
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:12561–12580
https://doi.org/10.1007/s11227-021-03776-7

1 3

Efficient methods for finding an optimal network location
for travel planning

Junkyu Lee1 · Seog Park1 

Accepted: 25 March 2021 / Published online: 9 April 2021
© Author(s) 2021, corrected publication 2021

Abstract
In this paper, we describe an optimal network location for travel planning (ONLTP)
query, a type of optimal location query. In trip planning, finding the optimal point
for a group of users is a fundamental problem in spatial group query processing.
Many previous studies have considered the problem of finding the optimal point.
However, their queries using an exact method perform efficiently only when the
users are closely distributed, not spread out in large road networks. In contrast,
approximation methods use two different spatial indices, but they cannot control
the trade-off between query performance and accuracy. We propose a method using
G-trees [1, 2] to remedy these drawbacks. Our exact method is a concrete imple-
mentation of the best-first search in G-trees, and our approximation method further
reduces the visited nodes of the exact method.

Keywords  Spatial databases · Trip planning query · G-tree · Optimal location
query · Optimal meeting point

1  Introduction

A search for the optimal location is used in various applications. For example, when
people select a dining location, they can choose the optimal meeting point, consider-
ing the distance from their home locations, and a travel agent can choose where to
have people picked up for transportation to the airport with the minimum number of
miles. This type of query, called optimal meeting point (OMP) [3], finds the optimal
location in the entire spatial network using the objective function for a given query.
The objective function for the optimal network location for travel planning (ONLTP)

 *	 Seog Park
	 spark@sogang.ac.kr

	 Junkyu Lee
	 ljk7776@sogang.ac.kr

1	 Database Laboratory, Department of Computer Science and Engineering, Sogang University,
Seoul, Korea

http://orcid.org/0000-0002-4049-7950
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03776-7&domain=pdf

12562	 J. Lee, S. Park

1 3

consists of two functions: MinSum minimizes the total travel distance for all people,
and MinMax minimizes the longest travel distance. The definitions of MinSum and
MinMax are as follows:

–	 MinSum: minimize
∑

dist(qi,m) + dist(m, d) , and
–	 MinMax: minimize max dist(qi,m) + dist(m, d),

where m is an arbitrary meeting point, qi is the ith member of the set of query points
{q1, q2, ..., q|Q|} , d is the destination, and dist is the shortest distance between m and
d. For an illustration of these formulas, see Fig. 1, an example of a road network.
Given a set of query points Q = {v2, v5, v6} and a destination d = v8 , the ONLTP
function MinSum returns v3 , with a cost of 11.

However, the ONLTP function MinMax returns v8 , and the cost is 9.

To solve the ONLTP with a naive approach, we should first compute the distance
from each query point to each vertex. Then, we must find the optimal meeting point
that minimizes the given objective function. However, this has a high computational
cost. The main challenges of the ONLTP are, first, reducing the number of candi-
date meeting points to the extent possible and, second, computing the nontrivial
shortest distance in the given road network. In this paper, we propose a branch-and-
bound method based on the G-tree index, a scalable index of road networks, and
a dynamic-programming approach that arises when applying the branch-and-bound
method to solve the ONLTP. Furthermore, we propose a greedy-based approxima-
tion method to speed up query performance while maintaining high accuracy.

Our contributions are summarized as follows:

–	 We propose a concrete implementation of the branch-and-bound methodology of
ONLTP using the G-tree index structure.

–	 We propose a greedy-based approximation method, which can control the trade-
off between query performance and accuracy.

(1)MINSUM = dist(v2, v3) + dist(v5, v3) + dist(v6, v3) + dist(v3, v8) = 16.

(2)MINMAX = max[dist(v2, v8), dist(v5, v8), dist(v6, v8)] + dist(v8, v8) = 9.

Fig. 1   Example of a road network

12563

1 3

Efficient methods for finding an optimal network location…

–	 We experimentally validated the efficiency of our method using road networks of
various sizes, particularly with large datasets.

The remainder of the paper is as follows. In Sect. 2, we present several studies rel-
evant to our work. In Sect. 3, we introduce a traditional branch-and-bound method
and apply it to a G-tree index. In Sect. 4, we propose a dynamic programming
method to solve the branch-and-bound problem in a G-tree that suffers from redun-
dant computation. In Sect. 5, we propose a greedy-based approximation method to
improve the query performance while maintaining a high degree of accuracy. In
Sect. 6, we experimentally evaluate the query performance of our proposed method
compared to existing related methods. In Sect. 7, we summarize our work.

2 � Related work

Because we are studying an efficient processing method for the ONLTP, in this sec-
tion, we consider studies related to the optimal meeting point or relevant to it.

