Skip to main content
Log in

Deep learning techniques for tumor segmentation: a review

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Recently, deep learning, especially convolutional neural networks, has achieved the remarkable results in natural image classification and segmentation. At the same time, in the field of medical image segmentation, researchers use deep learning techniques for tasks such as tumor segmentation, cell segmentation, and organ segmentation. Automatic tumor segmentation plays an important role in radiotherapy and clinical practice and is the basis for the implementation of follow-up treatment programs. This paper reviews the tumor segmentation methods based on deep learning in recent years. We first introduce the common medical image types and the evaluation criteria of segmentation results in tumor segmentation. Then, we review the tumor segmentation methods based on deep learning from technique view and tumor view, respectively. The technique view reviews the researches from the architecture of the deep learning and the tumor view reviews from the type of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted intervention—MICCAI 2015. Springer, Cham, pp 234–241

    Google Scholar 

  2. Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640–651

    Google Scholar 

  3. Taghanaki SA, Abhishek K, Cohen JP, Cohenadad J, Hamarneh G (2021) Deep semantic segmentation of natural and medical images: a review. Artif Intell Rev 54(1):137–178

    Google Scholar 

  4. Seo H, Badiei Khuzani M, Vasudevan V, Huang C, Ren H, Xiao R, Jia X, Xing L (2020) Machine learning techniques for biomedical image segmentation: an overview of technical aspects and introduction to state-of-art applications. Med Phys 47(5):e148–e167

    Google Scholar 

  5. Ghosh S, Das N, Das I, Maulik U (2019) Understanding deep learning techniques for image segmentation. ACM Comput Surv 52(4):73

    Google Scholar 

  6. Guo Y, Liu Y, Georgiou T, Lew MS (2018) A review of semantic segmentation using deep neural networks. Int J Multimed Inf Retr 7(2):87–93

    Google Scholar 

  7. Kothari A, Indira B (2016) An overview on automated brain tumor segmentation techniques. Int J Comput Trends Technol 40(1):45–48

    Google Scholar 

  8. Sharma M, Miglani N (2020) Automated brain tumor segmentation in MRI images using deep learning: overview, challenges and future. Springer, Cham, pp 347–383

    Google Scholar 

  9. Isin A, Direkoglu C, Şah M (2016) Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput Sci 102:317–324

    Google Scholar 

  10. At A, Ss B, Mp A (2020) Brain tumor segmentation and classification from magnetic resonance images: review of selected methods from 2014 to 2019. Pattern Recogn Lett 131:244–260

    Google Scholar 

  11. Chihati S, Gaceb D (2020) A review of recent progress in deep learning-based methods for MRI brain tumor segmentation. In: 2020 11th International Conference on Information and Communication Systems (ICICS), pp 149–154

  12. Nadeem MW, Ghamdi MAA, Hussain M, Khan MA, Khan KM, Almotiri SH, Butt SA (2020) Brain tumor analysis empowered with deep learning: a review, taxonomy, and future challenges. Brain Sci 10(2):118

    Google Scholar 

  13. A R, K K, W L, SS M (2018) Medical image database. https://www.med.upenn.edu/cbica/brats2019/data.html

  14. Mo J, Zhang L, Wang Y, Huang H (2020) Iterative 3D feature enhancement network for pancreas segmentation from CT images. Neural Comput Appl 32(16):12535–12546

    Google Scholar 

  15. Dehmeshki J, Amin H, Valdivieso M, Ye X (2008) Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach. IEEE Trans Med Imaging 27(4):467–480

    Google Scholar 

  16. Foster B, Bagci U, Mansoor A, Xu Z, Mollura DJ (2014) A review on segmentation of positron emission tomography images. Comput Biol Med 50:76–96

    Google Scholar 

  17. Kumar A, Fulham MJ, Feng D, Kim J (2020) Co-learning feature fusion maps from PET-CT images of lung cancer. IEEE Trans Med Imaging 39(1):204–217

    Google Scholar 

  18. Gsaxner C, Roth PM, Wallner J, Egger J (2019) Exploit fully automatic low-level segmented pet data for training high-level deep learning algorithms for the corresponding CT data. PLoS ONE 14(3):1–20

    Google Scholar 

  19. Bagci U, Udupa JK, Mendhiratta N, Foster B, Xu Z, Yao J, Chen X, Mollura DJ (2013) Joint segmentation of anatomical and functional images: applications in quantification of lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT images. Med Image Anal 17(8):929–945

    Google Scholar 

  20. Milshteyn E, Guryev G, Torrado-Carvajal A, Adalsteinsson E, White JK, Wald LL, Guerin B (2021) Individualized SAR calculations using computer vision-based MR segmentation and a fast electromagnetic solver. Magn Reson Med 85(1):429–443

    Google Scholar 

  21. Zhu Q, Du B, Yan P (2020) Boundary-weighted domain adaptive neural network for prostate MR image segmentation. IEEE Trans Med Imaging 39(3):753–763

    Google Scholar 

  22. Rodrigues PS, Lopes GAW, Giraldi GA, Barcelos CAZ, Vieira L, Guliato D, Singh BK (2019) Cad system for breast us images with speckle noise reduction and bio-inspired segmentation, pp 68–75

