionBlock layer (see
lines 10–18) which processes the different paths contained in it to finally per-

8 Sergio Barrachina et al.

form an element-wise sum (during the forward pass) of the activations obtained
at the last layer in each of the paths.

During the creation of the model, the user can specify the distinct features
of the layers. For example, for an FC layer, the user indicates the number of
neurons and the activation function. In comparison, a Conv layer requires a
larger number of parameters: the number and shape of the filters, the padding
and stride factors for the filter application, and the activation function.

1 # 1) Define the model
2 v11 = Model()
3 # Layer 0: Input
4 v11.add(Input(shape=(3,32,32)))
5 # Layer 1: Conv2D
6 v11.add(Conv2D(nfilters=64, filter_shape=(3,3), padding=1, stride=1,

activation="relu"))
7 v11.add(MaxPool2D(pool_shape=(2,2), stride=2))
8 # Layers 3-16 omitted for brevity
9 # Layer 16: Output (FC)

10 v11.add(FC(shape=(10), activation="softmax"))
11

12 # 2) Retrieve CIFAR -10 as training data and labels
13 x, y = read_dataset("CIFAR10")
14

15 # 3) Initialize the training parameters (learning rate, number of epochs, and
batch size)

16 lr, n_epochs , bs = 0.1, 100, 64
17

18 # 4) Define the optimizer and train the network (parallel distributed)
19 opt = SGD(learning_rate = lr)
20 v11.train(x, y, n_epochs , bs, opt,
21 loss="categorical_cross_entropy",
22 metrics="accuracy")

Listing 7 Sample code for creating and training the VGG11 model using PyDTNN.

1 r32 = Model()
2 r32.add(Input(shape=(3, 32, 32)))
3 r32.add(Conv2D(nfilters=16, filter_shape=(3, 3), stride=1, padding=1))
4 r32.add(BatchNormalization())
5

6 layout = [[16, 5, 1], [32, 5, 2], [64, 5, 2]] # Layout of ResNet -32
7 for n, b, s in layout:
8 for r in range(res_blocks):
9 if r > 0: s = 1

10 r32.add(AdditionBlock(
11 [Conv2D(nfilters=n, filter_shape=(3, 3), stride=s, padding=1),
12 BatchNormalization(), Relu(),
13 Conv2D(nfilters=n, filter_shape=(3, 3), stride=1, padding=1),
14 BatchNormalization()
15], [
16 Conv2D(nfilters=n, filter_shape=(1, 1), stride=s),
17 BatchNormalization()
18] if s != 1 else []))
19 r32.add(Relu())
20

21 r32.add(AveragePool2D(pool_shape=(0,0))) # Global average pooling 2D
22 r32.add(Flatten())
23 r32.add(FC(shape=(64,))); r32.add(BatchNormalization()); r32.add(Relu())
24 r32.add(FC(shape=(10,), activation="softmax"))

Listing 8 Sample code for creating the ResNet-32 model using PyDTNN.

In addition, to specify a parallel execution, the user only has to invoke
mpirun as, for example, in:

mpirun -iface ib0 -np 12 -ppn 1 python -u benchmarks_CNN.py \

--model vgg11 --dataset cifar10 --batch_size 64 --num_epochs 100

PyDTNN: A Framework for Distributed Deep Learning 9

...FP
1

FP
2

FP
3

...

L−3

AR
L−2

AR

FP
L−1

GC GC
L−1

1 L−3 L−2 L−1

GC
1 L−3

WU WU WUWU

AR
L−1

AR
1

GC
L−2

Fig. 2 Data dependencies in the training. The colored boxes correspond to the computa-
tional stages: FP, GC, and WU; the circles denote Allreduce (AR) exchanges; and the arrows
indicate dependencies. The colored dashed lines mark operations which can be overlapped.

In this example, the mpirun command launches the DP training of the
VGG11 model using 12 processes (-np 12), each mapped onto a cluster node
(-ppn 1), and configured to use the Infiniband network interface (-iface
ib0). The script benchmarks CNN.py is a utility from PyDTNN whose parame-
ters specify the model to be trained (--model vgg11), the dataset (--dataset
cifar10), the batch size (--batch size 64), and the number of epochs to ex-
ecute (--num epochs 100), among other options.