Group nearest neighbor Papadias et al. [4] presented group nearest neighbor
(GNN) queries, which find the point(s) in set P with the smallest sum of the dis-
tances to all locations in query set Q. They proposed three algorithms based on
R-tree to solve a GNN query: the multiple query, single point, and minimum-bound-
ing methods. These methods are used to minimize I/O and computational costs in
memory-resident cases. Furthermore, they proposed two alternative methods based
on the multiple query and the minimum-bounding methods to solve the problem
when the query set does not fit in memory. However, their sum function only works
in a Euclidean space.

Aggregate nearest neighbor Yiu et al. [5] presented aggregate nearest neighbor
(ANN) queries, which consider network distances and several aggregate functions in
GNN queries. Essentially, their work is different from GNN because of the nontriv-
ial computation of the network distances. They proposed three algorithms—incre-
mental Euclidean restriction, a threshold algorithm, and concurrent expansion—to
minimize I/O costs during network traversal for nontrivial computation.

Collective travel planning Shang et al. [6] proposed collective travel planning
(CTP) queries, which find the lowest-cost route that connects multiple query points
and a destination through at most k meeting points (points of interest). Formally,
given a set Q of query points, a set M of meeting points, a destination d, and an
integer threshold k, the CTP query finds the subset A of M of maximum size k with
the minimum cost. CTP consists of an exponential number of ANN [5] problems for
distance calculation between the user and a meeting point. Shang et al. showed that
the CTP problem is NP-hard, so they proposed a heuristic search strategy to process
scenarios with a large |Q|.

However, all these studies considered only a scenario with a given set of points of
interest. They are not directly comparable to our work because ONLTP considers the
entire set of vertices in a road network as points of interest. Thus, ONLTP should be
compared primarily to other studies more closely related to it.

12564	 J. Lee, S. Park

1 3

Optimal meeting point Yan et al. [3] proposed an OMP query that returns the
point in a road network with the minimum sum of network distances to all query
points Q. An OMP query is different from a GNN query in that all vertices of a road
network, rather than only points of interest, are candidates. They used two aggregate
functions, minsum and minmax, to minimize the total travel distance and elapsed
travel time. They proposed two algorithms: two-phase online convex-hull-based
pruning and fast greedy. The two-phase pruning method works as follows: In the
first phase, a convex hull is formed in Euclidean space using the query points. In
the second phase, the sides of the convex hull transform into the shortest paths of
the network. Only the vertices in the region surrounding the hull are checked for a
correct answer, including the query points. The fast greedy method is more straight-
forward. Yan et al. used the convexity property of the sum of the network distance
function and adopted the gradient descent method [7, 8] to find the optimal meeting
point. First, the initial point is computed, along with the center of gravity of query
points Q, and a vertex is obtained using the nearest neighbor query on KD-tree [9].
The process of searching for neighbor vertices is repeated until there are no better
neighbor vertices.

The ONLTP query differs only in that one point of the query is used as an arrival
point and is not otherwise fundamentally different from the OMP query. However, in
the real world, the distance from the query point to the destination is usually greater
than the distance between all query points. We propose a new technique performs
better than the methods in the previous studies in both the aggregate function used
in the existing OMP and the aggregate function following the travel planning case.

Other types of queries There are many other different types of queries for a road
network environment. Zhong et al. [1, 2] proposed G-tree, which is a road network
index structure that supports multiple types of road network queries, including
shortest path, k-nearest neighbor (kNN), and keyword-based kNN queries. G-tree
partitions a road network into multiple subgraphs, and it constructs a hierarchical
tree structure of the subgraphs. To solve queries on a road network, Zhong et al. also
presented an assembly-based method that traverses each G-tree node and computes
sub-results in a dynamic programming approach. Li et al. [17] proposed G*-tree to
address the inefficiency problem of G-tree. G*-tree is similar to G-tree, but it builds
shortcuts between selected leaf nodes. Each shortcut stores the distances between
the borders of two leaf nodes, so it efficiently supports shortest path, kNN, and
range queries. Jung et al. [18] developed a personalized route planning algorithm.
They proposed a variation of the pathfinding problem that assumes the user pref-
erence changes over time. To find the best path, they suggested MPG-tree, which
stores the dynamic attribute list of each node. Chen et al. [19] presented a continu-
ous path-based range query in which the query point moves along a given path. To
answer the query, they reduced it to finding the set of points for which the answer
set changes. To enhance the query performance, they developed a backbone network
index structure. The method exploits G*-tree to store the backbone network, which
is a simplified graph of the original road network and stores detailed network infor-
mation by the region directory. The authors also developed a two-phase query pro-
cessing algorithm based on the filter-and-verification framework. Zhao et al. [20]
proposed a time-aware spatial keyword (TSK) query, which finds the most suitable

12565

1 3

Efficient methods for finding an optimal network location…

k objects satisfying spatial, temporal, and textual constraints. To efficiently address
the TSK query, they developed the TG index, which consists of a TA file and G-tree.
the TA file stores the time and keyword information about an object and maintains
their aggregate values. To address the TSK query, they adopt a filter and refinement
framework using the TG index. These studies considered spatial queries using a
G-tree-like index structure, but all of the above methods fail to consider multiple
users, which lead to inefficiency or even infeasibility compared to our query.

