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Abstract
Pairs trading is an effective statistical arbitrage strategy considering the spread 
of paired stocks in a stable cointegration relationship. Nevertheless, rapid market 
changes may break the relationship (namely structural break), which further leads to 
tremendous loss in intraday trading. In this paper, we design a two-phase pairs trad-
ing strategy optimization framework, namely structural break-aware pairs trading 
strategy (SAPT), by leveraging machine learning techniques. Phase one is a hybrid 
model extracting frequency- and time-domain features to detect structural breaks. 
Phase two optimizes pairs trading strategy by sensing important risks, including 
structural breaks and market-closing risks, with a novel reinforcement learning 
model. In addition, the transaction cost is factored in a cost-aware objective to avoid 
significant reduction of profitability. Through large-scale experiments in real Taiwan 
stock market datasets, SAPT outperforms the state-of-the-art strategies by at least 
456% and 934% in terms of profit and Sortino ratio, respectively.
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1 Introduction

With the advancement of communication techniques, information dissemination 
becomes faster than in the past, which means more external factors, such as breaking 
news, can impact the financial markets in real time so that it increases the volatility 
of financial markets and causes high investment risks. For investors, it becomes dif-
ficult to seize the opportunity for profit and consider the investment risk for stable 
return at the same time. To achieve such goals, the concept of pairs trading, a statis-
tical arbitrage trading strategy, is proposed [35] and widely used in several financial 
markets [5, 37, 64].

Financial experts found that the spread of the prices of some pairs of financial 
instruments (i.e., the difference between their prices) is always in a stable long-term 
relation. Moreover, pairs trading strategies are developed to exploit these stable 
relations as the arbitrage opportunities (detailed later). Different definitions of mean-
ingful pairs are then proposed, such as distance-based [27, 35], cointegration-based 
[14, 34], stochastic-based [56, 58], and time series-based [16, 21]. In this paper, we 
focus on the cointegration-based pairs trading1 since the spread of a cointegration-
based pair is proved to be more econometrically reliable [52, 66].

Figure  1 illustrates the stock prices of Macronix International Co., Ltd (2337.
TW) and Winbond Electronics Corp. (2344.TW) in the Taiwan stock market on Jan 
3, 2020, respectively. Both of them manufacture DRAM-related products, and the 
cointegration relationship of their prices is verified by [28]. The spread normalized 
by z-score is further shown in Fig. 2, where the gray area is the formation period to 
test whether they have cointegration relationship.

In the pairs trading scenario, a trade, composed of one short and one long, opens 
when an arbitrage opportunity occurs. Until the spread reverts to its historical mean, 
the trade is closed by doing the opposite actions. For example, in Fig. 2, the inves-
tors should short stock 2337.TW and long stock 2344.TW at the 177th minute, and 
close the position at the 191st minute by longing stock 2337.TW and shorting stock 
2344.TW. Specifically, in pairs trading, there is a pair of trading boundaries (the 
green dashed lines), to triggers trades while the spread touches it. When the spread 

Fig. 1  Stock price of 2337.TW and 2344.TW

1 Pairs trading will stand for cointegration-based pairs trading in the following pages.
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returns to the historical mean (the red solid line), the trade would be recommended 
to close the position to make the profit. As a result, the yellow areas, bounded by 
these three lines, are the arbitrage opportunities.

However, the spread may diverge too far from historical mean unexpectedly. To 
avoid great loss caused by the divergence, the investors would set a pair of stop-
loss boundaries (the purple dashed lines in Fig. 2), which is wider than the trading 
boundaries, to force the trade to close the position. On the other hand, if a trade 
is opened but the spread does not revert back to historical mean until a deadline, 
the trade would be forced to close the position as well, called exit. For example, in 
intraday trading, the deadline is set to the closing time of the day. In general, once 
stop-loss or exit happens, they usually result in a negative return [50]. Overall, the 
behavior of pairs trading is to offset the systematic risk by the positions of two dif-
ferent assets. Therefore, it has been regarded as a market neutral trading strategy 
with good hedging ability [35].

In order to optimize pairs trading strategies depending on the positions of open 
and close, it is crucial to determine the trading and stop-loss boundaries. If the gap 
between trading boundaries is narrow, the arbitrage is low, and hence, few profit can 
be made. Moreover, the little profit could be consumed by transaction costs, such 
as transaction taxes and fees. In contrast, if it is too wide, the strategies could not 
only miss several minor arbitrage opportunities but also increase the risk of great 
loss. For example, in Fig. 2, if the trading boundaries are set to ±2 , the return is less 
than the boundaries of ±3 . In contrast, although setting the boundaries to ±4 can 
create more profit in the first arbitrage opportunity, the second arbitrage opportunity 
is missed since the stock price did not meet the trading boundary. Overall, it is chal-
lenging but necessary to strike a good balance between the arbitrage opportunities 
and the risk control while learning the optimized trading and stop-loss boundaries.