5 Extensibility of PyDTNN

To illustrate the possibilities and ease of customizing PyDTNN, we next describe
a couple of extensions of the baseline implementation.

Overlapping communications with computation. Let us start by con-
sidering the dependencies between the major operations in a forward-backward
pass, displayed in Figure 2. On the one hand, there exist strict dependencies be-
tween the Gradient computations of “consecutive” layers since GCl−1 depends
on GCl. On the other hand, the corresponding reduction communication and
weight update are decoupled so that, once GCl is available, the exchange ARl

and the update WUl can proceed in parallel with GCl−1, GCl−2, . . . , GC1. As
corresponds to a synchronous variant of the training, the update WUl for the
samples in a batch must be completed before these weights can participate in
the forward pass FPl with the next batch of samples.

Listing 5 shows the code that is executed by PyDTNN for the distributed
training procedure. Lines 9–11 calculate GC (per layer); in line 15, the call to
allreduce weights() synchronizes the weight matrices in all processes; and
line 16 completes the backward pass by updating the local weights.

10 Sergio Barrachina et al.

The goal of the following exercise is to illustrate how to transform the
baseline version of PyDTNN into a variant where the communications are over-
lapped with other Gradient computations. This can be achieved by using the
non-blocking version of the MPI routine for the global reduction with a syn-
chronization point (in the form of an invocation to the MPI routine Wait)
before the corresponding weight update. Listing 9 shows the changes that
have to be introduced in the original code of the PyDTNN library in order to
overlap computation and communication during the training process. As in
the previous example, lines 9–11 compute the GC stage, and this is followed
by the invocation to reduce weights async(). The main difference is that
this function employs the non-blocking primitive Iallreduce instead of its
blocking counterpart Allreduce. The non-blocking variant allows overlapping
the communication with the computation of other GC stages; see Figure 2.
Besides, to ensure the communication completion in due time, an MPI wait
function, wait allreduce async(), is added before the weight update.

1 def __train_batch(self , X_batch , Y_batch , batch_size , loss_func ,
2 metrics_funcs , optimizer , lr_schedulers):
3 # Forward propagation (FP)
4 x = X_batch
5 for l in range(1, len(self.layers)):
6 x = self.layers[l]. forward(x)
7

8 # Gradient computation (GC)
9 loss , dx = loss_func(x, Y_batch)

10 for l in range(len(self.layers)-1, 0, -1):
11 dx = self.layers[l]. backward(dx)
12 self.layers[l]. reduce_weights_async(self.comm)
13

14 # Weight update (WU)
15 for l in range(len(self.layers)-1, 0, -1):
16 self.layers[l]. wait_allreduce_async(self.comm)
17 self.layers[l]. update_weights(optimizer)

Listing 9 Method train batch() of the Model class for distributed training with
overlapped communication and computation.

Customizing the arithmetic precision. An additional example of the Py-

DTNN extensibility is presented in Listing 10. There, we demonstrate how to
customize the precision for the reduction of the weights in the backward pro-
cess using, in this particular case, two different datatypes: FP32 (comp dtype)
and FP16 (comm dtype). This function employs FP32 for the arithmetic (line 15)
but transforms the data from FP32 to FP16 for communication (lines 18 and
26). The purpose of this modification is to reduce the number of bytes trans-
ferred while maintaining the precision of the local arithmetic.

