Skip to main content
Log in

A novel dual-biological-community swarm intelligence algorithm with a commensal evolution strategy for multimodal problems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

For sophisticated applications, engineers should always consider multi-objective, multi-task or multi-modal problems, especially in the Internet of Things, such as the data fusion of multi-sensor systems, multiple routing problems for automation and convergence control in wireless sensor networks. Normally, utilizing traditional methods costs abundant resources and yields the homogeneous results that fails to satisfy requirements. For the multimodal situation, this paper proposes the dual-biological-community swarm intelligence algorithm based on particle swarm optimization (DBC–PSO), which is combined with the commensal evolution strategy to enhance the convergence ability. This algorithm can split tasks into two communities and guarantee regional changes in information and search accuracy for multimodal problems through a commensal strategy. Moreover, some typical parameters, including the population rate, velocity and radius influence, are considered to study the algorithm performance. The performance is evaluated on 12 well-known multimodal problems, and the simulation is compared with some algorithms that utilize a similar evolutionary approach. The results indicate that the proposed algorithm exhibits strong performance and is very promising for use in more productive work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu G, Huang X, Guo W, Niu Y, Chen G (2015) Multilayer obstacle-avoiding X-architecture steiner minimal tree construction based on particle swarm optimization. IEEE Trans Cybern 45:1003–1016. https://doi.org/10.1109/TCYB.2014.2342713

    Article  Google Scholar 

  2. Xia Y, Leung H (2014) Performance analysis of statistical optimal data fusion algorithms. Inf Sci 277:808–824. https://doi.org/10.1016/j.ins.2014.03.015

    Article  MathSciNet  MATH  Google Scholar 

  3. Guo W, Chen G (2015) Human action recognition via multi-task learning base on spatial–temporal feature. Inf Sci 320:418–428. https://doi.org/10.1016/j.ins.2015.04.034

    Article  MathSciNet  Google Scholar 

  4. Cheng H, Su Z, Xiong N, Xiao Y (2016) Energy-efficient node scheduling algorithms for wireless sensor networks using Markov Random Field model. Inf Sci 329:461–477. https://doi.org/10.1016/j.ins.2015.09.039

    Article  MATH  Google Scholar 

  5. Liang Y, Leung KS (2011) Genetic Algorithm with adaptive elitist-population strategies for multimodal function optimization. Appl Soft Comput 11:2017–2034. https://doi.org/10.1016/j.asoc.2010.06.017

    Article  Google Scholar 

  6. Qu BY, Suganthan PN, Liang JJ (2012) Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans Evol Comput 16:601–614. https://doi.org/10.1109/TEVC.2011.2161873

    Article  Google Scholar 

  7. Qu B, Li C, Liang J, Yan L, Yu K, Zhu Y (2019) A self-organized speciation based multi-objective particle swarm optimizer for multimodal multi-objective problems. Appl Soft Comput 86:105886. https://doi.org/10.1016/j.asoc.2019.105886

    Article  Google Scholar 

  8. Yang Q, Chen W, Yu Z, Gu T, Li Y, Zhang H, Zhang J (2017) Adaptive multimodal continuous ant colony optimization. IEEE Trans Evol Comput 21:191–205. https://doi.org/10.1109/TEVC.2016.2591064

    Article  Google Scholar 

  9. Tsujimoto T, Shindo T, Kimura T, Jin'no K (2012) A relationship between network topology and search performance of PSO. In: 2012 IEEE Congress on Evolutionary Computation, IEEE, Brisbane, Australia, pp 1-6

  10. Zhang G, Li D, Zhou X, Xu D (2015) Differential evolution with dynamic niche radius strategy for multimodal optimization. In: The 27th Chinese Control and Decision Conference (2015 CCDC), IEEE, Qingdao, China, pp 3059-3064

  11. Zhang W, Li G, Zhang W, Liang J, Yen GG (2019) A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization. Swarm Evol Comput 50:100569. https://doi.org/10.1016/j.swevo.2019.100569

    Article  Google Scholar 

  12. Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2004) Parallel differential evolution. In: Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No.04TH8753), IEEE, Portland, OR, pp 2023–2029

  13. Ye W, Feng W, Fan S (2017) A novel multi-swarm particle swarm optimization with dynamic learning strategy. Appl Soft Comput 61:832–843. https://doi.org/10.1016/j.asoc.2017.08.051