To seize the arbitrage opportunities in intraday trading, our intuition is to 
design new pairs trading strategies in a fine-grained scale (e.g., minute scale) 
from the tick data. Note that most of the existing pairs trading strategies [35, 50, 
66] were designed for daily data, in which the spreads are usually stable and long-
term equilibrium. While the stock markets are easily influenced by some external 
factors (e.g., news and government policies) in real time [42], they may lose the 
arbitrage opportunities in intraday trading. On the other hand, the cointegration 
relationship of spreads is much weaker due to the high sensitivity in the tick data 

Fig. 2  Example of the normalized spread of paired stocks
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[42]. The risk, namely the structural break, that the spread could fade away from 
the historical mean also increases, which would cause dramatic loss if the spread 
does not revert back. The pink shaded area in Fig. 3 illustrates an example of a 
structural break. From the 173rd minute, which is a breakpoint, the spread of 
stocks 1303.TW and 1319.TW increases dramatically, and hence, the cointegra-
tion relationship vanishes. Pairs trading may suffer from a great loss if the strat-
egy does not close the position when a breakpoint occurs. For instance, 16.2% of 
the trades executed by a state-of-the-art method PTDQN [50] in our Taiwan stock 
market dataset are forced to exit in the end of the trading period because PTDQN 
does not wisely close positions during structural breaks (detailed later). There-
fore, the investments are put in risky conditions and 89.5% of these risky trades 
close with negative profit. Consequently, detecting structural breaks is important 
for pairs trading, but existing pairs trading strategies [35, 50, 66] seldom factor in 
the structural breaks to prevent huge loss.

(a) Stock Prices of 1303.TW and 1319.TW

(b) Spread of 1303.TW and 1319.TW

Fig. 3  Example of the structural break
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To detect structural breaks, state-of-the-art methods, such as Augmented 
Dickey–Fuller test [25] and Chow test [20], require numerous data for statistical 
examinations. Moreover, they are not applicable to online detection. On the other 
hand, in anomaly detection field, likelihood ratio-based and probability-based 
change-point detection [1] identifies sudden and dramatic pattern changes in time 
series data. However, the structural breaks may lie in slowly changing spreads, 
which make them undetectable for change-point detection methods [4, 83]. To 
this end, we recognize there is an urgent need to design an effective structural 
break detection method to improve pairs trading strategy.

In this paper, we propose a two-phase framework, namely structural break-
aware pairs trading strategy (SAPT), to tackle the above issues. The details of the 
two phases are listed below.

• Phase 1: structural break detection. Given a cointegrated pair of stocks, 
their previous stock price sequences, and their current stock prices, the goal 
is to estimate the occurrence probability of a structural break in the current 
timestamp. Inspired by recent works on time series data analysis [23, 65, 85, 
87], combining the time-domain and the frequency-domain features can make 
significant improvement, compared to only considering either of them. It is 
worth noting that, besides time-domain features, frequency-domain informa-
tion extracted by Fourier transform or wavelet transform has been proved to 
be effective for analyzing time series data [10, 65]. In particular, the finance 
data are usually of latent multi-frequency market patterns, such as seasonal 
behaviors, which can be extracted by analyzing the frequency-domain fea-
tures [8, 85, 87]. Therefore, we propose spread wavelet-aware hybrid net-
work (SWANet) to jointly extract frequency-domain features from spreads and 
time-domain features with a continuous wavelet convolutional neural network 
(CNN) and a long short-term memory (LSTM), respectively. Through com-
bining the two different aspects, SWANet is better handling nonlinearity and 
complexity in stock data than statistic approaches, such as auto-regressive 
integrated moving average model (ARIMA) [12]. Through SWANet, the pre-
dicted probability of structural break can be obtained and passed to the next 
phase as one of the risk features for further trading optimization.