1 def Mixed_Allreduce(sbuf , comm_dtype , op_reduce , root , comm):
2 # Get rank and communicator size
3 rank , size = comm.Get_rank (), comm.Get_size ()
4

5 # Get computation dtype
6 comp_dtype = sbuf.dtype
7

8 # Allocate reception buffer as comm_dtype
9 rbuf = np.empty_like(sbuf , dtype=comm_dtype)

10

11 if rank == root:

PyDTNN: A Framework for Distributed Deep Learning 11

12 # Reduction code
13 acc = np.zeros_like(rbuf , dtype=comp_dtype)
14 for r in range(size):
15 if r != root:
16 comm.Recv([rbuf ,rbuf.size*rbuf.itemsize ,MPI.CHAR],
17 source=r, tag=RED)
18 # Convert from comm_dtype to comp_dtype for computation
19 acc = op_reduce(acc , rbuf.astype(comp_dtype))
20

21 # Convert from comp_dtype to comm_dtype for communication
22 rbuf = acc.astype(comm_dtype)
23

24 # Broadcast code
25 for r in range(size):
26 if r != rank:
27 comm.Send([rbuf ,rbuf.size*rbuf.itemsize ,MPI.CHAR],
28 dest=r, tag=BCAST)
29 else:
30 # Convert from comp_dtype to comm_dtype for communication
31 sbuf = sbuf.astype(comm_dtype)
32 comm.Send([sbuf , sbuf.size*sbuf.itemsize , MPI.CHAR],
33 dest=root , tag=RED)
34 comm.Recv([rbuf , rbuf.size*rbuf.itemsize , MPI.CHAR],
35 source=root , tag=BCAST)
36

37 # Convert from comm_dtype to comp_dtype
38 return rbuf.astype(comp_dtype)

Listing 10 Implementation of mixed-precision Allreduce algorithm in PyDTNN.

Blocking the convolution operators. A significant part of the compu-
tational cost of CNNs is due to the application of convolutions. A general,
flexible, and high performance approach to deal with this type of operators,
in a convolutional layer, is to process the layer input tensor (activations) via
the im2col transform [4], followed by an invocation to a general matrix mul-
tiplication (Gemm) kernel to multiply the weight matrix with the output of
the im2col transform [4,5]. Unfortunately, applying this transform results in
a very large matrix, which may exhaust the memory of the system. In partic-
ular, the im2col transform expands the layer input tensor into an augmented
matrix that is kh × kw times larger, where kh/kw denote the height/width of
the filter layer.

1 def forward(self , x):
2 # ...
3 self.x_cols = im2col_cython(x, self.kh, self.kw , self.vpadding ,
4 self.hpadding , self.vstride , self.hstride)
5

6 w_cols = self.weights.reshape(self.co , -1)
7 res = self.matmul(w_cols , self.x_cols)
8 # ...

Listing 11 Implementation of a convolution layer via the im2col transform (implemented
as an external method in Cython) in PyDTNN.

Listing 11 shows how the convolution operator (appearing in a convolu-
tional layer in the forward pass) is applied in PyDTNN by first invoking an
external method, for efficiency implemented in Cython (lines 3–4), to then
perform the necessary matrix multiplication (line 7).

To reduce memory consumption, we can perform an alternative segmented
application of the im2col transform, as shown in Listing 12. There, the im2col

12 Sergio Barrachina et al.

transform is calculated in chunks of size chunk size (see lines 11–13), requiring
only a matrix that is batch size / chunk size times smaller than that used
in the approach of Listing 11. In line 17, each of the im2col chunks (x cols)
is multiplied by the reshaped weights (w cols) to obtain the corresponding
portion of the output tensor (y cols).

1 def forward(self , x):
2 # ...
3 # Reshaped weight tensor of shape (co, kh * kw)
4 w_cols = self.weights.reshape(self.co , -1)
5 # Output tensor of shape (co , ho * wo * b)
6 y_cols = np.empty(self.co, self.ho * self.wo * self.batch_size)
7

8 for s in range(0, self.batch_size , self.chunk_size):
9 # Calculate end index in x of shape (b, ci, hi, wi)

10 e = min(s + self.chunk_size , self.batch_size)
11 x_cols = im2col_cython(x[s:e,...], self.kh, self.kw,
12 self.vpadding , self.hpadding ,
13 self.vstride , self.hstride)
14

15 # Calculate start/end indices in res of shape (co, ho * wo * b)
16 s_, e_ = s * self.ho * self.wo , e * self.ho * self.wo
17 y_cols[:,s_:e_] = self.matmul(w_cols , x_cols)
18 # ...

Listing 12 Implementation of a convolution layer via the segmented im2col transform
(implemented as an external method in Cython) in PyDTNN.

