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Abstract
In this paper, we describe an optimal network location for travel planning (ONLTP) 
query, a type of optimal location query. In trip planning, finding the optimal point 
for a group of users is a fundamental problem in spatial group query processing. 
Many previous studies have considered the problem of finding the optimal point. 
However, their queries using an exact method perform efficiently only when the 
users are closely distributed, not spread out in large road networks. In contrast, 
approximation methods use two different spatial indices, but they cannot control 
the trade-off between query performance and accuracy. We propose a method using 
G-trees [1, 2] to remedy these drawbacks. Our exact method is a concrete imple-
mentation of the best-first search in G-trees, and our approximation method further 
reduces the visited nodes of the exact method.

Keywords  Spatial databases · Trip planning query · G-tree · Optimal location 
query · Optimal meeting point

1  Introduction

A search for the optimal location is used in various applications. For example, when 
people select a dining location, they can choose the optimal meeting point, consider-
ing the distance from their home locations, and a travel agent can choose where to 
have people picked up for transportation to the airport with the minimum number of 
miles. This type of query, called optimal meeting point (OMP) [3], finds the optimal 
location in the entire spatial network using the objective function for a given query. 
The objective function for the optimal network location for travel planning (ONLTP) 
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consists of two functions: MinSum minimizes the total travel distance for all people, 
and MinMax minimizes the longest travel distance. The definitions of MinSum and 
MinMax are as follows:

–	 MinSum: minimize 
∑

dist(qi,m) + dist(m, d) , and
–	 MinMax: minimize max dist(qi,m) + dist(m, d),

where m is an arbitrary meeting point, qi is the ith member of the set of query points 
{q1, q2, ..., q|Q|} , d is the destination, and dist is the shortest distance between m and 
d. For an illustration of these formulas, see Fig. 1, an example of a road network. 
Given a set of query points Q = {v2, v5, v6} and a destination d = v8 , the ONLTP 
function MinSum returns v3 , with a cost of 11.

However, the ONLTP function MinMax returns v8 , and the cost is 9.

To solve the ONLTP with a naive approach, we should first compute the distance 
from each query point to each vertex. Then, we must find the optimal meeting point 
that minimizes the given objective function. However, this has a high computational 
cost. The main challenges of the ONLTP are, first, reducing the number of candi-
date meeting points to the extent possible and, second, computing the nontrivial 
shortest distance in the given road network. In this paper, we propose a branch-and-
bound method based on the G-tree index, a scalable index of road networks, and 
a dynamic-programming approach that arises when applying the branch-and-bound 
method to solve the ONLTP. Furthermore, we propose a greedy-based approxima-
tion method to speed up query performance while maintaining high accuracy.

Our contributions are summarized as follows:

–	 We propose a concrete implementation of the branch-and-bound methodology of 
ONLTP using the G-tree index structure.

–	 We propose a greedy-based approximation method, which can control the trade-
off between query performance and accuracy.

(1)MINSUM = dist(v2, v3) + dist(v5, v3) + dist(v6, v3) + dist(v3, v8) = 16.

(2)MINMAX = max[dist(v2, v8), dist(v5, v8), dist(v6, v8)] + dist(v8, v8) = 9.

Fig. 1   Example of a road network
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–	 We experimentally validated the efficiency of our method using road networks of 
various sizes, particularly with large datasets.

The remainder of the paper is as follows. In Sect. 2, we present several studies rel-
evant to our work. In Sect. 3, we introduce a traditional branch-and-bound method 
and apply it to a G-tree index. In Sect.  4, we propose a dynamic programming 
method to solve the branch-and-bound problem in a G-tree that suffers from redun-
dant computation. In Sect. 5, we propose a greedy-based approximation method to 
improve the query performance while maintaining a high degree of accuracy. In 
Sect. 6, we experimentally evaluate the query performance of our proposed method 
compared to existing related methods. In Sect. 7, we summarize our work.

2 � Related work

Because we are studying an efficient processing method for the ONLTP, in this sec-
tion, we consider studies related to the optimal meeting point or relevant to it.