• Phase 2: pairs trading strategy optimization. Given a cointegrated pair of 
stocks, their previous stock price sequences, the probability of structural break 
occurrence from phase 1, and the transaction cost defined by the markets, the 
goal of this phase is to jointly decide the trading shares (i.e., trading amount) 
in each timestamp, the trading and the stop-loss boundaries. In addition, we 
argue that risk control, including structural breaks and market-closing risks, is 
important in the noisy intraday trading scenario. Nonetheless, the previous lit-
erature [30, 70] fails to take them into consideration. As a result, we propose a 
novel deep Q-network structural break-aware deep Q-network (SADQN) with 
a transaction cost-aware objective function and risk-aware definitions of states 
and rewards. Consequently, SADQN incorporates not only profit but also the 
awareness of risks.
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For evaluations, we conduct a large-scale dataset collected from the top 150 compa-
nies in the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) 
from November 1st, 2017 to May 31st, 2020. The experimental results manifest that 
SWANet outperforms the state-of-the-art structural break detection methods 30.4% 
in terms of miss rate. For pairs trading strategy, compared to the state-of-the-art 
pairs trading strategy optimization methods, SADQN increases 456% of profit and 
934% of Sortino ratio in the sense of risk control, respectively. The main contribu-
tions of this paper are listed as follows: 

1. To the best of our knowledge, in machine learning domain, we are the first to 
identify the urgent need of developing pairs trading strategy with structural break 
detection in intraday trading scenario.

2. We propose a novel structural break detection method SWANet, which considers 
both frequency-domain and time-domain features, to detect the breakpoints of 
cointegrated pairs efficiently.

3. We design a new deep Q-network SADQN which factors in the structural breaks, 
market-closing risks, and the transaction costs to optimize the pairs trading strat-
egy.

4. We collect a large-scale tick data from the Taiwan stock market for experiments. 
The results manifest our solutions outperform the state-of-the-art methods sig-
nificantly.

The rest of this paper is organized as follows. The related works are compared in 
Sect.  2. We overview the background of pairs trading strategy and the proposed 
framework SAPT in Sect. 3. The details of our models SWANet and SADQN are, 
respectively, presented in Sects.  4 and 5. Finally, Sect.  6 shows the experimental 
results and Sect. 7 concludes this paper.

2  Related work

2.1  Structural break detection

2.1.1  Statistical methods for structural break detection

Statistical methods [20, 25] are generally used to test the stationarity of a time 
series. Augmented Dickey–Fuller test (ADF) [25] borrowed the idea “unit root,” 
which describes the condition that a random walk of a time series cannot be fit by 
a linear statistical model [88], to identify non-stationary data and then reported it 
as a structural break. Chow test [20] examined whether the coefficients in two lin-
ear regressions of two subsequences, which are, respectively, extracted from a time 
series before and after a certain point, are equal and reported as a structural break if 
not. These methods are too sensitive to deal with the high variety in intraday trading. 
In addition, they have difficulty to meet the immediacy of structural break detection 
since they require enormous data to get reliable results during testing.



3849

1 3

Structural break‑aware pairs trading strategy using deep…

2.1.2  Change‑point detection

The goal of change-point detection is to identify the locations where pattern switches 
or abrupt change happens in the time series data. It has been applied to a broad 
range of real-world application domains [3, 18, 83], e.g., climate change detec-
tion and speech recognition. Adams et al. [1] estimated the Bayesian probability of 
how possible a data point turns into a change-point by referring to the probability 
of recent data points. Kang et  al. [46] first extracted features from time series by 
Fourier transform and then exploited vector quantization clustering to detect change 
points which switch clusters over time. Nevertheless, the above methods may mis-
classify abrupt fluctuations in stock markets as breakpoints, such that many arbitrage 
opportunities would be missed.

2.2  Pairs trading strategy

2.2.1  Pairs trading

Pairs trading is a market neutral trading strategy that has been widely used since 
the 1980s [35]. By constructing a pair of two stocks, pairs trading can offset the 
systematic risk, especially in the volatile market, and make the profit with excellent 
hedging ability. Gatev et al. [35] proved that the average annualized excess return by 
the US daily stock data from 1962 to 2002 can be promoted to 11% by employing 
simple pairs trading strategy. There are several types of approaches for pairs trad-
ing [52]. For example, Gatev et al. [35] and Do and Faff [27] utilized the distance 
metrics to find the pair of stocks whose prices move together. Some studies [14, 
34] found the pairs with cointegration relationship, and some [56, 58] modeled the 
spread of paired stock prices by Ornstein–Uhlenbeck process. Since some studies 
have shown that the cointegration method has generated a more stable and robust 
excess return [52, 66], in this paper, we find the paired stocks by verifying the coin-
tegration relation between two stocks for further trading. However, as most of the 
studies [14, 34] above focus on the identification of paired stocks and test the result 
with basic methods, such as static standard deviation as open and stop-loss bounda-
ries. In this paper, we focus on how to decide the open and stop-loss boundaries 
dynamically to trigger trades in pairs trading.