6 Efficiency of Two-level Parallel PyDTNN

As argued earlier, PyDTNN exploits two levels of parallelism: inter-node and
intra-node, with the second one being extracted via the invocation to mul-
tithreaded routines, much like other frameworks for distributed DL. In any
case, we want to emphasize that PyDTNN is designed as a tool to rapidly pro-
totype ideas, not as a DL solution to compete in performance with modern
DL frameworks.

In the following evaluation, we expose and motivate the performance gap
between PyDTNN and TensorFlow (TF, version 2.2.0) using the native Keras
backend enhanced with Horovod (version 0.20.3). For this evaluation, we train
the AlexNet, VGG11, and ResNet-32 models (on the CIFAR-10 dataset) in-
specting three metrics: 1) total execution time; 2) number of epochs for conver-
gence; and 3) speed-up with respect to the baseline execution. All the experi-
ments were carried out on a cluster consisting of 8 nodes, each equipped with
two Intel Xeon Gold 5120 CPU (Skylake) processors with 14 cores each (28
cores in total), 190 GiB of DDR4 RAM, and connected via a Mellanox EDR
Infiniband switch. Regarding the software, we leveraged Intel Python v3.7.4
and NumPy v1.17.4 linked against Intel MKL 2020.0 Update 1 from the Intel
Composer XE 2020 package. We also used MPI4Py v3.0.3 linked against the
Intel MPI library from the same Intel package.

Table 1 reports the training costs (in kiloseconds) and the number of epochs
for PyDTNN and TF(+Horovod), for various numbers of MPI ranks (or pro-
cesses) and threads per process. Each process is bound to a single node and
each thread to a core inside the node. These values correspond to the ac-
tual execution time for each framework when training AlexNet, VGG11, and

PyDTNN: A Framework for Distributed Deep Learning 13

AlexNet VGG11 ResNet-32

#P #T
TF PyDTNN TF PyDTNN TF PyDTNN

Time #E Time #E Time #E Time #E Time #E Time #E

1

2 7.15 25 4.62 23 5.68 4 5.46 8 12.78 13 10.47 8
6 4.12 23 2.81 23 2.38 4 3.69 9 2.56 6 5.31 6
12 2.49 25 2.60 25 1.54 4 3.08 9 2.55 8 8.60 10
24 1.86 25 2.54 25 1.20 4 2.00 6 1.57 6 9.82 11

2

2 4.49 25 2.66 25 3.16 4 2.53 7 3.16 6 3.89 6
6 3.20 25 1.52 23 0.99 3 1.51 7 1.74 7 3.13 7
12 1.66 23 1.30 23 0.70 3 1.36 7 1.31 8 2.55 6
24 1.17 25 1.42 25 0.74 4 1.21 6 0.72 5 3.05 7

4

2 2.47 25 1.43 26 1.69 4 1.90 7 2.44 9 7.22 22
6 1.59 25 0.88 26 0.70 4 0.80 7 1.48 12 2.13 9
12 0.98 25 0.76 26 0.49 4 0.73 7 1.00 11 2.33 10
24 0.66 25 0.81 26 0.40 4 0.86 7 1.15 16 5.20 22

6

2 1.90 27 0.96 26 1.38 5 1.50 11 1.84 10 5.09 22
6 1.17 24 0.66 28 0.49 4 0.91 11 1.19 14 3.28 21
12 0.73 26 0.55 26 0.35 4 0.83 11 1.16 20 1.75 11
24 0.56 28 0.55 26 0.28 4 1.59 13 0.47 10 4.08 25

8

2 1.22 23 0.98 32 1.09 5 0.94 9 1.89 14 3.70 21
6 0.85 24 0.50 27 0.47 5 0.61 9 1.30 21 2.14 18
12 0.58 27 0.53 31 0.33 5 0.66 9 0.80 18 1.39 12
24 0.39 24 0.62 27 0.27 5 1.02 9 0.78 22 1.97 16

Table 1 Execution time (in kiloseconds) and number of epochs (#E) for the training of
AlexNet, VGG11, and ResNet-32 on CIFAR-10 using TF and PyDTNN, with a threshold
convergence validation accuracy of 70% using different number of processes in DP (#P)
and threads per process (#T). The optimizer was SGD with a learning rate (LR) η = 10−3

for AlexNet and 10−2 for ResNet-32, momentum set to 0.9; and Adam with a LR η =
10−4 for the VGG11. For the DP execution, the LR was tuned using the linear scale rule
LR=LRbase × p, where p is the number of processes. The batch size b was set to 64× p for
AlexNet and VGG11; and 128× p for ResNet-32.