  23. Martin M, Sciolla B, Sdika M, Quétin P, Delachartre P (2019) Segmentation of neonates cerebral ventricles with 2D CNN in 3D US data: suitable training-set size and data augmentation strategies. In: 2019 IEEE International Ultrasonics Symposium (IUS), pp 2122–2125

  24. Pauly PS, Rajan BK (2019) Automated feature extraction of hepatic US image of dog using image processing. In: 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), pp 456–460

  25. Egger J, Voglreiter P, Dokter M, Hofmann M, Chen X, Zoller WG, Schmalstieg D, Hann A (2016) US-Cut: interactive algorithm for rapid detection and segmentation of liver tumors in ultrasound acquisitions. In: Duric N, Heyde B (eds) Medical Imaging 2016: Ultrasonic Imaging and Tomography, International Society for Optics and Photonics, vol 9790. SPIE, pp 372–377

  26. Dong H, Yang G, Liu F, Mo Y, Guo Y (2017) Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. Medical image understanding and analysis. Springer, Cham, pp 506–517

    Google Scholar 

  27. Li Q, Yang G, Chen Z, Huang B, Chen L, Xu D, Zhou X, Zhong S, Zhang H, Wang T (2017) Colorectal polyp segmentation using a fully convolutional neural network. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp 1–5

  28. Armato S, McLennan G, McNitt-Gray M, Meyer C, Reeves A, Bidaut L, Zhao B, Croft B, Clarke L (2010) WE-B-201B-02: the lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed public database of CT scans for lung nodule analysis. Med Phys 37(6Part6):3416–3417

    Google Scholar 

  29. Qaiser T, Tsang YW, Taniyama D, Sakamoto N, Nakane K, Epstein D, Rajpoot N (2019) Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features. Med Image Anal 55:1–14

    Google Scholar 

  30. Wang S, Zhou M, Liu Z, Liu Z, Gu D, Zang Y, Dong D, Gevaert O, Tian J (2017) Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med Image Anal 40:172–183

    Google Scholar 

  31. Tang H, Zhang C, Xie X (2019) Nodulenet: decoupled false positive reduction for pulmonary nodule detection and segmentation. Medical Image Computing and Computer Assisted Intervention—ICCAI 2019. Springer, Cham, pp 266–274

    Google Scholar 

  32. Hai J, Qiao K, Chen J, Tan H, Xu J, Zeng L, Shi D, Yan B (2019) Fully convolutional densenet with multiscale context for automated breast tumor segmentation. J Healthc Eng 2019:8415485

    Google Scholar 

  33. Albadawy E, Saha A, Mazurowski MA (2018) Deep learning for segmentation of brain tumors: impact of cross-institutional training and testing. Med Phys 45(3):1150–1158

    Google Scholar 

  34. Heller N, Isensee F, Maier-Hein KH, Hou X, Xie C, Li F, Nan Y, Mu G, Lin Z, Han M, Yao G, Gao Y, Zhang Y, Wang Y, Hou F, Yang J, Xiong G, Tian J, Zhong C, Ma J, Rickman J, Dean J, Stai B, Tejpaul R, Oestreich M, Blake P, Kaluzniak H, Raza S, Rosenberg J, Moore K, Walczak E, Rengel Z, Edgerton Z, Vasdev R, Peterson M, McSweeney S, Peterson S, Kalapara A, Sathianathen N, Papanikolopoulos N, Weight C (2021) The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the kits19 challenge. Med Image Anal 67:101821

    Google Scholar 

  35. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber M, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp C, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SMS, Ryan M, Sarikaya D, Schwartz L, Shin H, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Van Leemput K (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024

    Google Scholar 

  36. Randhawa RS, Modi A, Jain P, Warier P (2016) Improving boundary classification for brain tumor segmentation and longitudinal disease progression. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer, Cham, pp 65–74

  37. Isensee F, Kickingereder P, Wick W, Bendszus M, Maier-Hein KH (2018) Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer, Cham, pp 287–297

  38. Weninger L, Rippel O, Koppers S, Merhof D (2019) Segmentation of brain tumors and patient survival prediction: Methods for the brats 2018 challenge. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer, Cham, pp 3–12

  39. CBICA (2019) Multimodal brain tumor segmentation challenge 2019. http://www.onlinemedicalimages.com

  40. Sirinukunwattana K, Raza SEA, Tsang Y, Snead D, Cree IA, Rajpoot NM (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 35(5):1196–1206

    Google Scholar 

  41. Graham S, Chen H, Gamper J, Dou Q, Heng PA, Snead D, Tsang YW, Rajpoot N (2019) Mild-net: minimal information loss dilated network for gland instance segmentation in colon histology images. Med Image Anal 52:199–211

    Google Scholar 

  42. Shaban M, Awan R, Fraz MM, Azam A, Tsang YW, Snead D, Rajpoot NM (2020) Context-aware convolutional neural network for grading of colorectal cancer histology images. IEEE Trans Med Imaging 39(7):2395–2405