Group nearest neighbor Papadias et  al. [4] presented group nearest neighbor 
(GNN) queries, which find the point(s) in set P with the smallest sum of the dis-
tances to all locations in query set Q. They proposed three algorithms based on 
R-tree to solve a GNN query: the multiple query, single point, and minimum-bound-
ing methods. These methods are used to minimize I/O and computational costs in 
memory-resident cases. Furthermore, they proposed two alternative methods based 
on the multiple query and the minimum-bounding methods to solve the problem 
when the query set does not fit in memory. However, their sum function only works 
in a Euclidean space.

Aggregate nearest neighbor Yiu et  al. [5] presented aggregate nearest neighbor 
(ANN) queries, which consider network distances and several aggregate functions in 
GNN queries. Essentially, their work is different from GNN because of the nontriv-
ial computation of the network distances. They proposed three algorithms—incre-
mental Euclidean restriction, a threshold algorithm, and concurrent expansion—to 
minimize I/O costs during network traversal for nontrivial computation.

Collective travel planning Shang et  al. [6] proposed collective travel planning 
(CTP) queries, which find the lowest-cost route that connects multiple query points 
and a destination through at most k meeting points (points of interest). Formally, 
given a set Q of query points, a set M of meeting points, a destination d, and an 
integer threshold k, the CTP query finds the subset A of M of maximum size k with 
the minimum cost. CTP consists of an exponential number of ANN [5] problems for 
distance calculation between the user and a meeting point. Shang et al. showed that 
the CTP problem is NP-hard, so they proposed a heuristic search strategy to process 
scenarios with a large |Q|.

However, all these studies considered only a scenario with a given set of points of 
interest. They are not directly comparable to our work because ONLTP considers the 
entire set of vertices in a road network as points of interest. Thus, ONLTP should be 
compared primarily to other studies more closely related to it.
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Optimal meeting point Yan et  al. [3] proposed an OMP query that returns the 
point in a road network with the minimum sum of network distances to all query 
points Q. An OMP query is different from a GNN query in that all vertices of a road 
network, rather than only points of interest, are candidates. They used two aggregate 
functions, minsum and minmax, to minimize the total travel distance and elapsed 
travel time. They proposed two algorithms: two-phase online convex-hull-based 
pruning and fast greedy. The two-phase pruning method works as follows: In the 
first phase, a convex hull is formed in Euclidean space using the query points. In 
the second phase, the sides of the convex hull transform into the shortest paths of 
the network. Only the vertices in the region surrounding the hull are checked for a 
correct answer, including the query points. The fast greedy method is more straight-
forward. Yan et al. used the convexity property of the sum of the network distance 
function and adopted the gradient descent method [7, 8] to find the optimal meeting 
point. First, the initial point is computed, along with the center of gravity of query 
points Q, and a vertex is obtained using the nearest neighbor query on KD-tree [9]. 
The process of searching for neighbor vertices is repeated until there are no better 
neighbor vertices.

The ONLTP query differs only in that one point of the query is used as an arrival 
point and is not otherwise fundamentally different from the OMP query. However, in 
the real world, the distance from the query point to the destination is usually greater 
than the distance between all query points. We propose a new technique performs 
better than the methods in the previous studies in both the aggregate function used 
in the existing OMP and the aggregate function following the travel planning case.

Other types of queries There are many other different types of queries for a road 
network environment. Zhong et al. [1, 2] proposed G-tree, which is a road network 
index structure that supports multiple types of road network queries, including 
shortest path, k-nearest neighbor (kNN), and keyword-based kNN queries. G-tree 
partitions a road network into multiple subgraphs, and it constructs a hierarchical 
tree structure of the subgraphs. To solve queries on a road network, Zhong et al. also 
presented an assembly-based method that traverses each G-tree node and computes 
sub-results in a dynamic programming approach. Li et al. [17] proposed G*-tree to 
address the inefficiency problem of G-tree. G*-tree is similar to G-tree, but it builds 
shortcuts between selected leaf nodes. Each shortcut stores the distances between 
the borders of two leaf nodes, so it efficiently supports shortest path, kNN, and 
range queries. Jung et al. [18] developed a personalized route planning algorithm. 
They proposed a variation of the pathfinding problem that assumes the user pref-
erence changes over time. To find the best path, they suggested MPG-tree, which 
stores the dynamic attribute list of each node. Chen et al. [19] presented a continu-
ous path-based range query in which the query point moves along a given path. To 
answer the query, they reduced it to finding the set of points for which the answer 
set changes. To enhance the query performance, they developed a backbone network 
index structure. The method exploits G*-tree to store the backbone network, which 
is a simplified graph of the original road network and stores detailed network infor-
mation by the region directory. The authors also developed a two-phase query pro-
cessing algorithm based on the filter-and-verification framework. Zhao et  al. [20] 
proposed a time-aware spatial keyword (TSK) query, which finds the most suitable 