2.2.2  Deep learning for finance

Due to the complexity of financial markets, the nonlinear characteristics of stock 
price may not meet the statistical assumptions [88]. To this end, deep neural net-
works have been exploited to forecast stock prices or detect outliers nowadays [24, 
82, 85, 87]. Chen et al. [19] constructed the Filterbank CNN in high-frequency pairs 
trading to extract long-term and short-term historical volatility information and 
hence outperformed the rule-based strategies in Taiwan Stock Index Futures and 
Mini Index Futures. Zhang et al. [86] proposed to extract the features of limit order 
books with a CNN to learn the strength of the bid–ask and then predict the trend 
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of the London Stock Exchange with an LSTM. Several studies [8, 24] improved 
the robustness by utilizing neural networks to alleviate the effect of noise and 
uncertainty.

Specifically, reinforcement learning models have shown great performance in 
optimizing trading decisions in the financial domain [13, 24, 30, 50]. For instance, 
many financial trading applications based on reinforcement learning focus on mak-
ing trading decisions of a single stock at each timestamp [24, 55, 57]. For pairs trad-
ing, Fallahpout et al. [30] made the first attempt to adopt a classic Q-learning model. 
Kim et  al. [50] further proposed the pairs trading deep Q-network (PTDQN) that 
employed a conventional deep Q-learning model to dynamically choose the open 
and the stop-loss boundaries over time. The above methods are designed for daily 
data and they hold the shares for a long period in which the spreads they find are in 
a stable and long-term equilibrium. Nonetheless, in practice, the stationary of paired 
stocks is oscillating in intraday trading, especially when the close time of the market 
is approaching. Note that it is more profitable, but also risky, in the oscillating intra-
day trading environment. Moreover, those methods did not count in the transaction 
cost, which may easily decrease the profit, during training. To strike a good balance 
between profitability, risks, and transaction cost in intraday trading scenario, we pro-
pose a novel reinforcement learning model SADQN, where the structural breaks, 
market-closing risk, and transaction cost are all factored in.

3  Overview

We first briefly introduce the background knowledge of cointegration relationship in 
Sect. 3.1. An overview of the proposed framework structural break-aware pairs trad-
ing strategy (SAPT) in further presented in Sect. 3.2.

For clarity of presentation, in this paper, non-bold lowercase letters (e.g., x) and 
non-bold uppercase letters (e.g., X) denote scalars and sets, respectively. Bold upper-
case letters (e.g., � ) and bold lowercase letters (e.g., � ) denote matrices and vectors, 
respectively.

3.1  Stationary and cointegration relationship

In finance [6, 49, 77] and time series studies [36, 38, 62], a time series is “station-
ary” if (1) the expectation of the series over time is a constant, (2) the variance of 
the series over time is a constant, and (3) the auto-covariance of the series of two 
timestamps only depends on a lagged value. In other words, a time series is station-
ary if it is very stable along time. Note that, in stock markets, non-stationary stocks 
are more profitable than stationary stocks since the prices of the former could rise 
more potentially.

However, non-stationary stocks have to take greater risks of price tumble. In 
order to cope with both the profitability and the risk control, financial experts pro-
pose the pairs trading strategy based on the cointegration relationship [29], which 
linearly combines two non-stationary stocks into one stationary time series. Among 
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the literature of cointegration relationships [29], in this paper, we adopt the vector 
error correction model (VECM) [14, 30] to extract cointegrated pairs of stocks with 
statistical tests. Finally, the spread of a cointegrated pair composed of Stocki and 
Stockj at timestamp t, termed as Spreadt

i,j
 , is formulated as follows:

where pi,t and pj,t denote the stock prices of Stocki and Stockj at t. hi and hj , which 
are determined by VECM, respectively, weights Stocki and Stockj . As a result, 
Spreadt

i,j
 is the difference of weighted stock prices between the Stocki and Stockj . It 

is worth noting that, in pairs trading strategy, the ratio between trading amounts of 
Stocki and Stockj is regulated to hi

hj
 to keep the cointegration relationships after a 

trade is made.