    Google Scholar 

  43. Bilic P, Christ PF, Vorontsov E, Chlebus G, Chen H, Dou Q, Fu CW, Han X, Heng PA, Hesser J, Kadoury S, Konopczynski T, Le M, Li C, Li X, Lipkovà J, Lowengrub J, Meine H, Moltz JH, Pal C, Piraud M, Qi X, Qi J, Rempfler M, Roth K, Schenk A, Sekuboyina A, Vorontsov E, Zhou P, Hülsemeyer C, Beetz M, Ettlinger F, Gruen F, Kaissis G, Lohöfer F, Braren R, Holch J, Hofmann F, Sommer W, Heinemann V, Jacobs C, Mamani GEH, van Ginneken B, Chartrand G, Tang A, Drozdzal M, Ben-Cohen A, Klang E, Amitai MM, Konen E, Greenspan H, Moreau J, Hostettler A, Soler L, Vivanti R, Szeskin A, Lev-Cohain N, Sosna J, Joskowicz L, Menze BH (2019) The liver tumor segmentation benchmark (liTS). arXiv:1901.04056

  44. Universitaires H (2018) 3Dircadb. https://www.ircad.fr/research/3dircadb/

  45. TCIA (2018) NSCLC-Radiomics. https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics

  46. Shen H, Wang R, Zhang J, McKenna SJ (2017) Boundary-aware fully convolutional network for brain tumor segmentation. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2017. Springer, Cham, pp 433–441

    Google Scholar 

  47. Rezaei M, Harmuth K, Gierke W, Kellermeier T, Fischer M, Yang H, Meinel C (2018) A conditional adversarial network for semantic segmentation of brain tumor. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer, Cham, pp 241–252

  48. Gruber N, Antholzer S, Jaschke W, Kremser C, Haltmeier M (2019) A joint deep learning approach for automated liver and tumor segmentation. In: 2019 13th International Conference on Sampling Theory and Applications (SampTA), vol 1, pp 1–5

  49. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016. Springer, Cham, pp 424–432

    Google Scholar 

  50. Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol 1, pp 6230–6239

  51. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B, Glocker B, Rueckert D (2018) Attention U-Net: learning where to look for the pancreas. arXiv:1804.03999

  52. Li X, Chen H, Qi X, Dou Q, Fu C, Heng P (2018) H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging 37(12):2663–2674

    Google Scholar 

  53. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, Los Alamitos, CA, USA, vol 1, pp 770–778

  54. Giusti A, Cireşan DC, Masci J, Gambardella LM, Schmidhuber J (2013) Fast image scanning with deep max-pooling convolutional neural networks. In: 2013 IEEE International Conference on Image Processing, vol 1, pp 4034–4038

  55. Zhang H, Dana K, Shi J, Zhang Z, Wang X, Tyagi A, Agrawal A (2018) Context encoding for semantic segmentation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, vol 1, pp 7151–7160

  56. Zhang C, Lin G, Liu F, Yao R, Shen C (2019) Canet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), vol 1, pp 5212–5221

  57. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

    Google Scholar 

  58. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495

    Google Scholar 

  59. Hu Y, Guo Y, Wang Y, Yu J, Li J, Zhou S, Chang C (2019) Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model. Med Phys 46(1):215–228

    Google Scholar 

  60. Yang G, Li G, Pan T, Kong Y, Wu J, Shu H, Luo L, Dillenseger J, Coatrieux J, Tang L, Zhu X (2018) Automatic segmentation of kidney and renal tumor in CT images based on 3D fully convolutional neural network with pyramid pooling module. In: 2018 24th International Conference on Pattern Recognition (ICPR), vol 1, pp 3790–3795

  61. Sun C, Guo S, Zhang H, Li J, Chen M, Ma S, Jin L, Liu X, Li X, Qian X (2017) Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs. Artif Intell Med 83:58–66

    Google Scholar 

  62. Christ PF, Ettlinger F, Grün F, Elshaera MEA, Lipkova J, Schlecht S, Ahmaddy F, Tatavarty S, Bickel M, Bilic P, Rempfler M, Hofmann F, Anastasi MD, Ahmadi SA, Kaissis G, Holch J, Sommer W, Braren R, Heinemann V, Menze B (2017) Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv:1702.05970

  63. Milletari F, Navab N, Ahmadi S (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), vol 1, pp 565–571

  64. Mlynarski P, Delingette H, Criminisi A, Ayache N (2019) Deep learning with mixed supervision for brain tumor segmentation. J Med Imaging 6(3):1–13

    Google Scholar 

  65. Wang G, Li W, Ourselin S, Vercauteren T (2018) Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer, Cham, pp 178–190

  66. Adoui ME, Mahmoudi SA, Larhmam MA, Benjelloun M (2019) MRI breast tumor segmentation using different encoder and decoder CNN architectures. Computers 8(3)

  67. Zhang J, Saha A, Zhu Z, Mazurowski MA (2019) Hierarchical convolutional neural networks for segmentation of breast tumors in MRI with application to radiogenomics. IEEE Trans Med Imaging 38(2):435–447. https://doi.org/10.1109/TMI.2018.2865671

    Article  Google Scholar 

  68. Vu MH, Grimbergen G, Simkó A, Nyholm T, Löfstedt T (2019) Localization network and end-to-end cascaded U-Nets for kidney tumor segmentation. Submissions to the 2019 Kidney Tumor Segmentation Challenge: KiTS19. https://doi.org/10.24926/548719.073

  69. Sarker MMK, Rashwan HA, Akram F, Banu SF, Saleh A, Singh VK, Chowdhury FUH, Abdulwahab S, Romani S, Radeva P, Puig D (2018) SLSDeep: skin lesion segmentation based on dilated residual and pyramid pooling networks. Medical Image Computing and Computer Assisted Intervention—MICCAI 2018. Springer, Cham, pp 21–29