3 � Preliminaries

3.1 � Problem definitions

In this section, we formally define the ONLTP and several relevant definitions. First,
we formalize the spatial database in which our problem is identified.

Definition 1  Road network and dist Given a vertex set V and an edge set E(⊆ V × V)
with edge costs, the edge costs are nonnegative, symmetrical, and satisfy the triangle
inequality. The shortest distance between two vertices u ∈ V and v ∈ V is defined as
the minimum accumulated cost value of a path between u and v and is denoted by
dist(u, v).

We call the shortest distance in a spatial database the network distance.

Definition 2  Optimal Network Location for Travel Planning (ONLTP) Given a road
network G(V, E), a set Q of query points, a destination d, and a cost function F
(namely, MinSum or MinMax), the ONLTP finds the vertex v ∈ V that is the optimal
point based on the cost function F. The MinSum and MinMax functions are defined
as follows:

–	 MinSum: arg minv∈V{
∑

qi∈Q
dist(qi, v) + dist(v, d)};

–	 MinMax: arg minv∈V{maxqi∈Q dist(qi, v) + dist(v, d)}.

To solve the ONLTP in a brute-force manner, we first compute the distance from
each query point to each vertex. Next, we compute the distance from the destination
to each vertex. Finally, we can determine the optimal meeting point using the Dijk-
stra approach of O(|V|log|V|) to calculate the shortest path distance. Thus, the naive
method has O(|Q||V|log|V|) time complexity. This method is not feasible for query-
processing systems because the computational cost is so high.

3.2 � Branch‑and‑bound method

The branch-and-bound method is a structured search of the space of all feasible
solutions. The space of all feasible solutions is repeatedly partitioned into smaller
subspaces, and a lower bound is used as the value to represent each subspace. Yan

12566	 J. Lee, S. Park

1 3

et al. extended their work [3] to [11]. Specifically, with R-tree [10], they define
the lower bound as

∑
q∈Q MINDIST(q, e) , where Q is a set of query points and e

is the minimum bounding rectangle (MBR) in an R-tree. Figure 2 is an illustra-
tion of MinDist computations in R-trees. There are three computations involed:
First,the distance from q to the nearest edge of the MBR e, by a segment drawn
perpendicularly to the nearest edge of e, as depicted in Fig. 2a; second, the dis-
tance between q and the nearest vertex of e, as depicted in Fig. 2b; and third,
if the query point q is in the MBR e, then MINDIST(q, e) = 0 . Since the sum of
MinDist is always less than or equal to the network distance, this value is used as
the lower bound in R-trees. According to the borders property [1, 2], to reach a
subgraph, we must visit one of its borders.

Figure 3 is an example of a branch-and-bound method. Given a set of query
points Q = {q} , assume that the current search node is e3 , the nearest vertex is
q, vb is inside e3 , and the search order is depth-first (that is, e0 → e1 → e3 → e2 ).
The current best answer is found if the search process reaches the leaf node of
the R-tree. Therefore, we can find the nearest vertex vb while we visit e3 . Then,
the current best cost is dist(q, vb) . Next, according to the depth-first search order,
the next node to be searched is e2 . We can end the search without traversing ver-
tices inside e2 if e2 ’s lower bound MINDIST(q, e2) is greater than the current best
answer,

∑
q∈Q dist(q, vb) . To apply the branch-and-bound method, two properties

must be satisfied: First, the lower bound of the parent node is less than or equal to
the lower bound of its children, and second, the cost increases monotonically as
the cardinality of Q increases.

(a) (b)

Fig. 2   MinDist computations in R-trees

(a) (b)

Fig. 3   Example of the branch-and-bound method in R-trees

12567

1 3

Efficient methods for finding an optimal network location…

3.3 � G‑tree index structure

A G-tree [1, 2] is a scalable index based on a multi-level graph partitioning
method. Similarly to R-tree, G-tree also constructs a hierarchical tree structure.
It partitions the road network into sub-networks and organizes them hierarchi-
cally. Each node of the G-tree maintains the vertices of the edges that connect
them between subgraphs, called borders. Figure 4 is an example of a G-tree index
structure. Fig. 4a is an example of a road network, and Fig. 4b is a G-tree index
structure. In Fig. 4b, the numbers of the tree nodes are its subgraph borders. Each
matrix of a non-leaf node has the pair-wise network distances between the bor-
ders of its child nodes. According to the border property, to reach a subgraph, we
must visit one of its borders. Thus, using this property, we define GMinDist, the
shortest distance between a vertex and a subgraph of a G-tree.