3.2  Overview of SAPT

To facilitate structural break-aware pairs trading strategy, two key tasks are to: (1) 
detect structural breaks in trading periods and (2) determine the trading policy with 
risk information and transaction cost. The blue shaded area in Fig.  4 illustrates 
the architecture of the proposed two-phase machine learning framework structural 
break-aware pairs trading strategy (SAPT). The first-phase SWANet (the green rec-
tangle) estimates the occurrence probability of structural breaks with a hybrid model 
learning from time- and frequency-domain features. The second-phase SADQN (the 
yellow rectangle) determines the setting of boundaries (including trading and stop-
loss boundaries) over time dynamically with a novel reinforcement learning model, 
where a transaction cost-aware objective and a risk-aware environment setting 

(1)Spreadt
i,j
= hi ⋅ pi,t + hj ⋅ pj,t,

Fig. 4  Architecture of SAPT
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are incorporated. The details of SWANet and SADQN are formally introduced in 
Sects. 4 and 5, respectively.

4  Structural break detection

4.1  Problem definition

Pairs trading arbitrages when a stationary spread reverts to the historical mean. Nev-
ertheless, the stationary spread may turn into a non-stationary time series due to 
external impact (e.g., news or government policies). This event is called a structural 
break [39], and the specific timestamp when the structural break occurs is named a 
breakpoint. Although the occurrence of structural breaks may result in great profit 
in pairs trading if the spread returned to the historical mean eventually, it could 
also cause a great loss if the spread does not revert to the historical mean at all. 
To prevent such high-risk situations, it is important to detect structural breaks in 
pairs trading. Consider a cointegrated pair of stocks Pairi,j = ⟨Stocki, Stockj⟩ , where 
Stockn = ⟨pn,t ∈ R+ � t = 1, 2,… , tcur − 1⟩ for all n, and let tcur denote the current 
timestamp. When the current prices pi,tcur and pj,tcur are available, the goal is to esti-
mate the occurrence probability of a structural break at tcur with a real-time detec-
tion model f� as follows:

where Pr is the occurrence probability, � is the set of learnable parameters of f� . 
Accordingly, we further model the detection task as a binary classification problem, 
where the objective function is defined as follows:

DB is a database collecting all the cointegrated pairs. tstart denotes the starting times-
tamp which is available to trade (i.e., the very next timestamp after the formation 
period) and T denotes the last timestamp of the day. yi,j,t is the binary ground truth 
of whether Pairi,j is in a structural break at time t. To be more specific, yi,j,t = 1 
indicates that the spread at time t is under structural break, and yi,j,t = 0 otherwise. 
For example, if t ∈ {1, 2, 3, 4, 5} and structural break happens at the third and fourth 
timestamp, y is {0, 0, 1, 1, 0} . The ground truth of breakpoint can be obtained by 
[54]. Consequently, the objective is to minimize the binary cross-entropy L of all 
cointegrated pairs in DB in the trading period (i.e., t ∈ {tstart,… , T}).

The differences between the proposed SWANet and traditional statistical meth-
ods [20, 25] are twofold. (1) Statistical methods require relatively long time for 
detection and are designed for offline examinations. SWANet is able to detect struc-
tural breaks online and hence reduces the detection delay. (2) SWANet learns from 

(2)Pr(i, j, tcur) = f�(Pairi,j, t
cur),

(3)

L =
∑

∀Pairi,j∈DB

T∑

t=tstart

yi,j,t logPr(i, j, t) + (1 − yi,j,t) log(1 − Pr(i, j, t)),

where yi,j,t =

{
1, structural break occurs

0, otherwise.
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both time-domain and frequency-domain features, whereas traditional methods do 
not exploit frequency-domain features. As illustrated in Fig. 5, SWANet combines 
a CNN with continuous wavelet transform and an LSTM to extract the frequency-
domain and time-domain features, respectively. Then, the extracted features are for-
warded to the fully connected layer (FC in Fig. 5), and the detection result is the 
predicted probability of structural break. We detail the continuous wavelet CNN and 
the combined model in Sects. 4.2 and 4.3, respectively.

4.2  Continuous wavelet CNN

In signal processing, Fourier transform [69, 78] is useful to derive frequency-domain 
representations of regular time series, such as electromagnetic signals [2, 79] and 
factory machine signals [7, 31]. However, the time series of stock prices could vary 
dramatically over time, which is not suitable to use Fourier transform. In contrast, 
continuous wavelet transform (CWT) [68, 81], which derives frequency-domain rep-
resentations of a signal by continuously changing scaling and shifting some wave-
lets, is proved to be effective in handling such time-varying signals.