    Google Scholar 

  70. Li X, Yang D, Wang Y, Yang S, Qi L, Li F, Gan Z, Zhang W (2019) Automatic tongue image segmentation for real-time remote diagnosis. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), vol 1, pp 409–414

  71. Qin Y, Kamnitsas K, Ancha S, Nanavati J, Cottrell G, Criminisi A, Nori A (2018) Autofocus layer for semantic segmentation. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2018. Springer, Cham, pp 603–611

  72. Mlynarski P, Delingette H, Criminisi A, Ayache N (2019) 3D convolutional neural networks for tumor segmentation using long-range 2D context. Comput Med Imaging Graph 73:60–72

    Google Scholar 

  73. Jiang J, Hu Y, Liu C, Halpenny D, Hellmann MD, Deasy JO, Mageras GS, Veeraraghavan H (2019) Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images. IEEE Trans Med Imaging 38(1):134–144

    Google Scholar 

  74. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser U, Polosukhin I (2017) Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY, USA, NIPS’17, pp 6000–6010

  75. Jiang H, Shi T, Bai Z, Huang L (2019) AHCNet: an application of attention mechanism and hybrid connection for liver tumor segmentation in CT volumes. IEEE Access 7:24898–24909

    Google Scholar 

  76. Xu H, Xie H, Liu Y, Cheng C, Niu C, Zhang Y (2019) Deep cascaded attention network for multi-task brain tumor segmentation. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2019. Springer, Cham, pp 420–428

  77. Sabarinathan D, Beham MP, Roomi SMMM (2019) Hyper vision net: kidney tumor segmentation using coordinate convolutional layer and attention unit

  78. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural Information Processing Systems—Volume 2, MIT Press, Cambridge, MA, USA, NIPS’14, pp 2672–2680

  79. Yu B, Zhou L, Wang L, Fripp J, Bourgeat P (2018) 3D cGAN based cross-modality MR image synthesis for brain tumor segmentation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), vol 1, pp 626–630

  80. Li Z, Wang Y, Yu J (2018) Brain tumor segmentation using an adversarial network. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer, Cham, pp 123–132

  81. Singh VK, Rashwan HA, Abdel-Nasser M, Sarker MMK, Akram F, Pandey N, Romani S, Puig D (2019) An efficient solution for breast tumor segmentation and classification in ultrasound images using deep adversarial learning. arXiv:Image and Video Processing

  82. Kamnitsas K, Ledig C, Newcombe V, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Google Scholar 

  83. Han X (2017) MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 44(4):1408–1419

    Google Scholar 

  84. Tseng K, Lin Y, Hsu W, Huang C (2017) Joint sequence learning and cross-modality convolution for 3d biomedical segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol 1, pp 3739–3746

  85. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Google Scholar 

  86. Xie S, Tu Z (2017) Holistically-nested edge detection. Int J Comput Vis 125(1):3–18

    MathSciNet  Google Scholar 

  87. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2019) ChestX-ray: hospital-scale chest X-ray database and benchmarks on weakly supervised classification and localization of common thorax diseases. Springer, Cham, pp 369–392

    Google Scholar 

  88. Lin T, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), vol 1, pp 2999–3007

  89. Yuan Y, Chao M, Lo Y (2017) Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance. IEEE Trans Med Imaging 36(9):1876–1886

    Google Scholar 

  90. Zhong Z, Kim Y, Plichta KA, Allen BG, Zhou L, Buatti JM, Wu X (2018) Simultaneous cosegmentation of tumors in PET-CT images using deep fully convolutional networks. Med Phys 46(2):619–633

    Google Scholar 

  91. Jin D, Guo D, Ho TY, Harrison AP, Xiao J, Tseng CK, Lu L (2019) Accurate esophageal gross tumor volume segmentation in PET/CT using two-stream chained 3D deep network fusion. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2019. Springer, Cham, pp 182–191

  92. Zhao X, Li L, Lu W, Tan S (2018) Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network. Phys Med Biol 64(1):015011

    Google Scholar 

  93. Tahir B, Iqbal S, Khan MUG, Saba T, Mehmood Z, Anjum A, Mahmood T (2019) Feature enhancement framework for brain tumor segmentation and classification. Microsc Res Tech 82(6):803–811

    Google Scholar 

  94. Zhong Z, Kim Y, Buatti J, Wu X (2017) 3D alpha matting based co-segmentation of tumors on PET-CT images. In: Molecular Imaging, Reconstruction and Analysis of Moving Body Organs, and Stroke Imaging and Treatment. Springer, Cham, pp 31–42

  95. Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S (2019) Multi-institutional deep learning modeling without sharing patient data: a feasibility study on brain tumor segmentation. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer, Cham

  96. Husham A, Alkawaz MH, Saba T, Rehman A, Alghamdi J (2016) Automated nuclei segmentation of malignant using level sets. Microsc Res Tech 79(10):993–997

    Google Scholar 

  97. Mittal M, Goyal LM, Kaur S, Kaur I, Verma A, Hemanth DJ (2019) Deep learning based enhanced tumor segmentation approach for MR brain images. Appl Soft Comput 78:346–354