Definition 3  Minimum distance between a vertex and a subgraph Given a vertex
v ∈ V and a G-tree node Gn , the shortest distance between v and Gn is denoted by
GMINDIST(v,Gn) and computed as follows.

(a)

(b)

Fig. 4   Example of G-tree index structure

12568	 J. Lee, S. Park

1 3

where B(Gn) is the border set of the subgraph Gn.

As we mentioned in Sect. 3.2, to apply the branch-and-bound method to a G-tree,
we have to show that the G-tree follows two properties: a monotonically increasing
GMinDist and a monotonically increasing aggregate cost function.

4 � Exact method

4.1 � Best‑first search

To apply a best-first search method, we need to define a lower bound in a G-tree and
show the two properties of monotonicity.

Definition 4  Lower bound on MinSum in a G-tree Given a set Q of query points, a
destination d, and a node Gn of a G-tree, the lower bound of ONLTP in the G-tree is
denoted LOWERBOUND(Q, d,Gn) and is defined as follows.

Definition 5  Lower bound on MinMax in a G-tree Given a set Q of query points, a
destination d, and a node Gn of a G-tree, the lower bound of ONLTP in the G-tree is
denoted LOWERBOUND(Q, d,Gn) and is defined as follows.

Theorem 1  Monotonous lower bound in a G-tree In a G-tree, the LowerBound
increases monotonically when searching in top-down order.

Proof of Theorem 1  Because GMinDist, the unit value of the LowerBound, is
defined in two cases, it can be seen that the LowerBound increases monotonically if
both cases increase monotonically.

1.	 If a query point qi is not in Gn , given a child node Gn+1 of node Gn , we compute
LOWERBOUND(qi, d,Gn+1) and LOWERBOUND(qi, d,Gn) as follows.

(3)GMINDIST(v,Gn) =

{
0 if v is in Gn

minbi∈B(Gn)
dist(v, bi) otherwise

,

(4)LOWERBOUND(Q, d,Gn) =
∑
qi∈Q

GMINDIST(qi,Gn) + GMINDIST(d,Gn)

(5)LOWERBOUND(Q, d,Gn) = max
qi∈Q

GMINDIST(qi,Gn) + GMINDIST(d,Gn)

12569

1 3

Efficient methods for finding an optimal network location…

 Now we assume that the GMinDist does not increase monotonically, that is,
GMINDIST(qi,Gn+1) < GMINDIST(qi,Gn) . Then, according to (6) and (7), we
obtain the following equation:

 Since it is clear that minbn+1∈B(Gn+1)
dist(bn, bn+1) ≥ 0 , we obtain following

equation:

 However, this is a contradiction. Hence, GMinDist increases monotonically in
the first case.

2.	 If a query point qi is in Gn , GMINDIST(qi,Gn) is 0. Because GMinDi-st(qi,Gn+1)
is a network distance, it is always greater than or equal to 0. Therefore, GMinDist
increases monotonically in the second case.

In this paper, we use only two cost functions, MinSum and MinMax, which are
already widely known to increase monotonally. Therefore, we do not prove that the
functions are monotonically increasing. Now, we can use the branch-and-bound
framework with LowerBound as defined in Definitions 4 and 5. Alg. 1 is an imple-
mentation of the branch-and-bound method based on a G-tree. The search order
is the best-first search, which examines the smallest lower bound first, and then it
traverses the G-tree nodes until the termination condition is satisfied. This is the
process by which the branch-and-bound method is applied to the G-tree index struc-
ture. However, this method wastes computational resources when calculating lower
bounds by not using a pruning process. Figure 5 illustrates a redundant computation

(6)

GMINDIST(qi,Gn+1) = min
bn+1∈B(Gn+1)

dist(qi, b1)

= min
ux∈B(Gx)

(dist(qi, ux)

+ min
ux−1∈B(Gx−1)

(dist(ux, ux−1)

+ ... + min
bn∈B(Gn)

(dist(u1, bn)

+ min
bn+1∈B(Gn+1)

dist(bn, bn+1)))).

(7)

GMINDIST(qi,Gn) = min
bn∈B(Gn)

dist(qi, b1)

= min
ux∈B(Gx)

(dist(qi, ux)

+ min
ux−1∈B(Gx−1)

(dist(ux, ux−1)

+ ... + min
u1∈B(G1)

(dist(u2, u1)

+ min
bn∈B(Gn)

dist(u1, bn)))).

(8)min
bn∈B(Gn)

(dist(u1, bn) + min
bn+1∈B(Gn+1)

dist(bn, bn+1)) < min
bn∈B(Gn)

dist(u1, bn).

(9)min
bn∈B(Gn)

dist(u1, bn) < min
bn∈B(Gn)

dist(u1, bn).