12565

1 3

Efficient methods for finding an optimal network location…

k objects satisfying spatial, temporal, and textual constraints. To efficiently address 
the TSK query, they developed the TG index, which consists of a TA file and G-tree. 
the TA file stores the time and keyword information about an object and maintains 
their aggregate values. To address the TSK query, they adopt a filter and refinement 
framework using the TG index. These studies considered spatial queries using a 
G-tree-like index structure, but all of the above methods fail to consider multiple 
users, which lead to inefficiency or even infeasibility compared to our query.

3 � Preliminaries

3.1 � Problem definitions

In this section, we formally define the ONLTP and several relevant definitions. First, 
we formalize the spatial database in which our problem is identified.

Definition 1  Road network and dist Given a vertex set V and an edge set E(⊆ V × V) 
with edge costs, the edge costs are nonnegative, symmetrical, and satisfy the triangle 
inequality. The shortest distance between two vertices u ∈ V  and v ∈ V  is defined as 
the minimum accumulated cost value of a path between u and v and is denoted by 
dist(u, v).

We call the shortest distance in a spatial database the network distance.

Definition 2  Optimal Network Location for Travel Planning (ONLTP) Given a road 
network G(V,  E), a set Q of query points, a destination d, and a cost function F 
(namely, MinSum or MinMax), the ONLTP finds the vertex v ∈ V  that is the optimal 
point based on the cost function F. The MinSum and MinMax functions are defined 
as follows:

–	 MinSum: arg minv∈V{
∑

qi∈Q
dist(qi, v) + dist(v, d)};

–	 MinMax: arg minv∈V{maxqi∈Q dist(qi, v) + dist(v, d)}.

To solve the ONLTP in a brute-force manner, we first compute the distance from 
each query point to each vertex. Next, we compute the distance from the destination 
to each vertex. Finally, we can determine the optimal meeting point using the Dijk-
stra approach of O(|V|log|V|) to calculate the shortest path distance. Thus, the naive 
method has O(|Q||V|log|V|) time complexity. This method is not feasible for query-
processing systems because the computational cost is so high.

3.2 � Branch‑and‑bound method

The branch-and-bound method is a structured search of the space of all feasible 
solutions. The space of all feasible solutions is repeatedly partitioned into smaller 
subspaces, and a lower bound is used as the value to represent each subspace. Yan 
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et al. extended their work [3] to [11]. Specifically, with R-tree [10], they define 
the lower bound as 

∑
q∈Q MINDIST(q, e) , where Q is a set of query points and e 

is the minimum bounding rectangle (MBR) in an R-tree. Figure 2 is an illustra-
tion of MinDist computations in R-trees. There are three computations involed: 
First,the distance from q to the nearest edge of the MBR e, by a segment drawn 
perpendicularly to the nearest edge of e, as depicted in Fig. 2a; second, the dis-
tance between q and the nearest vertex of e, as depicted in Fig.  2b; and third, 
if the query point q is in the MBR e, then MINDIST(q, e) = 0 . Since the sum of 
MinDist is always less than or equal to the network distance, this value is used as 
the lower bound in R-trees. According to the borders property [1, 2], to reach a 
subgraph, we must visit one of its borders.