Specifically, CWT changes the scale and the location of a mother wavelet �a,b(t) 
to represent the target signal, where a ∈ R+ and b ∈ R denote scale and shift, respec-
tively. Accordingly, CWT is defined as follows:

where x is the target signal. CWT can be regarded as the similarity between the 
target signal x(t) and mother wavelet �a,b(t) . In this paper, we adopt Ricker wavelet 

(4)CWTx(a, b) =
1
√
a ∫ x(t)�

�
t − b

a

�
dt,

Fig. 5  Architecture of SWANet
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as the mother wavelet since the performance is better. After conducting CWT, the 
results of the wavelet coefficients can be assemble into a scalogram (detailed later).

Note that the scalogram contains rich frequency-domain information. As a result, 
our idea is to exploit the CNN model to extract frequency-domain features from the 
scalogram of spreads to detect structural breaks. Given a cointegrated pair Pairi,j as 
an input, we first derive its spread Spreadi,j in the trading period as follows:

where each Spreadt
i,j

 follows the definition in Eq. (1), and hence, Spreadi,j is the 
sequence consisting of the spread of Pairi,j of each timestamp in the trading period. 
The target signal of CWT is further set as Spreadi,j , i.e., CWTSpreadi,j (a, b) , to obtain 
the scalogram of Pairi,j , termed as SGi,j . Figure 6 illustrates an example of a scalo-
gram SGi,j , where the X- and Y-axes denote the timestamp and the wavelet frequency 
of spread, respectively. A pixel at coordinate (x,  y) is yellow represents that fre-
quency y is strong at timestamp x, and blue otherwise. Through this process, we 
expect that some special oscillations (e.g., abrupt chasms and gradual changes) 
could be extracted from the scalogram.

CNN has been proved to be effective in extracting significant features from 
images [59, 67, 84], time series [19, 44, 60], etc. However, many applications in 
time series analysis apply a one-dimensional CNN on the univariate time series. We 
argue that such method does not make the best use of the information in data and the 
robustness to deal with multi-dimensional data in CNN. We propose to use a two-
dimensional CNN instead, because we expect that the nonlinear convolution can nat-
urally capture the interplay of features across the two dimensions in the scalogram.

Given a spread scalogram SGi,j , we first generate a feature set XCNN
i,j

 with a prede-
fined window size d in order to apply to the online detection system. It is defined as 
follows:

where SGi,j(t − d ∶ t − 1, ∶) is the partial scalogram that the x-axis is collected from 
timestamp t − d to t − 1 , and is the raw frequency-domain feature of Pairi,j at time t. 
Note that XCNN

i,j
 only collects data for detecting breakpoints in trading periods. The 

two-dimensional convolution layers are then defined as follows:

(5)Spreadi,j = ⟨Spreadt
start

i,j
, Spreadt

start+1
i,j

,… , SpreadT
i,j
, ⟩

(6)XCNN
i,j

= {�CNN
i,j,t

|�CNN
i,j,t

= SGi,j(t − d ∶ t − 1, ∶), t = tstart, tstart + 1,… , T},

(7)�
(1) = 𝜙(�(1)

conv
⊗ �

CNN
i,j,t

+ �
(1)
conv

)

Fig. 6  An example of scalogram
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where l is the numbering of a layer. ⊗ is the convolution operation with a learnable 
kernel �(l)

conv . �
(l)
conv is the learnable bias to stabilize the learning process and � is an 

activation function, which is set to ReLU in this paper. The input of the continuous 
wavelet CNN is the partial scalogram �CNN

i,j,t
 , as shown in Eq. (7). Compared to using 

one-dimensional layer for time series [73, 75], the input and the output of Eq. (8) are 
two-dimensional matrices (i.e., �(l−1) and �(l) ), which are able to extract more com-
plicated signals from the two-dimensional scalograms. As shown in Fig. 5, the con-
volutional layers are stacked and every convolution layer is followed by a max pool-
ing layer to avoid over-fitting and to reduce computational effort.

4.3  Integrating continuous wavelet CNN and LSTM

After introducing the continuous wavelet CNN for extracting frequency-domain fea-
tures, we further describe how SWANet exploits an LSTM model to extract time-
domain features and then how they are integrated for structural break detection.