12570	 J. Lee, S. Park

1 3

process of a lower bound. Figure 5b shows the computation process that occurs after
Figure 5a. The top-down search always maintains this order, so the same subprocess
is repeated when calculating the lower bound of each node.

4.2 � Redundancy cancellation method

To mitigate redundancy in the lower bound computation, it is necessary to store the
partially computed distance matrix. Like the SPSP [1, 2] query in G-tree, we apply a
method based on dynamic programming to cancel out the redundancy. We store the
distance from a query point to a G-tree node border, as depicted in Fig. 6a. We cal-
culate the distance from each query point to the borders of the G-tree node, store it

(a) (b)

Fig. 5   Redundant computation of lower bound in G-tree

12571

1 3

Efficient methods for finding an optimal network location…

in memory, and retain it until the query is complete. Fig. 6b and c show examples of
canceling propagation from parent and sibling nodes, respectively. If the distance from
a parent to its child node has already been computed, we do not need to compute the
distance from the child to its parent. Likewise, if the distance from a node and its sib-
ling has already been computed, we do not need to compute the distance from the sib-
ling to the original node. We simply propagate the results and compute only the addi-
tional distances needed. The following expresses Fig. 6 in equation form:

(a)

(b) (c)

Fig. 6   Redundancy canceling based on dynamic programming

12572	 J. Lee, S. Park

1 3

where table is the storage for redundancy canceling and G.mat is the distance matrix
of the node G . In Alg. 1, Line 17, the only additional calculation needed is from the
borders in storage to the candidate meeting point, thereby improving the distance
calculation time.

5 � Approximation method

Even after the redundancy cancellation method is applied, nodes close to the root
have a significant difference from the actual distance value that the lower bound can
calculate on a leaf. Thus, these nodes are unlikely to be pruned. Applying the R-tree
approximation methods proposed in existing studies [12–15] does not solve this
problem. The following paragraphs are brief descriptions of the existing techniques.

�-approximation In �-approximation [12, 13, 15], given a non-negative real value
� (� ≥ 0) , if we visit a non-leaf (internal) node, its child node Gc is inserted in the
priority queue if LOWERBOUND(Q, d,Gc) ≤ current_best∕(1 + �).

�-allowance In �-allowance [14, 15], given a non-negative real value �
(0 ≤ � ≤ 1) , if we visit a non-leaf (internal) node, its child node Gc is inserted in the
priority queue if LOWERBOUND(Q, d,Gc) ≤ current_best ∗ (1 − �).

5.1 � Lower bound approximation

To compensate for the problem of a node close to the root having a small lower
bound, we propose an approximate lower bound estimation method. First, however,
we look briefly at the drawback of comparing non-leaf nodes with the current_best
value. In the top-down approach in G-trees, the child’s lower bound is updated by
selecting the minimum distance between the stored distance matrix in table and the
distance between its border and its parent border. For both methods, �-approxima-
tion and �-allowance, to work efficiently, the lower bound must be almost the same
as previously, when the search was conducted downward to the child node. How-
ever, if the increment is 0, the child and parent nodes share the same border, which
means a number of vertices equal to the depth of the border must be connected to
different vertices or have a high probability of being connected to the vertices. In
a real road network, the ratio of vertices to edges is close to one. Therefore, nodes
close to the root are very unlikely to be pruned.

Fortunately, the increase in the lower bound has an easily determined maximum.
Since both a border of the parent node and a border of the child node are in the

(10)table[qi][Gj][bk] =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

min table[qi][Gc][bl] + Gj.mat[bl][bk]

if the child node Gc is already visited

min table[qi][Gs][bl] + Gp.mat[bl][bk]

if the sibling node Gs is already visited

min table[qi][Gp][bl] + Gp.mat[bl][bk]

if the parent node Gp is already visited

,

12573

1 3

Efficient methods for finding an optimal network location…

subgraph of the parent node, the distance between the two borders is necessarily less
than or equal to the parent’s subgraph’s diameter, which is bounded as follows:

where Gp is a parent node and Gc is a child node. Using this monotonicity, we can
calculate an approximate lower bound, which is the expected value of the lower
bound of a leaf node.

Definition 6  (Approximate lower bound in a G-tree) Given a set Q of query points, a
destination d, and a node Gn of a G-tree, the approximate lower bound of ONLTP in
the G-tree is denoted ALBOUND(Q, d,Gn) and is defined as follows:

where H is the height of the G-tree and Gn.depth is the depth of node Gn . Fig-
ure 7 is an example of the approximate lower bound. At the root node (depth=1) and
nodes at depth 2, the approximate lower bound is not calculated. We calculate the
approximate lower bounds on nodes with a depth of 3 or greater that are not leaves.
This approximate lower bound value does not always follow the monotonicity of the
diameter. It may be larger than the actual lower bounds of their leaf nodes. However,
considering the ONLTP is an aggregate query, it can be predicted that each G-tree
node follows the monotonicity with a high probability. This will be demonstrated as
an approximation experiment in the experimental section.