    Article  Google Scholar 

  14. Moscato P, Cotta C, Mendes A (2014) Memetic algorithms. In: Onwubolu GC, Babu BV (eds) New optimization techniques in engineering. Springer, Berlin, Heidelberg, pp 53–85

    Google Scholar 

  15. Chang WD (2015) A modified particle swarm optimization with multiple subpopulations for multimodal function optimization problems. Appl Soft Comput 33:170–182. https://doi.org/10.1016/j.asoc.2015.04.002

    Article  Google Scholar 

  16. Liu Z-G, Ji X-H, Yang Y (2019) Hierarchical differential evolution algorithm combined with multi-cross operation. Expert Syst Appl 130:276–292. https://doi.org/10.1016/j.eswa.2019.04.040

    Article  Google Scholar 

  17. Wang ZJ, Zhan ZH, Kwong S, Jin H, Zhang J (2020) Adaptive granularity learning distributed particle swarm optimization for large-scale optimization. IEEE Trans Cybern. https://doi.org/10.1109/tcyb.2020.2977956

    Article  Google Scholar 

  18. Lim WH, Mat Isa NA (2014) An adaptive two-layer particle swarm optimization with elitist learning strategy. Inf Sci 273:49–72. https://doi.org/10.1016/j.ins.2014.03.031

    Article  MathSciNet  Google Scholar 

  19. Xia X, Xing Y, Wei B, Zhang Y, Li X, Deng X, Gui L (2019) A fitness-based multi-role particle swarm optimization. Swarm Evol Comput 44:349–364. https://doi.org/10.1016/j.swevo.2018.04.006

    Article  Google Scholar 

  20. Liu G, Chen Z, Zhuang Z, Guo W, Chen G (2020) A unified algorithm based on HTS and self-adapting PSO for the construction of octagonal and rectilinear SMT. Soft Comput 24:3943–3961. https://doi.org/10.1007/s00500-019-04165-2

    Article  Google Scholar 

  21. Tong L, Dong M, Jing C (2018) An improved multi-population ensemble differential evolution. Neurocomputing 290:130–147. https://doi.org/10.1016/j.neucom.2018.02.038

    Article  Google Scholar 

  22. Liang JJ, Qu BY, Mao XB, Niu B, Wang DY (2014) Differential evolution based on fitness Euclidean-distance ratio for multimodal optimization. Neurocomputing 137:252–260. https://doi.org/10.1016/j.neucom.2013.03.069

    Article  Google Scholar 

  23. Gong YJ, Chen WN, Zhan ZH, Zhang J, Li Y, Zhang Q, Li JJ (2015) Distributed evolutionary algorithms and their models: a survey of the state-of-the-art. Appl Soft Comput 34:286–300. https://doi.org/10.1016/j.asoc.2015.04.061

    Article  Google Scholar 

  24. Lynn N, Ali MZ, Suganthan PN (2018) Population topologies for particle swarm optimization and differential evolution. Swarm Evol Comput 39:24–35. https://doi.org/10.1016/j.swevo.2017.11.002

    Article  Google Scholar 

  25. Yang LH, Wang YM, Su Q, Fu YG, Chin KS (2016) Multi-attribute search framework for optimizing extended belief rule-based systems. Inf Sci 370–371:159–183. https://doi.org/10.1016/j.ins.2016.07.067

    Article  Google Scholar 

  26. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the 2002 congress on evolutionary computation. CEC'02 (Cat. No.02TH8600), IEEE, Honolulu, HI, pp 1671–1676

  27. Cleghorn CW, Engelbrecht A (2015) Fully informed particle swarm optimizer: convergence analysis. In: 2015 IEEE congress on evolutionary computation (CEC), IEEE Sendai, pp 164–170

  28. Sun Y, Jiao L, Wang R, Deng X (2017) Dynamic network structured immune particle swarm optimization with small-world topology. Int J Bio-Inspired Comput 9:93–105. https://doi.org/10.1504/ijbic.2017.083100

    Article  Google Scholar 

  29. Shi Y, Liu H, Gao L, Zhang G (2011) Cellular particle swarm optimization. Inf Sci 181:4460–4493. https://doi.org/10.1016/j.ins.2010.05.025