Figure 3 is an example of a branch-and-bound method. Given a set of query 
points Q = {q} , assume that the current search node is e3 , the nearest vertex is 
q, vb is inside e3 , and the search order is depth-first (that is, e0 → e1 → e3 → e2 ). 
The current best answer is found if the search process reaches the leaf node of 
the R-tree. Therefore, we can find the nearest vertex vb while we visit e3 . Then, 
the current best cost is dist(q, vb) . Next, according to the depth-first search order, 
the next node to be searched is e2 . We can end the search without traversing ver-
tices inside e2 if e2 ’s lower bound MINDIST(q, e2) is greater than the current best 
answer, 

∑
q∈Q dist(q, vb) . To apply the branch-and-bound method, two properties 

must be satisfied: First, the lower bound of the parent node is less than or equal to 
the lower bound of its children, and second, the cost increases monotonically as 
the cardinality of Q increases.

(a) (b)

Fig. 2   MinDist computations in R-trees

(a) (b)

Fig. 3   Example of the branch-and-bound method in R-trees
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3.3 � G‑tree index structure

A G-tree [1, 2] is a scalable index based on a multi-level graph partitioning 
method. Similarly to R-tree, G-tree also constructs a hierarchical tree structure. 
It partitions the road network into sub-networks and organizes them hierarchi-
cally. Each node of the G-tree maintains the vertices of the edges that connect 
them between subgraphs, called borders. Figure 4 is an example of a G-tree index 
structure. Fig. 4a is an example of a road network, and Fig. 4b is a G-tree index 
structure. In Fig. 4b, the numbers of the tree nodes are its subgraph borders. Each 
matrix of a non-leaf node has the pair-wise network distances between the bor-
ders of its child nodes. According to the border property, to reach a subgraph, we 
must visit one of its borders. Thus, using this property, we define GMinDist, the 
shortest distance between a vertex and a subgraph of a G-tree.

Definition 3  Minimum distance between a vertex and a subgraph Given a vertex 
v ∈ V  and a G-tree node Gn , the shortest distance between v and Gn is denoted by 
GMINDIST(v,Gn) and computed as follows.

(a)

(b)

Fig. 4   Example of G-tree index structure
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where B(Gn) is the border set of the subgraph Gn.

As we mentioned in Sect. 3.2, to apply the branch-and-bound method to a G-tree, 
we have to show that the G-tree follows two properties: a monotonically increasing 
GMinDist and a monotonically increasing aggregate cost function.

4 � Exact method

4.1 � Best‑first search

To apply a best-first search method, we need to define a lower bound in a G-tree and 
show the two properties of monotonicity.

Definition 4  Lower bound on MinSum in a G-tree Given a set Q of query points, a 
destination d, and a node Gn of a G-tree, the lower bound of ONLTP in the G-tree is 
denoted LOWERBOUND(Q, d,Gn) and is defined as follows.

Definition 5  Lower bound on MinMax in a G-tree Given a set Q of query points, a 
destination d, and a node Gn of a G-tree, the lower bound of ONLTP in the G-tree is 
denoted LOWERBOUND(Q, d,Gn) and is defined as follows.

Theorem  1  Monotonous lower bound in a G-tree In a G-tree, the LowerBound 
increases monotonically when searching in top-down order.

Proof of Theorem  1  Because GMinDist, the unit value of the LowerBound, is 
defined in two cases, it can be seen that the LowerBound increases monotonically if 
both cases increase monotonically. 

1.	 If a query point qi is not in Gn , given a child node Gn+1 of node Gn , we compute 
LOWERBOUND(qi, d,Gn+1) and LOWERBOUND(qi, d,Gn) as follows. 

(3)GMINDIST(v,Gn) =

{
0 if v is in Gn

minbi∈B(Gn)
dist(v, bi) otherwise

,

(4)LOWERBOUND(Q, d,Gn) =
∑
qi∈Q

GMINDIST(qi,Gn) + GMINDIST(d,Gn)

(5)LOWERBOUND(Q, d,Gn) = max
qi∈Q

GMINDIST(qi,Gn) + GMINDIST(d,Gn)
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 Now we assume that the GMinDist does not increase monotonically, that is, 
GMINDIST(qi,Gn+1) < GMINDIST(qi,Gn) . Then, according to (6) and (7), we 
obtain the following equation: 

 Since it is clear that minbn+1∈B(Gn+1)
dist(bn, bn+1) ≥ 0 , we obtain following 

equation: 

 However, this is a contradiction. Hence, GMinDist increases monotonically in 
the first case.