LSTM is one of the most widely used recurrent structures in sequence modeling, 
and has been widely deployed in natural language processing [76, 80], video cap-
tioning [26, 33], time series analysis [15, 47, 74], etc. The success of LSTM may 
credit to its great capability of memorizing long-term memories while identifying 
which memory should be forgotten. To detect structural breaks for pairs trading, we 
utilize LSTM to recognize the fluctuation patterns in the spreads of cointegration 
pairs. Unlike traditional methods that analyze univariant time series, we input not 
only the spread (Spreadi,j ) but also the price values of two stocks ( Stocki and Stockj ) 
to LSTM, as illustrated in Fig. 5. Therefore, when the paired stocks move together, 
the spread may remain stationary while the fluctuations of the stock prices can be 
sensed. Specifically, for each timestamp t, the input is �LSTM

i,j,t
= [Spreadt

i,j
, p̂i,t, p̂j,t]

⊤ , 
where p̂t stands for the normalized stock price, and XLSTM is the set collecting all 
�
LSTM
i,j,t

 . Please note that since the range of price varies from one stock to another and 
the structural break is related to the changes of price, the normalized price is more 
suitable for structural break detection than raw stock price. Furthermore, the compo-
nents of LSTM are defined as follows:

(8)�
(l) = 𝜙(�(l)

conv
⊗�

(l−1) + �
(l)
conv

),

(9)�i,j,t = �(�input�
LSTM
i,j,t

+ �input�i,j,t−1 + �input)

(10)�i,j,t = �(�forget�
LSTM
i,j,t

+ �forget�i,j,t−1 + �forget)

(11)�i,j,t = �(�output�
LSTM
i,j,t

+ �output�i,j,t−1 + �output)

(12)𝐜i,j,t = 𝐢i,j,t◦�̃�i,j,t + 𝐟i,j,t◦𝐜i,j,t−1
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where �∗ and �∗ are learnable weight matrices, and �∗ are learnable bias vectors. 
Equations (9), (10), and (11) formulate the input gate, forget gate, and output gate, 
respectively. �i,j,t is the data stored in the cell, and �̃i,j,t is the candidate of the cell. � 
denotes the sigmoid activation function and ◦ denotes the Hadamard product (i.e., 
element-wise product). The new value in cell at time t is aggregated from the current 
candidate �̃i,j,t and the value already stored in the cell �i,j,t filtered by the input gate 
and the forget gate, respectively. �i,j,t is both the hidden state at time t and also the 
output of LSTM. During training, for each Pairi,j , we input the corresponding 
�
LSTM
i,j,t

∈ XLSTM sequentially based on the order of time.
By conducting the continuous wavelet CNN and the LSTM, SWANet extracts 

frequency-domain and time-domain features of cointegrated pairs. To integrate and 
learn the interaction of those extracted features, the solution is to stack several fully 
connected layers, where the input is the concatenation of the two features. Note that 
the concatenation is adopted, rather than sum, since it is possible to learn nonlinear 
interactions between each element via those layers. The fully collected layers �(∗)

full
 are 

defined as follows:

where �(∗)

full
 and �(∗)

full
 are the learnable weight matrices and bias vectors in fully 

connected layers. For a input Pairi,j at time t, �i,j,t denotes the vector of frequency-
domain features, which is the flatten output of the continuous wavelet CNN (i.e., 
�(L) ). Note that the frequency-domain features �i,j,t and time-domain features �i,j,t 
are the input of the stacked layers, where ⊕ denotes the concatenation. The output 
�
(L�)

full
 of the last layer L′ is a scalar, which is the occurrence probability of a structural 

break Pr(i,  j,  t). The model is trained end to end by minimizing the cross-entropy 
formulated in Eq. (3). In addition, we adopt dropout to relieve over-fitting.

5  Pairs trading strategy optimization

5.1  Problem definition

In pairs trading, the perfect arbitrage opportunities occur between: (1) a diverg-
ing spread starts to revert to its historical mean (i.e., a perfect timing to open posi-
tion) and (2) the spread meets the historical mean (i.e., a perfect timing to close 
position). It is crucial to decide the open and close positions to make profit for 
pairs trading strategies. Let Spreadi,j denote the spread of a cointegrated pair 
of stocks i and j, and Stocki and Stockj be their respective stock price sequences. 