    Article  MathSciNet  MATH  Google Scholar 

  30. Ishimizu T, Tagawa K (2010) A structured differential evolution for various network topologies. Int J Comput Commun 4:2–8

    Google Scholar 

  31. Cai Y, Zhao M, Liao J, Wang T, Tian H, Chen Y (2017) Neighborhood guided differential evolution. Soft Comput 21:4769–4812. https://doi.org/10.1007/s00500-016-2088-z

    Article  Google Scholar 

  32. Pedroso DM, Bonyadi MR, Gallagher M (2017) Parallel evolutionary algorithm for single and multi-objective optimization: differential evolution and constraints handling. Appl Soft Comput 61:995–1012. https://doi.org/10.1016/j.asoc.2017.09.006

    Article  Google Scholar 

  33. De Falco I, Della Cioppa A, Maisto D, Scafuri U, Tarantino E (2007) Satellite image registration by distributed differential evolution. In: Giacobini M (ed) Applications of evolutionary computing. Springer, Berlin, Heidelberg, pp 251–260

    MATH  Google Scholar 

  34. Li X (2007) A multimodal particle swarm optimizer based on fitness Euclidean-distance ratio. In: Proceedings of the 9th Annual Conference on GENETIC and Evolutionary Computation, Association for Computing Machinery, London, England, pp 78–85

  35. Qu BY, Liang JJ, Suganthan PN (2012) Niching particle swarm optimization with local search for multi-modal optimization. Inf Sci 197:131–143. https://doi.org/10.1016/j.ins.2012.02.011

    Article  Google Scholar 

  36. Qu BY, Suganthan PN, Das S (2013) A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans Evol Comput 17:387–402. https://doi.org/10.1109/TEVC.2012.2203138

    Article  Google Scholar 

  37. Thomsen R (2004) Multimodal optimization using crowding-based differential evolution. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), IEEE, Portland, OR, pp 1382–1389

  38. Parrott D, Xiaodong L (2006) Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans Evol Comput 10:440–458. https://doi.org/10.1109/TEVC.2005.859468

    Article  Google Scholar 

  39. Li X (2010) Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans Evol Comput 14:150–169. https://doi.org/10.1109/TEVC.2009.2026270

    Article  Google Scholar 

  40. Li Y, Chen Y, Zhong J, Huang Z (2019) Niching particle swarm optimization with equilibrium factor for multi-modal optimization. Inf Sci 494:233–246. https://doi.org/10.1016/j.ins.2019.01.084

    Article  MathSciNet  MATH  Google Scholar 

  41. Liu Q, Du S, van Wyk BJ, Sun Y (2020) Niching particle swarm optimization based on Euclidean distance and hierarchical clustering for multimodal optimization. Nonlinear Dyn 99:2459–2477. https://doi.org/10.1007/s11071-019-05414-7

    Article  Google Scholar 

  42. Brown BL, Creed RP, Skelton J, Rollins MA, Farrell KJ (2012) The fine line between mutualism and parasitism: complex effects in a cleaning symbiosis demonstrated by multiple field experiments. Oecologia 170:199–207. https://doi.org/10.1007/s00442-012-2280-5

    Article  Google Scholar 

  43. Tian M, Gao X (2019) Differential evolution with neighborhood-based adaptive evolution mechanism for numerical optimization. Inf Sci 478:422–448. https://doi.org/10.1016/j.ins.2018.11.021

    Article  Google Scholar 

  44. Satapathy A, Satapathy SK, Reza M (2014) Agent-based parallel Particle swarm optimization based on group collaboration. In: 2014 Annual IEEE India Conference (INDICON), IEEE, Pune, India, pp 1-5

  45. De Falco I, Della Cioppa A, Maisto D, Scafuri U, Tarantino E (2012) Biological invasion–inspired migration in distributed evolutionary algorithms. Inf Sci 207:50–65. https://doi.org/10.1016/j.ins.2012.04.027

    Article  Google Scholar 

  46. Ge Y, Yu W, Zhan Z, Zhang J (2018) Competition-based distributed differential evolution. In: 2018 IEEE Congress on Evolutionary Computation (CEC), IEEE Rio de Janeiro, pp 1–8 https://doi.org/https://doi.org/10.1109/CEC.2018.8477758