ResNet-32, on the CIFAR-10 dataset, till a validation accuracy threshold of
70% is achieved.

The first result in Table 1 that catches our attention is the difference be-
tween the number of epochs that the two frameworks require for reaching the
convergence threshold for the VGG11 and ResNet-32 models; in contrast, for
the AlexNet model, both frameworks need approximately the same number
of epochs. This factor is crucial to explain the distinct performance of the
frameworks. To gain insights into the computational behavior of both models,
Figure 3 illustrates the differences between the two frameworks by comparing
the global execution time, the number of epochs, and the execution time per
epoch for the same DL models and number of processes/threads configura-
tions. In the figure, the ratios are computed by dividing the corresponding
value for PyDTNN by that of TF. Thus, a value higher than 1 means that TF
outperforms PyDTNN, while a result lower than 1 indicates the opposite case.

Focusing on the total execution time, we recognize that TF is more com-
petitive than PyDTNN, except for AlexNet using 2/4 threads per process. These
differences can be better explained by looking into the two other factors, num-
ber of epochs and execution time per epoch, as follows:

– Regarding the first factor, TF is in general more efficient as it achieves
the same convergence threshold in a slightly smaller number of epochs
than PyDTNN. We suspect these differences come from the distinct internal
algorithmic implementations of both frameworks. In any case, we observe

14 Sergio Barrachina et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 6 8

T
ot
al

 ti
m
e
ra
ti
o
(P
yD
T
N
N
/T
F
)

Number of nodes

 2 threads
 6 threads
12 threads
24 threads

AlexNet - CIFAR-10

 0

 1

 2

 3

 4

 5

 6

1 2 4 6 8

T
ot
al

 ti
m
e
ra
ti
o
(P
yD
T
N
N
/T
F
)

Number of nodes

 2 threads
 6 threads
12 threads
24 threads

VGG11 - CIFAR-10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 4 6 8

T
ot
al

 ti
m
e
ra
ti
o
(P
yD
T
N
N
/T
F
)

Number of nodes

 2 threads
 6 threads
12 threads
24 threads

ResNet-32 - CIFAR-10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 6 8

E
po
ch

 r
at
io

 (
P
yD
T
N
N
/T
F
)

Number of nodes

 2 threads
 6 threads
12 threads
24 threads

AlexNet - CIFAR-10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 6 8

E
po
ch

 r
at
io

 (
P
yD
T
N
N
/T
F
)

Number of nodes

 2 threads
 6 threads
12 threads
24 threads

VGG11 - CIFAR-10

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 6 8

E
po
ch

 r
at
io

 (
P
yD
T
N
N
/T
F
)

Number of nodes

 2 threads
 6 threads
12 threads
24 threads

ResNet-32 - CIFAR-10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1 2 4 6 8T
im
e
pe
r
ep
oc
h
ra
ti
o
(P
yD
T
N
N
/T
F
)

Number of nodes

 2 threads
 6 threads
12 threads
24 threads

AlexNet - CIFAR-10

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 6 8T
im
e
pe
r
ep
oc
h
ra
ti
o
(P
yD
T
N
N
/T
F
)

Number of nodes

 2 threads
 6 threads
12 threads
24 threads

VGG11 - CIFAR-10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 6 8T
im
e
pe
r
ep
oc
h
ra
ti
o
(P
yD
T
N
N
/T
F
)

Number of nodes

 2 threads
 6 threads
12 threads
24 threads

ResNet-32 - CIFAR-10

Fig. 3 Total time, time per epoch, and number of epochs ratio PyDTNN/TF (top, middle
and bottom rows, respectively) for AlexNet, VGG11, and ResNet-32 on CIFAR-10 when
varying number of nodes (processes) and threads per process, with a threshold convergence
validation accuracy of 70%.

a considerable sensitivity of the number of epochs to training factors such
as the number of nodes and threads per node, for both TF and PyDTNN.