2.	 If a query point qi is in Gn , GMINDIST(qi,Gn) is 0. Because GMinDi-st(qi,Gn+1) 
is a network distance, it is always greater than or equal to 0. Therefore, GMinDist 
increases monotonically in the second case.

In this paper, we use only two cost functions, MinSum and MinMax, which are 
already widely known to increase monotonally. Therefore, we do not prove that the 
functions are monotonically increasing. Now, we can use the branch-and-bound 
framework with LowerBound as defined in Definitions 4 and 5. Alg. 1 is an imple-
mentation of the branch-and-bound method based on a G-tree. The search order 
is the best-first search, which examines the smallest lower bound first, and then it 
traverses the G-tree nodes until the termination condition is satisfied. This is the 
process by which the branch-and-bound method is applied to the G-tree index struc-
ture. However, this method wastes computational resources when calculating lower 
bounds by not using a pruning process. Figure 5 illustrates a redundant computation 

(6)

GMINDIST(qi,Gn+1) = min
bn+1∈B(Gn+1)

dist(qi, b1)

= min
ux∈B(Gx)

(dist(qi, ux)

+ min
ux−1∈B(Gx−1)

(dist(ux, ux−1)

+ ... + min
bn∈B(Gn)

(dist(u1, bn)

+ min
bn+1∈B(Gn+1)

dist(bn, bn+1)))).

(7)

GMINDIST(qi,Gn) = min
bn∈B(Gn)

dist(qi, b1)

= min
ux∈B(Gx)

(dist(qi, ux)

+ min
ux−1∈B(Gx−1)

(dist(ux, ux−1)

+ ... + min
u1∈B(G1)

(dist(u2, u1)

+ min
bn∈B(Gn)

dist(u1, bn)))).

(8)min
bn∈B(Gn)

(dist(u1, bn) + min
bn+1∈B(Gn+1)

dist(bn, bn+1)) < min
bn∈B(Gn)

dist(u1, bn).

(9)min
bn∈B(Gn)

dist(u1, bn) < min
bn∈B(Gn)

dist(u1, bn).
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process of a lower bound. Figure 5b shows the computation process that occurs after 
Figure 5a. The top-down search always maintains this order, so the same subprocess 
is repeated when calculating the lower bound of each node. 

 

4.2 � Redundancy cancellation method

To mitigate redundancy in the lower bound computation, it is necessary to store the 
partially computed distance matrix. Like the SPSP [1, 2] query in G-tree, we apply a 
method based on dynamic programming to cancel out the redundancy. We store the 
distance from a query point to a G-tree node border, as depicted in Fig. 6a. We cal-
culate the distance from each query point to the borders of the G-tree node, store it 

(a) (b)

Fig. 5   Redundant computation of lower bound in G-tree
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in memory, and retain it until the query is complete. Fig. 6b and c show examples of 
canceling propagation from parent and sibling nodes, respectively. If the distance from 
a parent to its child node has already been computed, we do not need to compute the 
distance from the child to its parent. Likewise, if the distance from a node and its sib-
ling has already been computed, we do not need to compute the distance from the sib-
ling to the original node. We simply propagate the results and compute only the addi-
tional distances needed. The following expresses Fig. 6 in equation form:

(a)

(b) (c)

Fig. 6   Redundancy canceling based on dynamic programming
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where table is the storage for redundancy canceling and G.mat is the distance matrix 
of the node G . In Alg. 1, Line 17, the only additional calculation needed is from the 
borders in storage to the candidate meeting point, thereby improving the distance 
calculation time.

5 � Approximation method

Even after the redundancy cancellation method is applied, nodes close to the root 
have a significant difference from the actual distance value that the lower bound can 
calculate on a leaf. Thus, these nodes are unlikely to be pruned. Applying the R-tree 
approximation methods proposed in existing studies [12–15] does not solve this 
problem. The following paragraphs are brief descriptions of the existing techniques.