    Google Scholar 

  98. Sampergonzalez J, Burgos N, Bottani S, Fontanella S, Lu P, Marcoux A, Routier A, Guillon J, Bacci M, Wen J et al (2018) Reproducible evaluation of classification methods in Alzheimer’s disease: framework and application to MRI and pet data. Neuroimage 183:504–521

    Google Scholar 

  99. Zuiderveld KJ (1994) Contrast limited adaptive histogram equalization. Graphics Gems, pp 474–485

  100. Polesel A, Ramponi G, Mathews VJ (2000) Image enhancement via adaptive unsharp masking. IEEE Trans Image Process 9(3):505–510

    Google Scholar 

  101. Krähenbühl P, Koltun V (2011) Efficient inference in fully connected crfs with gaussian edge potentials. In: Shawe-Taylor J, Zemel R, Bartlett P, Pereira F, Weinberger KQ (eds) Advances in Neural Information Processing Systems, vol 24. Curran Associates Inc

  102. Chang J, Zhang L, Gu N, Zhang X, Ye M, Yin R, Meng Q (2019) A mix-pooling CNN architecture with FCRF for brain tumor segmentation. J Vis Commun Image Represent 58:316–322

    Google Scholar 

  103. Soltaninejad M, Zhang L, Lambrou T, Yang G, Allinson N, Ye X (2018) MRI brain tumor segmentation and patient survival prediction using random forests and fully convolutional networks. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer, Cham, pp 204–215

  104. Xia K, Wei G (2014) Persistent homology analysis of protein structure, flexibility, and folding. Int J Numer Methods Biomed Eng 30(8):814–844

    MathSciNet  Google Scholar 

  105. Chlebus G, Meine H, Moltz JH, Schenk A (2017) Neural network-based automatic liver tumor segmentation with random forest-based candidate filtering. arXiv:1706.00842

  106. Chen S, Ding C, Liu M (2019) Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recogn 88:90–100

    Google Scholar 

  107. Ma Z, Wu X, Sun S, Xia C, Yang Z, Li S, Zhou J (2018) A discriminative learning based approach for automated nasopharyngeal carcinoma segmentation leveraging multi-modality similarity metric learning. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), vol 1, pp 813–816

  108. Zhao L, Lu Z, Jiang J, Zhou Y, Wu Y, Feng Q (2019) Automatic nasopharyngeal carcinoma segmentation using fully convolutional networks with auxiliary paths on dual-modality PET-CT images. J Digit Imaging 32(3):462–470

    Google Scholar 

  109. Ma Z, Zhou S, Wu X, Zhang H, Yan W, Sun S, Zhou J (2019) Nasopharyngeal carcinoma segmentation based on enhanced convolutional neural networks using multi-modal metric learning. Phys Med Biol 64(2):025005

    Google Scholar 

  110. Feng X, Yang J, Laine AF, Angelini ED (2017) Discriminative localization in CNNs for weakly-supervised segmentation of pulmonary nodules. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2017. Springer, Cham, pp 568–576

  111. Wang W, Lu Y, Wu B, Chen T, Chen DZ, Wu J (2018) Deep active self-paced learning for accurate pulmonary nodule segmentation. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2018. Springer, Cham, pp 723–731

  112. Jiang J, Hu YC, Tyagi N, Zhang P, Rimner A, Mageras GS, Deasy JO, Veeraraghavan H (2018) Tumor-aware, adversarial domain adaptation from CT to MRI for lung cancer segmentation. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2018. Springer, Cham, pp 777–785

  113. Shen H, Zhang J, Zheng W (2017) Efficient symmetry-driven fully convolutional network for multimodal brain tumor segmentation. In: 2017 IEEE International Conference on Image Processing (ICIP), vol 1, pp 3864–3868

  114. Moreno Lopez M, Ventura J (2018) Dilated convolutions for brain tumor segmentation in MRI scans. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer, Cham, pp 253–262

  115. McKinley R, Meier R, Wiest R (2019) Ensembles of densely-connected CNNs with label-uncertainty for brain tumor segmentation. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer, Cham, pp 456–465

  116. Akbari M, Mohrekesh M, Nasr-Esfahani E, Soroushmehr SMR, Karimi N, Samavi S, Najarian K (2018) Polyp segmentation in colonoscopy images using fully convolutional network. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol 1, pp 69–72

  117. Kang J, Gwak J (2019) Ensemble of instance segmentation models for polyp segmentation in colonoscopy images. IEEE Access 7:26440–26447

    Google Scholar 

  118. Huang Y, Dou Q, Wang Z, Liu L, Wang L, Chen H, Heng P, Xu R (2018) HL-FCN: Hybrid loss guided FCN for colorectal cancer segmentation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), vol 1, pp 195–198

  119. Nguyen Q, Lee S (2018) Colorectal segmentation using multiple encoder-decoder network in colonoscopy images. In: 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), vol 1, pp 208–211

  120. Lv Y, Wang J (2019) Kidney tumor segmentation based on U-Net and V-Net with double loss function training. https://doi.org/10.24926/548719.054

  121. Mu G, Lin Z, Han M, Yao G, Gao Y (2019) Segmentation of kidney tumor by multi-resolution VB-nets. https://doi.org/10.24926/548719.003