Using the approximate lower bound, we have implemented a new approximation
scheme. This new method combines �-approximation and �-allowance and applies
them to the branch-and-bound method using the approximate lower bound. In the
approximation method, the initial cost is not set to infinity, but rather a vertex is
selected and the pruning effect increases. We use the same method for selecting an
initial point for each cost function, MinSum and MinMax, as the initial point for
the gradient descent method in the Euclidean space proposed in [11]. Alg. 2 is an

(11)max
Gc∈Gp.children

diameter(Gc) ≤ diameter(Gp),

(12)
ALBOUND(Q, d,Gn) = LOWERBOUND(Q, d,Gn) + (H − Gn.depth)

∗ (LOWERBOUND(Q, d,Gp) − LOWERBOUND(Q, d,Gn)),

Fig. 7   Example of approxi-
mate lower bound of G3 ,
ALBOUND(Q, d,G3)

12574	 J. Lee, S. Park

1 3

implementation of the best-first search method with an approximate lower bound.
We control the accuracy by adjusting the � from -1 to 1 in Line 18. When � is less
than 0, it behaves similarly to �-allowance. When � is greater than 0, it increases the
accuracy and works in the opposite direction of �-approximation. In Alg. 1, nodes
with small lower bounds were searched first, but in Alg. 2, because current_best
must be determined, the approximate lower bound can be used and the search order
is from the nodes at the depth-first. If two nodes have the same smallest depth, then
the node with the smaller lower bound is searched first.

6 � Experiments

6.1 � Experimental settings

We conducted experiments on real datasets of various sizes, with the results pre-
sented in Table 1. We used the gradient descent (GD) [3] for an approximate solu-
tion. We attempted to use the branch-and-bound (BB) [11] method as another com-
parison technique, but we had to exclude the BB from the experiments because the
process did not end in time on a large graph. We used eight real-world datasets [16],
which are presented in Table 1. The table lists the number of vertices and edges in

12575

1 3

Efficient methods for finding an optimal network location…

New York City (NY), the San Francisco Bay Area (BAY), Colorado (COL), Flor-
ida (FLA), Northwest USA (NW), California and Nevada (CAL), the Great Lakes
region (LKS), and Western USA (W), all of which are available in [16]. All exper-
iments were conducted on an Ubuntu 16.04 LTS platform with an Intel Xeon(R)
E5-2620 v2 (2.10GHz) processor and 64 GB memory. The algorithms were imple-
mented in C++ (GCC 5.4.0 with -O3 option). In the following subsections, we first
investigate the performance and accuracy of ONLTP queries with uniform distribu-
tions. The G-tree [1, 2] parameters are fixed at f = 4 , and the maximum leaf size �
is set to 128 for NY, BAY, and COL and to 256 for FLA, NW, CAL, LKS, and W,
the same as were used in [17], where f is fanout, the number of children at a non-leaf
node, and � is the maximum number of vertices at a leaf node.

6.2 � Evaluation of the query performance and the accuracy

In this subsection, only RCM (redundancy cancellation method) and ALBP (approx-
imate lower bound-based pruning), which are the exact and approximation meth-
ods, respectively, proposed in our study, and the GD method are compared. The BB
method was not used in this subsection because the query performed poorly when
the query points were distributed over the entire road network. Hence, it is compared
in other subsections, but not here.

Tables 2 and 3 show the query performance results and accuracy, respectively, of
MinSum with a query size of 100. The GD method had the best query performance
but the worst accuracy. In [3], the authors claimed that the optimal meeting point
query on the sum of the distance follows the convexity, so they proposed a gradient
descent-based method. However, as shown in Table 3, the optimal meeting points
do not follow the convexity in large graphs. Therefore, the GD method had a fast
query time, but the results were far from the correct answers. On the other hand, our
proposed exact method, RCM, produced query results within an acceptable time,
unlike the BB method. Furthermore, our approximation method, ALBP, had nearly

Table 1   Road network statistics

Graph NY BAY COL FLA NW CAL LKS W

Vertices 264,346 321,270 435,666 1,070,376 1,207,945 1,890,815 2,758,119 6,262,104
Edges 733,846 800,172 1,057,066 2,712,798 2,840,208 4,657,742 6,885,658 15,248,146

Table 2   Query performance of MinSum (ms)

Graph NY BAY COL FLA NW CAL LKS W

RCM 333.056 147.141 336.333 224.224 283.504 623.894 2053.33 832.695
ALBP (e=0.1) 167.592 62.0828 124.804 133.822 162.097 263.757 1296.61 306.857
ALBP (e=0) 131.522 26.4952 56.8279 74.987 136.459 130.574 1134.9 261.928
GD [3] 27.3299 8.07486 10.8545 13.8029 15.9969 28.286 126.262 81.6928

12576	 J. Lee, S. Park

1 3

99% accuracy, and it ran in approximately half the time of the RCM. Tables 4 and 5
show the results for MinMax. These experiments were similar to those of MinSum,
but it was confirmed that the average accuracy of GD was worse than the proposed
method.