�-approximation In �-approximation [12, 13, 15], given a non-negative real value 
� (� ≥ 0) , if we visit a non-leaf (internal) node, its child node Gc is inserted in the 
priority queue if LOWERBOUND(Q, d,Gc) ≤ current_best∕(1 + �).

�-allowance In �-allowance [14, 15], given a non-negative real value � 
(0 ≤ � ≤ 1) , if we visit a non-leaf (internal) node, its child node Gc is inserted in the 
priority queue if LOWERBOUND(Q, d,Gc) ≤ current_best ∗ (1 − �).

5.1 � Lower bound approximation

To compensate for the problem of a node close to the root having a small lower 
bound, we propose an approximate lower bound estimation method. First, however, 
we look briefly at the drawback of comparing non-leaf nodes with the current_best 
value. In the top-down approach in G-trees, the child’s lower bound is updated by 
selecting the minimum distance between the stored distance matrix in table and the 
distance between its border and its parent border. For both methods, �-approxima-
tion and �-allowance, to work efficiently, the lower bound must be almost the same 
as previously, when the search was conducted downward to the child node. How-
ever, if the increment is 0, the child and parent nodes share the same border, which 
means a number of vertices equal to the depth of the border must be connected to 
different vertices or have a high probability of being connected to the vertices. In 
a real road network, the ratio of vertices to edges is close to one. Therefore, nodes 
close to the root are very unlikely to be pruned.

Fortunately, the increase in the lower bound has an easily determined maximum. 
Since both a border of the parent node and a border of the child node are in the 

(10)table[qi][Gj][bk] =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

min table[qi][Gc][bl] + Gj.mat[bl][bk]

if the child node Gc is already visited

min table[qi][Gs][bl] + Gp.mat[bl][bk]

if the sibling node Gs is already visited

min table[qi][Gp][bl] + Gp.mat[bl][bk]

if the parent node Gp is already visited

,
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subgraph of the parent node, the distance between the two borders is necessarily less 
than or equal to the parent’s subgraph’s diameter, which is bounded as follows:

where Gp is a parent node and Gc is a child node. Using this monotonicity, we can 
calculate an approximate lower bound, which is the expected value of the lower 
bound of a leaf node.

Definition 6  (Approximate lower bound in a G-tree) Given a set Q of query points, a 
destination d, and a node Gn of a G-tree, the approximate lower bound of ONLTP in 
the G-tree is denoted ALBOUND(Q, d,Gn) and is defined as follows:

where H is the height of the G-tree and Gn.depth is the depth of node Gn . Fig-
ure 7 is an example of the approximate lower bound. At the root node (depth=1) and 
nodes at depth 2, the approximate lower bound is not calculated. We calculate the 
approximate lower bounds on nodes with a depth of 3 or greater that are not leaves. 
This approximate lower bound value does not always follow the monotonicity of the 
diameter. It may be larger than the actual lower bounds of their leaf nodes. However, 
considering the ONLTP is an aggregate query, it can be predicted that each G-tree 
node follows the monotonicity with a high probability. This will be demonstrated as 
an approximation experiment in the experimental section.

Using the approximate lower bound, we have implemented a new approximation 
scheme. This new method combines �-approximation and �-allowance and applies 
them to the branch-and-bound method using the approximate lower bound. In the 
approximation method, the initial cost is not set to infinity, but rather a vertex is 
selected and the pruning effect increases. We use the same method for selecting an 
initial point for each cost function, MinSum and MinMax, as the initial point for 
the gradient descent method in the Euclidean space proposed in [11]. Alg. 2 is an 

(11)max
Gc∈Gp.children

diameter(Gc) ≤ diameter(Gp),

(12)
ALBOUND(Q, d,Gn) = LOWERBOUND(Q, d,Gn) + (H − Gn.depth)

∗ (LOWERBOUND(Q, d,Gp) − LOWERBOUND(Q, d,Gn)),

Fig. 7   Example of approxi-
mate lower bound of G3 , 
ALBOUND(Q, d,G3)
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implementation of the best-first search method with an approximate lower bound. 
We control the accuracy by adjusting the � from -1 to 1 in Line 18. When � is less 
than 0, it behaves similarly to �-allowance. When � is greater than 0, it increases the 
accuracy and works in the opposite direction of �-approximation. In Alg. 1, nodes 
with small lower bounds were searched first, but in Alg.  2, because current_best 
must be determined, the approximate lower bound can be used and the search order 
is from the nodes at the depth-first. If two nodes have the same smallest depth, then 
the node with the smaller lower bound is searched first.