  122. Wei H, Wang Q, Zhao W, Zhang M, Yuan K, Li Z (2019) Two-phase framework for automatic kidney and kidney tumor segmentation. https://doi.org/10.24926/548719.043

  123. Jin Q, Meng Z, Sun C, Cui H, Su R (2020) RA-UNet: a hybrid deep attention-aware network to extract liver and tumor in CT scans. Front Bioeng Biotechnol 8:1471

    Google Scholar 

  124. Qin Y, Zheng H, Huang X, Yang J, Zhu Y (2019) Pulmonary nodule segmentation with CT sample synthesis using adversarial networks. Med Phys 46(3):1218–1229

    Google Scholar 

  125. Chen H, Qi Y, Yin Y, Li T, Liu X, Li X, Gong G, Wang L (2020) MMFNet: a multi-modality MRI fusion network for segmentation of nasopharyngeal carcinoma. Neurocomputing 394:27–40

    Google Scholar 

  126. Singh L, Chetty G, Sharma D (2012) A novel machine learning approach for detecting the brain abnormalities from MRI structural images. In: Pattern Recognition in Bioinformatics. Springer, Berlin, pp 94–105

  127. Havaei M, Davy A, Wardefarley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin P, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Google Scholar 

  128. Pereira S, Oliveira A, Alves V, Silva CA (2017) On hierarchical brain tumor segmentation in MRI using fully convolutional neural networks: a preliminary study. In: 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), vol 1, pp 1–4

  129. Isensee F, Kickingereder P, Bonekamp D, Bendszus M, Wick W, Schlemmer HP, Maier-Hein K (2017) Brain tumor segmentation using large receptive field deep convolutional neural networks. In: Bildverarbeitung für die Medizin 2017. Springer, Berlin, pp 86–91

  130. Zhou C, Ding C, Lu Z, Wang X, Tao D (2018) One-pass multi-task convolutional neural networks for efficient brain tumor segmentation. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2018. Springer, Cham, pp 637–645

  131. Pereira S, Alves V, Silva CA (2018) Adaptive feature recombination and recalibration for semantic segmentation: application to brain tumor segmentation in MRI. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2018. Springer, Cham, pp 706–714

  132. Myronenko A (2019) 3D MRI brain tumor segmentation using autoencoder regularization. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Springer, Cham, pp 311–320

  133. Huang Y, Chen D, Lin Y (2019) 3D contouring for breast tumor in sonography. arXiv: Computer Vision and Pattern Recognition

  134. Arjmand A, Meshgini S, Afrouzian R, Farzamnia A (2019) Breast tumor segmentation using k-means clustering and cuckoo search optimization. In: 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), vol 1, pp 305–308

  135. Liu L, Li K, Qin W, Wen T, Li L, Wu J, Gu J (2018) Automated breast tumor detection and segmentation with a novel computational framework of whole ultrasound images. Med Biol Eng Comput 56(2):183–199

    Google Scholar 

  136. Ying T, Li R, Yangyang L, Xuehong C (2019) Micro calcification point automatic detection method based on ultrasonic breast tumor image. Pat. Appl. https://lens.org/053-363-278-817-556

  137. El-Azizy ARM, Salaheldien M, Rushdi MA, Gewefel H, Mahmoud AM (2019) Morphological characterization of breast tumors using conventional b-mode ultrasound images. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol 1, pp 6620–6623

  138. Vakanski A, Xian M, Freer P (2019) Attention enriched deep learning model for breast tumor segmentation in ultrasound images. Ultrasound Med Biol 46(10):2819–2833

    Google Scholar 

  139. Liang Y, He R, Li Y, Wang Z (2019) Simultaneous segmentation and classification of breast lesions from ultrasound images using mask R-CNN. In: 2019 IEEE International Ultrasonics Symposium (IUS), vol 1, pp 1470–1472

  140. Xie Y, Chen K, Lin J (2017) An automatic localization algorithm for ultrasound breast tumors based on human visual mechanism. Sensors 17(5):1101

    Google Scholar 

  141. Shao H, Zhang Y, Xian M, Cheng HD, Xu F, Ding J (2015) A saliency model for automated tumor detection in breast ultrasound images. In: 2015 IEEE International Conference on Image Processing (ICIP), vol 1, pp 1424–1428

  142. He K, Gkioxari G, Dollar P, Girshick R (2020) Mask R-CNN. IEEE Trans Pattern Anal Mach Intell 42(2):386–397

    Google Scholar 

  143. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol 1, pp 2261–2269

  144. Zhang J, Saha A, Zhu Z, Mazurowski MA (2019) Hierarchical convolutional neural networks for segmentation of breast tumors in MRI with application to radiogenomics. IEEE Trans Med Imaging 38(2):435–447

    Google Scholar 

  145. Men K, Dai J, Li Y (2017) Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Med Phys 44(12):6377–6389

    Google Scholar 

  146. Liu X, Guo S, Zhang H, He K, Mu S, Guo Y, Li X (2019) Accurate colorectal tumor segmentation for CT scans based on the label assignment generative adversarial network. Med Phys 46(8):3532–3542

    Google Scholar 

  147. Trebeschi S, Van Griethuysen JJM, Lambregts DMJ, Lahaye MJ, Parmer C, Bakers FCH, Peters NHGM, Beetstan RGH, Aerts HJWL (2017) Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR. Sci Rep 7(1):5301