  47. Chen W, Zhang J, Lin Y, Chen N, Zhan Z, Chung HS, Li Y, Shi Y (2013) Particle swarm optimization with an aging leader and challengers. IEEE Trans Evol Comput 17:241–258. https://doi.org/10.1109/TEVC.2011.2173577

    Article  Google Scholar 

  48. Ghosh P, Zafar H, Das S, Abraham A (2011) Hierarchical dynamic neighborhood based Particle Swarm Optimization for global optimization. 2011 IEEE congress of evolutionary computation (CEC). IEEE, New Orleans, LA, pp 757–764

    Chapter  Google Scholar 

  49. El Dor A, Clerc M, Siarry P (2012) A multi-swarm PSO using charged particles in a partitioned search space for continuous optimization. Comput Optim Appl 53:271–295. https://doi.org/10.1007/s10589-011-9449-4

    Article  MathSciNet  MATH  Google Scholar 

  50. Chen Y, Li L, Xiao J et al (2018) Particle swarm optimizer with crossover operation[J]. Eng Appl Artif Intell 70:159–169

    Article  Google Scholar 

  51. Wu G, Qiu D, Yu Y, Pedrycz W, Ma M, Li H (2014) Superior solution guided particle swarm optimization combined with local search techniques. Expert Syst Appl 41:7536–7548. https://doi.org/10.1016/j.eswa.2014.06.005

    Article  Google Scholar 

  52. Pehlivanoglu YV (2013) A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks. IEEE Trans Evol Comput 17:436–452. https://doi.org/10.1109/TEVC.2012.2196047

    Article  Google Scholar 

  53. Xu X, Tang Y, Li J, Hua C, Guan X (2015) Dynamic multi-swarm particle swarm optimizer with cooperative learning strategy. Appl Soft Comput 29:169–183. https://doi.org/10.1016/j.asoc.2014.12.026

    Article  Google Scholar 

  54. Li J, Zhang J, Jiang C, Zhou M (2015) Composite particle swarm optimizer with historical memory for function optimization. IEEE Trans Cybern 45:2350–2363. https://doi.org/10.1109/TCYB.2015.2424836

    Article  Google Scholar 

  55. Mohamed AW, Sabry HZ, Khorshid M (2012) An alternative differential evolution algorithm for global optimization. J Adv Res 3:149–165. https://doi.org/10.1016/j.jare.2011.06.004

    Article  Google Scholar 

  56. Wang S, Liu G, Gao M, Cao S, Guo A, Wang J (2020) Heterogeneous comprehensive learning and dynamic multi-swarm particle swarm optimizer with two mutation operators. Inf Sci 540:175–201. https://doi.org/10.1016/j.ins.2020.06.027

    Article  MathSciNet  Google Scholar 

  57. Amoozegar M, Minaei-Bidgoli B (2018) Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism. Expert Syst Appl 113:499–514. https://doi.org/10.1016/j.eswa.2018.07.013

    Article  Google Scholar 

  58. Liu Y, Wang G, Chen H, Dong H, Zhu X, Wang S (2011) An improved particle swarm optimization for feature selection. J Bionic Eng 8:191–200. https://doi.org/10.1016/S1672-6529(11)60020-6

    Article  Google Scholar 

  59. Taherkhani M, Safabakhsh R (2016) A novel stability-based adaptive inertia weight for particle swarm optimization. Appl Soft Comput 38:281–295. https://doi.org/10.1016/j.asoc.2015.10.004

    Article  Google Scholar 

  60. Li X, Engelbrecht A, Epitropakis MG (2013) Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization. RMIT University, Melbourne, Australia

    Google Scholar 

  61. Fieldsend JE (2014) Running up those hills: multi-modal search with the niching migratory multi-swarm optimiser. 2014 IEEE congress on evolutionary computation (CEC). IEEE, Beijing, pp 2593–2600

    Chapter  Google Scholar 

Download references

Acknowledgments

This paper is supported by the National Key Research and Development Funding (2018YFB1403703) and the Fundamental Research Funds for the Central Universities (CUC200D055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochen Shen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to disclose.

Consent for publication

This manuscript has not been published and is not under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Shen, X. & Jia, X. A novel dual-biological-community swarm intelligence algorithm with a commensal evolution strategy for multimodal problems. J Supercomput 77, 10850–10895 (2021). https://doi.org/10.1007/s11227-021-03721-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03721-8

Keywords

Navigation