6 � Experiments

6.1 � Experimental settings

We conducted experiments on real datasets of various sizes, with the results pre-
sented in Table 1. We used the gradient descent (GD) [3] for an approximate solu-
tion. We attempted to use the branch-and-bound (BB) [11] method as another com-
parison technique, but we had to exclude the BB from the experiments because the 
process did not end in time on a large graph. We used eight real-world datasets [16], 
which are presented in Table 1. The table lists the number of vertices and edges in 
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New York City (NY), the San Francisco Bay Area (BAY), Colorado (COL), Flor-
ida (FLA), Northwest USA (NW), California and Nevada (CAL), the Great Lakes 
region (LKS), and Western USA (W), all of which are available in [16]. All exper-
iments were conducted on an Ubuntu 16.04 LTS platform with an Intel Xeon(R) 
E5-2620 v2 (2.10GHz) processor and 64 GB memory. The algorithms were imple-
mented in C++ (GCC 5.4.0 with -O3 option). In the following subsections, we first 
investigate the performance and accuracy of ONLTP queries with uniform distribu-
tions. The G-tree [1, 2] parameters are fixed at f = 4 , and the maximum leaf size � 
is set to 128 for NY, BAY, and COL and to 256 for FLA, NW, CAL, LKS, and W, 
the same as were used in [17], where f is fanout, the number of children at a non-leaf 
node, and � is the maximum number of vertices at a leaf node.

6.2 � Evaluation of the query performance and the accuracy

In this subsection, only RCM (redundancy cancellation method) and ALBP (approx-
imate lower bound-based pruning), which are the exact and approximation meth-
ods, respectively, proposed in our study, and the GD method are compared. The BB 
method was not used in this subsection because the query performed poorly when 
the query points were distributed over the entire road network. Hence, it is compared 
in other subsections, but not here.

Tables 2 and 3 show the query performance results and accuracy, respectively, of 
MinSum with a query size of 100. The GD method had the best query performance 
but the worst accuracy. In [3], the authors claimed that the optimal meeting point 
query on the sum of the distance follows the convexity, so they proposed a gradient 
descent-based method. However, as shown in Table 3, the optimal meeting points 
do not follow the convexity in large graphs. Therefore, the GD method had a fast 
query time, but the results were far from the correct answers. On the other hand, our 
proposed exact method, RCM, produced query results within an acceptable time, 
unlike the BB method. Furthermore, our approximation method, ALBP, had nearly 

Table 1   Road network statistics

Graph NY BAY COL FLA NW CAL LKS W

# Vertices 264,346 321,270 435,666 1,070,376 1,207,945 1,890,815 2,758,119 6,262,104
# Edges 733,846 800,172 1,057,066 2,712,798 2,840,208 4,657,742 6,885,658 15,248,146

Table 2   Query performance of MinSum (ms)

Graph NY BAY COL FLA NW CAL LKS W

RCM 333.056 147.141 336.333 224.224 283.504 623.894 2053.33 832.695
ALBP (e=0.1) 167.592 62.0828 124.804 133.822 162.097 263.757 1296.61 306.857
ALBP (e=0) 131.522 26.4952 56.8279 74.987 136.459 130.574 1134.9 261.928
GD [3] 27.3299 8.07486 10.8545 13.8029 15.9969 28.286 126.262 81.6928
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99% accuracy, and it ran in approximately half the time of the RCM. Tables 4 and 5 
show the results for MinMax. These experiments were similar to those of MinSum, 
but it was confirmed that the average accuracy of GD was worse than the proposed 
method.