6.3 � Evaluation of varying approximation factor

In this subsection, we investigated how the proposed method changes the query run
time and accuracy as the approximation factor � changes. Figures 8 and 9 show the
experimental results for query time and accuracy of MinSum and MinMax, respec-
tively, in the FLA road network when the query size |Q| is 100. The baseline accu-
racy is approximately 85% or higher for MinSum and 95% for MinMax. The higher
the approximation factor, the closer the accuracy is to 100%. Thus, the execution
time could be improved by half while maintaining an accuracy rate of up to 85%,
and it could be improved by a factor of 4 while maintaining an accuracy of up to
85%. Note that although in the proposed method, the trade-off between query time
and accuracy can be adjusted through the parameter � , the previous method, GD,
could not control the trade-off between query time and accuracy. The accuracy of

Table 3   Accuracy of MinSum (percentage)

Method NY BAY COL FLA NW CAL LKS W

RCM 100 100 100 100 100 100 100 100
ALBP (e=0.1) 99.9245 99.7951 99.1447 99.8406 99.9098 97.0645 99.9548 99.767
ALBP (e=0) 99.8824 96.4123 97.0905 97.2013 99.7308 92.5424 99.9544 98.8638
GD [3] 96.4302 95.2682 91.8355 86.327 89.7163 86.8864 75.7879 97.64

Table 4   Query performance of MinMax (ms)

Graph NY BAY COL FLA NW CAL LKS W

RCM 234.827 100.106 160.076 327.496 276.031 577.175 2285.77 952.722
ALBP (e=0.1) 182.089 84.1372 105.07 162.997 185.481 233.833 1181.49 296.557
ALBP (e=0) 137.287 53.5182 58.7826 105.823 128.511 143.515 775.881 258.895
GD [3] 24.3173 8.61378 11.2979 12.003 18.5047 33.5813 134.555 73.7306

Table 5   Accuracy of MinMax (percentage)

Method NY BAY COL FLA NW CAL LKS W

RCM 100 100 100 100 100 100 100 100
ALBP (e=0.1) 99.8923 99.7991 99.3219 99.8251 99.5362 97.0645 99.9548 99.767
ALBP (e=0) 99.3976 99.6125 98.6053 99.7393 98.8157 94.4174 97.1274 96.0884
GD [3] 89.2295 82.8375 90.5935 82.5875 90.3994 88.4228 83.5183 92.4451

12577

1 3

Efficient methods for finding an optimal network location…

GD is sufficient for real-world applications only when the distance distribution in
the road network is convex.

6.4 � Scalability of varying query size

We investigated how the proposed methods change the query performance and accu-
racy according to various query sizes on the FLA dataset. The ALBP approximation
factor � was fixed at 0.0, and the query size was changed from 10 to 100. The BB
method was performed up to 600 000 ms and forcibly terminated beyond that limit.
Figures 10 and 11 show the query time and accuracy results with varying query
sizes on MinSum and MinMax, respectively. It can be seen that the accuracy of the
query is close to 98%, while the approximation method, ALBP, performed nearly
50% faster than exact method, RCM. This result fits the reasoning of the lower
bound tendency when designing the approximate lower bound method in Sect. 5.

(a) (b)

Fig. 8   Query run time and accuracy with varying � of MinSum on FLA

(a) (b)

Fig. 9   Query run time and accuracy with varying � of MinMax on FLA

12578	 J. Lee, S. Park

1 3

However, the existing method, BB, is very time-consuming because the BB method
uses the Euclidean distance to prune the search space and does not prune accurately.

7 � Conclusion

In this paper, we present a concrete implementation of the ONLTP query in eight
large road network scenarios. Our proposed exact method is efficient and always
gives the correct answer. Furthermore, our approximation method is more accurate
than the existing GD framework and is a more flexible way to control trade-offs
between query time and accuracy. We experimentally demonstrated that our approx-
imation method is nearly 99% accurate in all eight large road network scenarios
while the query runs within an acceptable time.