    Google Scholar 

  148. Jian J, Xiong F, Xia W, Zhang R, Gu J, Wu X, Meng X, Gao X (2018) Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images. Australas Phys Eng Sci Med 41:393–401

    Google Scholar 

  149. Soomro MH, Coppotelli M, Conforto S, Schmid M, Giunta G, Secco LD, Neri E, Caruso D, Rengo M, Laghi A (2019) Automated segmentation of colorectal tumor in 3D MRI using 3D multiscale densely connected convolutional neural network. J Healthc Eng 2019:1–11

    Google Scholar 

  150. Huang YJ, Dou Q, Wang ZX, Liu LZ, Jin Y, Li CF, Wang L, Chen H, Xu RH (2020) 3-D RoI-aware U-Net for accurate and efficient colorectal tumor segmentation. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2020.2980145

    Article  Google Scholar 

  151. Tang J, Li J, Xu X (2018) Segnet-based gland segmentation from colon cancer histology images. In: 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC), vol 1, pp 1078–1082

  152. Bray FI, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Google Scholar 

  153. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. Ca A Cancer J Clin 69(1)

  154. Efremova DB, Konovalov DA, Siriapisith T, Kusakunniran W, Haddawy P (2019) Automatic segmentation of kidney and liver tumors in CT images. arXiv:1908.01279

  155. Zavala-Romero O, Matos J, Illan I, Stoyanova R, Breto A, Xu I, Zavala-Hidalgo J, Romero-Centeno R (2019) Nested 3D neural networks for kidney and tumor segmentation. https://doi.org/10.24926/548719.084

  156. Shen C, Wang C, Oda M, Mori K (2019) Coarse-to-fine kidney and tumor segmentation with fully convolutional networks https://doi.org/10.24926/548719.072

  157. Yu Q, Shi Y, Sun J, Gao Y, Zhu J, Dai Y (2019) Crossbar-net: a novel convolutional neural network for kidney tumor segmentation in CT images. IEEE Trans Image Process 28(8):4060–4074

    MathSciNet  MATH  Google Scholar 

  158. Myronenko A, Hatamizadeh A (2019) 3D kidneys and kidney tumor semantic segmentation using boundary-aware networks. arXiv:1909.06684

  159. Sabarinathan D, Beham D, Roomi S (2020) Hyper Vision Net: kidney tumor segmentation using coordinate convolutional layer and attention unit, pp 609–618. https://doi.org/10.1007/978-981-15-8697-2_57

  160. Zhang Y, Wang Y, Hou F, Yang J, Xiong G, Tian J, Zhong C (2019) Cascaded volumetric convolutional network for kidney tumor segmentation from CT volumes. https://doi.org/10.24926/548719.004. arXiv:Image and Video Processing

  161. Chen C, Ma L, Jia Y, Zuo P (2019) Kidney and tumor segmentation using modified 3D mask RCNN. https://doi.org/10.24926/548719.061

  162. Sun L, Zeng W, Ding X, Huang Y (2019) A multi-scale attention network for kidney tumor segmentation on CT scans. https://doi.org/10.24926/548719.055

  163. Forner A (2015) Hepatocellular carcinoma surveillance with miRNAs. Lancet Oncol 16(7):743–745

    Google Scholar 

  164. Roy S (2013) A review on automated brain tumor detection and segmentation from MRI of brain. Int J Adv Res Comput Sci Softw Eng 3:1706–1746

    Google Scholar 

  165. Vorontsov E, Tang A, Pal C, Kadoury S (2018) Liver lesion segmentation informed by joint liver segmentation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), vol 1, pp 1332–1335

  166. Liu S, Xu D, Zhou SK, Pauly O, Grbic S, Mertelmeier T, Wicklein J, Jerebko A, Cai W, Comaniciu D (2018) 3D anisotropic hybrid network: transferring convolutional features from 2D images to 3D anisotropic volumes. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2018. Springer, Cham, pp 851–858

  167. Bai Z, Jiang H, Li S, Yao Y (2019) Liver tumor segmentation based on multi-scale candidate generation and fractal residual network. IEEE Access 7:82122–82133

    Google Scholar 

  168. Seo H, Huang C, Bassenne M, Xiao R, Xing L (2020) Modified U-Net (mU-Net) with incorporation of object-dependent high level features for improved liver and liver-tumor segmentation in CT images. IEEE Trans Med Imaging 39(5):1316–1325

    Google Scholar 

  169. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Google Scholar 

  170. Wang S, Zhou M, Gevaert O, Tang Z, Dong D, Liu Z, Jie T (2017) A multi-view deep convolutional neural networks for lung nodule segmentation. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), vol 1, pp 1752–1755

  171. Rocha J, Cunha A, Maria Mendonça A (2019) Comparison of conventional and deep learning based methods for pulmonary nodule segmentation in CT images. In: Progress in Artificial Intelligence. Springer, Cham, pp 361–371

  172. Tong G, Li Y, Chen H, Zhang Q, Jiang H (2018) Improved U-NET network for pulmonary nodules segmentation. Optik 174:460–469

    Google Scholar 

  173. Roy R, Chakraborti T, Chowdhury AS (2019) A deep learning-shape driven level set synergism for pulmonary nodule segmentation. Pattern Recogn Lett 123:31–38