6.3 � Evaluation of varying approximation factor

In this subsection, we investigated how the proposed method changes the query run 
time and accuracy as the approximation factor � changes. Figures 8 and 9 show the 
experimental results for query time and accuracy of MinSum and MinMax, respec-
tively, in the FLA road network when the query size |Q| is 100. The baseline accu-
racy is approximately 85% or higher for MinSum and 95% for MinMax. The higher 
the approximation factor, the closer the accuracy is to 100%. Thus, the execution 
time could be improved by half while maintaining an accuracy rate of up to 85%, 
and it could be improved by a factor of 4 while maintaining an accuracy of up to 
85%. Note that although in the proposed method, the trade-off between query time 
and accuracy can be adjusted through the parameter � , the previous method, GD, 
could not control the trade-off between query time and accuracy. The accuracy of 

Table 3   Accuracy of MinSum (percentage)

Method NY BAY COL FLA NW CAL LKS W

RCM 100 100 100 100 100 100 100 100
ALBP (e=0.1) 99.9245 99.7951 99.1447 99.8406 99.9098 97.0645 99.9548 99.767
ALBP (e=0) 99.8824 96.4123 97.0905 97.2013 99.7308 92.5424 99.9544 98.8638
GD [3] 96.4302 95.2682 91.8355 86.327 89.7163 86.8864 75.7879 97.64

Table 4   Query performance of MinMax (ms)

Graph NY BAY COL FLA NW CAL LKS W

RCM 234.827 100.106 160.076 327.496 276.031 577.175 2285.77 952.722
ALBP (e=0.1) 182.089 84.1372 105.07 162.997 185.481 233.833 1181.49 296.557
ALBP (e=0) 137.287 53.5182 58.7826 105.823 128.511 143.515 775.881 258.895
GD [3] 24.3173 8.61378 11.2979 12.003 18.5047 33.5813 134.555 73.7306

Table 5   Accuracy of MinMax (percentage)

Method NY BAY COL FLA NW CAL LKS W

RCM 100 100 100 100 100 100 100 100
ALBP (e=0.1) 99.8923 99.7991 99.3219 99.8251 99.5362 97.0645 99.9548 99.767
ALBP (e=0) 99.3976 99.6125 98.6053 99.7393 98.8157 94.4174 97.1274 96.0884
GD [3] 89.2295 82.8375 90.5935 82.5875 90.3994 88.4228 83.5183 92.4451
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GD is sufficient for real-world applications only when the distance distribution in 
the road network is convex.

6.4 � Scalability of varying query size

We investigated how the proposed methods change the query performance and accu-
racy according to various query sizes on the FLA dataset. The ALBP approximation 
factor � was fixed at 0.0, and the query size was changed from 10 to 100. The BB 
method was performed up to 600 000 ms and forcibly terminated beyond that limit. 
Figures  10 and 11 show the query time and accuracy results with varying query 
sizes on MinSum and MinMax, respectively. It can be seen that the accuracy of the 
query is close to 98%, while the approximation method, ALBP, performed nearly 
50% faster than exact method, RCM. This result fits the reasoning of the lower 
bound tendency when designing the approximate lower bound method in Sect.  5. 

(a) (b)

Fig. 8   Query run time and accuracy with varying � of MinSum on FLA

(a) (b)

Fig. 9   Query run time and accuracy with varying � of MinMax on FLA
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However, the existing method, BB, is very time-consuming because the BB method 
uses the Euclidean distance to prune the search space and does not prune accurately.

7 � Conclusion

In this paper, we present a concrete implementation of the ONLTP query in eight 
large road network scenarios. Our proposed exact method is efficient and always 
gives the correct answer. Furthermore, our approximation method is more accurate 
than the existing GD framework and is a more flexible way to control trade-offs 
between query time and accuracy. We experimentally demonstrated that our approx-
imation method is nearly 99% accurate in all eight large road network scenarios 
while the query runs within an acceptable time.

(a) (b)

Fig. 10   Query run time and accuracy with varying |Q| of MinSum on FLA ( � = 0.0)

(a) (b)

Fig. 11   Query run time and accuracy with varying |Q| of MinMax on FLA ( � = 0.0)
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