(a) (b)

Fig. 10   Query run time and accuracy with varying |Q| of MinSum on FLA ( � = 0.0)

(a) (b)

Fig. 11   Query run time and accuracy with varying |Q| of MinMax on FLA ( � = 0.0)

12579

1 3

Efficient methods for finding an optimal network location…

Acknowledgements  This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIT) (No. NRF-2019R1A2C1088126).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Zhong R, Li G, Tan K -L, Zhou L (2013) G-Tree: an efficient index for knn search on road networks.
In: ACM CIKM, pp. 39–48

	 2.	 Zhong R, Li G, Tan K-L, Zhou L, Gong Z (2015) G-tree: an efficient and scalable index for spatial
search on road networks. IEEE Trans Knowl Data Eng 27(8):2175–2189

	 3.	 Yan D, Zhao Z, Ng W (2011) Efficient algorithms for finding optimal meeting point on road net-
works. In: Proceedings of the VLDB Endowment, pp 1–11

	 4.	 Papadias D, Shen Q, Tao Y, Mouratidis K (2004) Group nearest neighbor queries. In: IEEE, 20th
International Conference on Data Engineering, pp 301–312

	 5.	 Yiu ML, Mamoulis N, Papadias D (2005) Aggregate nearest neighbor queries in road networks.
IEEE Trans Knowl Data Eng 17(6):820–833

	 6.	 Shang S, Chen L, Wei Z, Jensen CS, Wen JR, Kalnis P (2016) Collective travel planning in spatial
networks. IEEE Trans knowl Data Eng 28(5):1132–1146

	 7.	 Cooper L (1968) An extension of the generalized Weber problem. J Reg Sci 8(2):181–197
	 8.	 Cooper L (1977) The multifacility location problem: applications and descent theorems. J Reg Sci

17(3):409–419
	 9.	 Sproull RF (1991) Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica

6:579–589
	10.	 Guttman A (1984) R-trees: A dynamic index structure for spatial searching. In: ACM SIGMOD,

International Conference on Management of Data, pp 47–57
	11.	 Yan D, Zhao Z, Ng W (2015) Efficient processing of optimal meeting point queries in euclidean

space and road networks. Knowl Inf Syst 42(2):319–351
	12.	 Arya S, Mount DM, Netanyahu NS (1998) An optimal algorithm for approximate nearest neighbor

searching fixed dimensions. J ACM 45(6):891–923
	13.	 Ciaccia P, Patella M (2000) PAC nearest neighbor queries: approximate and controlled search in

high dimensional and metric spaces. In: IEEE Proceedings of 16th International Conference on Data
Engineering, pp 244–255

	14.	 Corral A, Cañadas J, Vassilakopoulos M (2002) Approximate algorithms for distance-based queries
in high-dimensional data spaces using R-trees. In: East European Conference on Advances in Data-
bases and Information Systems, pp163-176

	15.	 Corral A, Vassilakopoulos M (2005) On approximate algorithms for distance-based queries using
R-trees. Comput J 48(2):220–238

	16.	 Demetrescu C (2010) Road network datasets. http://​users.​diag.​uniro​ma1.​it/​chall​enge9/​downl​oad.​
shtml Accessed 1 July 2020

	17.	 Li Z, Chen L, Wang Y (2019) G*-tree: an efficient spatial index on road networks. In: IEEE 35th
International Conference on Data Engineering (ICDE), pp 268–279

	18.	 Jung J, Park S, Kim Y, Park S (2019) Route recommendation with dynamic user preference on road
networks. In: 2019 IEEE International Conference on Big Data and Smart Computing (BigComp),
Kyoto, Japan, 2019, pp. 1–7. https://​doi.​org/​10.​1109/​BIGCO​MP.​2019.​86793​79

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://users.diag.uniroma1.it/challenge9/download.shtml
http://users.diag.uniroma1.it/challenge9/download.shtml
https://doi.org/10.1109/BIGCOMP.2019.8679379

12580	 J. Lee, S. Park

1 3

	19.	 Chen F, Zhang P, Lin H, Tang S (2019) Continuous path-based range keyword queries on road net-
works. In: 2019 IEEE International Conference on Big Knowledge (ICBK), Beijing, China, 2019,
pp. 42–49. https://​doi.​org/​10.​1109/​ICBK.​2019.​00014

	20.	 Zhao J, Gao Y, Chen G, Chen R (2017) Towards efficient framework for time-aware spatial key-
word queries on road networks. ACM Transactions on Information Systems (TOIS) 36, 3, Article 24
(April 2018), 48 pages. https://​doi.​org/​10.​1145/​31438​02

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1109/ICBK.2019.00014
https://doi.org/10.1145/3143802

	Efficient methods for finding an optimal network location for travel planning
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Problem definitions
	3.2 Branch-and-bound method
	3.3 G-tree index structure

	4 Exact method
	4.1 Best-first search
	4.2 Redundancy cancellation method

	5 Approximation method
	5.1 Lower bound approximation

	6 Experiments
	6.1 Experimental settings
	6.2 Evaluation of the query performance and the accuracy
	6.3 Evaluation of varying approximation factor
	6.4 Scalability of varying query size

	7 Conclusion
	Acknowledgements
	References