    Google Scholar 

  174. Feng Y, Hao P, Zhang P, Liu X, Wu F, Wang H (2019) Supervoxel based weakly-supervised multi-level 3D CNNs for lung nodule detection and segmentation. J Ambient Intell Humaniz Comput 1–11

  175. Wu B, Zhou Z, Wang J, Wang Y (2018) Joint learning for pulmonary nodule segmentation, attributes and malignancy prediction. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), vol 1, pp 1109–1113

  176. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Susstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

    Google Scholar 

  177. Chang ET, Adami H (2006) The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomark Prev 15(10):1765–1777

    Google Scholar 

  178. Men K, Chen X, Zhang Y, Zhang T, Dai J, Yi J, Li Y (2017) Deep deconvolutional neural network for target segmentation of nasopharyngeal cancer in planning computed tomography images. Front Oncol 7:315

    Google Scholar 

  179. Liang S, Tang F, Huang X, Yang K, Zhong T, Hu R, Liu S, Yuan X, Zhang Y (2019) Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Eur Radiol 29:1961–1967

    Google Scholar 

  180. Zhong T, Huang X, Tang F, Liang S, Deng X, Zhang Y (2019) Boosting-based cascaded convolutional neural networks for the segmentation of CT organs-at-risk in nasopharyngeal carcinoma. Med Phys 46(12):5602–5611

    Google Scholar 

  181. Li S, Xiao J, He L, Peng X, Yuan X (2019) The tumor target segmentation of nasopharyngeal cancer in CT images based on deep learning methods. Technol Cancer Res Treat 18:1533033819884561

    Google Scholar 

  182. Wang Y, Zu C, Hu G, Luo Y, Ma Z, He K, Wu X, Zhou J (2018) Automatic tumor segmentation with deep convolutional neural networks for radiotherapy applications. Neural Process Lett 48(3):1323–1334

    Google Scholar 

  183. Ma Z, Wu X, Zhou J (2017) Automatic nasopharyngeal carcinoma segmentation in MR images with convolutional neural networks. In: 2017 International Conference on the Frontiers and Advances in Data Science (FADS), vol 1, pp 147–150

  184. Ma Z, Wu X, Song Q, Luo Y, Wang Y, Zhou J (2018) Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut. Exp Ther Med 16(3):2511–2521

    Google Scholar 

  185. Li Q, Xu Y, Chen Z, Liu D, Feng S, Law M, Ye Y, Huang B (2018) Tumor segmentation in contrast-enhanced magnetic resonance imaging for nasopharyngeal carcinoma: deep learning with convolutional neural network. Biomed Res Int 2018:9128527

    Google Scholar 

  186. Jb Huang, Zhuo E, Li H, Liu L, Cai H, Ou Y (2019) Achieving accurate segmentation of nasopharyngeal carcinoma in MR images through recurrent attention. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2019. Springer, Cham, pp 494–502

  187. Xing F, Bennett T, Ghosh D (2019) Adversarial domain adaptation and pseudo-labeling for cross-modality microscopy image quantification. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2019. Springer, Cham, pp 740–749

  188. Chen C, Dou Q, Chen H, Qin J, Heng PA (2020) Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans Med Imaging 39(7):2494–2505

    Google Scholar 

  189. Dou Q, Ouyang C, Chen C, Chen H, Glocker B, Zhuang X, Heng P (2019) PnP-AdaNet: plug-and-play adversarial domain adaptation network at unpaired cross-modality cardiac segmentation. IEEE Access 7(1):99065–99076

    Google Scholar 

  190. Yan W, Wang Y, Gu S, Huang L, Yan F, Xia L, Tao Q (2019) The domain shift problem of medical image segmentation and vendor-adaptation by Unet-GAN. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2019. Springer, Cham, pp 623–631

  191. Ouyang C, Kamnitsas K, Biffi C, Duan J, Rueckert D (2019) Data efficient unsupervised domain adaptation for cross-modality image segmentation. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2019. Springer, Cham, pp 669–677

  192. Huang C, Han H, Yao Q, Zhu S, Zhou SK (2019) 3D U\(^2\)-Net: a 3D universal U-Net for multi-domain medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention—MICCAI 2019. Springer, Cham, pp 291–299

  193. Wang T, Yuan L, Zhang X, Feng J (2019) Distilling object detectors with fine-grained feature imitation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), vol 1, pp 4928–4937

  194. Gotmare A, Keskar NS, Xiong C, Socher R (2019) A closer look at deep learning heuristics: Learning rate restarts, warmup and distillation. In: International Conference on Learning Representations. https://openreview.net/forum?id=r14EOsCqKX

  195. Pilzer A, Lathuilière S, Sebe N, Ricci E (2019) Refine and distill: exploiting cycle-inconsistency and knowledge distillation for unsupervised monocular depth estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), vol 1, pp 9760–9769

  196. Bhardwaj K, Suda N, Marculescu R (2019) Dream distillation: a data-independent model compression framework. CoRR. arXiv:1905.07072

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61872075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyan Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Diao, Z. & Yao, YD. Deep learning techniques for tumor segmentation: a review. J Supercomput 78, 1807–1851 (2022). https://doi.org/10.1007/s11227-021-03901-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-03901-6

Keywords

Navigation