– Concerning the execution time per epoch, we can observe that, for both
AlexNet and VGG11 models using from 2 to 6 threads, PyDTNN is slightly
more efficient than TF, while the opposite occurs for ResNet-32. This can
be explained by the compute-bound nature of ResNet-32 over AlexNet and
VGG11, which is better handled by TF with a large number of threads. A
second observation about this factor is that PyDTNN delivers fair scalability
when increasing the number of processes. This is reasonable given that, in
our experiments, the batch size is augmented linearly with the number of
processes, leading to a good weak scaling ratio. In contrast, augmenting
the number of threads/cores is done while maintaining the batch size and,
therefore, the total training “workload” per epoch. In this scenario, the
scalability of PyDTNN suffers. The ultimate reason for this is that PyDTNN

relies on multi-threaded libraries for some of the most computationally
demanding intra-node operations. However, there are many other parts
of PyDTNN that simply rely on plain (sequential) Python code. As the
number of threads is increased, by Amdahl’s Law, the contribution of these
sequential parts to the overall execution time for these parts in PyDTNN

becomes considerable and the degree of parallel efficiency decays.

PyDTNN: A Framework for Distributed Deep Learning 15

7 General Remarks

PyDTNN was started as an exercise to understand in detail distributed train-
ing of neural networks. While there exist several sophisticated DL frameworks
for distributed training, in our experience, the ample functionality and high
parallel performance of these frameworks come at the expense of considerable
complexity, especially in the case of those packages that explicitly target dis-
tributed platforms such as clusters. For this reason, we designed our framework
for distributed DL training that puts the focus on simplicity, at the expense
of offering more limited functionality and sacrificing some of the (intra-node)
parallel performance. This paper demonstrates that it is possible to offer a
simple interface, together with a DNN training package that is easy to cus-
tomize and can be very helpful to rapidly prototype ideas, offering fair parallel
efficiency on a cluster.

Acknowledgments

This work was supported by project TIN2017-82972-R from the Spanish Min-
isterio de Ciencia, Innovación y Universidades. M. F. Dolz was supported by
project CDEIGENT/2018/014 from the Generalitat Valenciana.

References

1. Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient processing of
deep neural networks: A tutorial and survey. Proc. IEEE, 105(12):2295–2329, 2017.

2. Samira Pouyanfar et al. A survey on deep learning: Algorithms, techniques, and appli-
cations. ACM Comput. Surv., 51(5):92:1–92:36, September 2018.

3. Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis. ACM Comput. Surv., 52(4), August 2019.

4. Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional
neural networks for document processing. In International Workshop on Frontiers in
Handwriting Recognition, 2006.

5. Aravind Vasudevan, Andrew Anderson, and David Gregg. Parallel multi channel con-
volution using general matrix multiplication. In 2017 IEEE 28th Int. Conference on
Application-specific Systems, Architectures and Processors (ASAP), pages 19–24, July
2017.

6. Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for Ima-
geNet training. arXiv preprint 1708.03888, 2017.

7. Yang You et al. Large-batch training for LSTM and beyond. Technical Report
UCB/EECS-2018-138, Electrical Engineering and Computer Sciences, University of Cal-
ifornia at Berkeley, 2018.

8. Ernie Chan, Marcel Heimlich, Avi Purkayastha, and Robert van de Geijn. Collective
communication: Theory, practice, and experience. Concurr. Comput.: Pract. Exper.,
19(13):1749–1783, September 2007.

9. Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint 1409.1556, 2014.

10. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

	Introduction
	Distributed Training of DNNs
	A Glimpse of PyDTNN
	PyDTNN Amiable User Interface
	Extensibility of PyDTNN
	Efficiency of Two-level Parallel PyDTNN
	General Remarks