(13)�̃i,j,t = tanh(�cell�
LSTM
i,j,t

+ �cell�i,j,t−1 + �cell)

(14)�i,j,t = �t◦ tanh(�i,j,t),

(15)�
(1)

full
= 𝜎(�

(1)

full
(�i,j,t ⊕ �i,j,t) + �

(1)

full
)

(16)�
(l)

full
= �(�

(l)

full
�
(l−1)

full
+ �

(l)

full
),
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qi,j,t ∈ {OPENED,CLOSED} denotes the trading status of the pair at time t. 
qi,j,t = OPENED if the position has been opened earlier and is waiting for a close; 
qi,j,t = CLOSED if the position has not been opened yet and is waiting for an open. 
Note that the status is set to CLOSED by default when the trading period starts every 
day. Following [50], the transaction cost (e.g., transaction tax or fee) is formulated 
as follow:

where pi,t and vi,t ∈ Z , for stock i at time t, stand for the stock price and the volume 
of the trade in terms of shares, respectively. C ∈ [0, 1] is the transaction cost rate 
specified by each stock market.2 Note that vi,t is positive for longing and negative for 
shorting, respectively. As a result, the transaction cost TC is the sum of stock prices 
weighted by the absolute trading volumes, and discounted by the cost rate. Note that, 
as mentioned in Sect.  3.1, vi,t

vj,t
 should be equal to hi

hj
 to maintain the cointegrated 

relationship.
Indeed, for pairs trading strategy optimization, the goal of this paper is to maxi-

mize the profit by deciding: (1) when to open, (2) when to close, and (3) the trading 
volume for all cointegrated pairs during the trading period. Accordingly, the trans-
action cost-aware objective function is defined as follows:

where V = {(vi,t, vj,t, t)| ∀Pairi,j and t ∈ {tstart,… , T}} is the set of trading volume 
and timestamps in trading periods. Profit(vi,t, vj,t, t) , denoting the profit earned at 
time t, is defined as follows:

where topen
i,j

 is the timestamp when this pair is opened. That is, the profit gained from 
a pair of open and close positions is the sum of the stock price differences weighted 
by the trading volume, and then minus the transaction cost. Note that the profit can 
only be made when the cointegrated pair has been opened earlier and is ready to be 
closed.

In order to decide the open and close positions, finance experts proposed to 
set the trading boundaries and stop-loss boundaries with statistical methods [17, 
32, 43]. Following their ideas, we model the pairs trading strategy as a Markov 
decision process (MDP) [9] and propose a deep reinforcement learning model 

(17)TC(vi,t, vj,t, t) = C × (||vi,t
|
| × pi,t +

|
|
|
vj,t

|
|
|
× pj,t),

(18)argmax
V

∑

∀Pairi,j∈DB

T∑

t=tstart

Profit(vi,t, vj,t, t),

(19)

Profit(vi,t, vj,t, t)

=

{
((vi,t ⋅ (pi,t − pi,topen

i,j
) + vj,t ⋅ (pj,t − pj,topen

i,j
)) − TC(vi,t, vj,t, t), if qi,j,t = OPENED

0, if qi,j,t = CLOSED
,

2 For instance, C = 0.15% for day trading securities transaction tax in Taiwan and C = 0.00221% for Sec-
tion 31 Transaction Fees in America stock markets, respectively.
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SADQN to optimize the strategy by deciding the optimal boundaries. Contrary to 
those statistical methods considering stock prices and spreads only, SADQN cov-
ers more important aspects, including risk controls (detailed later).

5.2  Structural break‑aware deep Q‑network

Indeed, it is crucial to foresee the status of stocks since the market is dynamic. 
Model-free-based reinforcement learning models have shown significant usage 
in financial domains for stock price prediction [24, 63] as they can update their 
policy by sensing the market environment and evaluate their actions for future 
decisions. However, few attention on pairs trading strategy optimization has been 
drawn. In this paper, we propose SADQN, which adopts a deep Q-network (DQN) 
to build a Q-function based on historical events and estimates the Q-values 
with given states and actions. In the inference stage, the action with the highest 
Q-value is selected to maximize the potential profit. SADQN incorporates (1) risk 
factors in the states to avoid major risks in intraday pairs trading (e.g., structural 
breaks) and (2) transaction cost-aware rewards to maximize the total net profit. 
In this section, we model the pairs trading process as a Markov decision process 
(MDP) formulated as (S, A, T, R), which, respectively, denotes the tuple of a state 
set, an action set, transition probability, and a reward function, as follows.

• State st ∈ S : S is the set collecting all possible states in the environment. The 
state st generated from a cointegrated pair of stocks i and j at time t can be for-
mulated as: 

 The elements of st are defined as follows:
• The occurrence probability of structural break Pr (i ,  j ,  t): Without tak-

ing structural breaks into considerations, the loss could be great when that 
happens [48]. However, the previous literature does not factor in these impor-
tant risk. As a result, Pr(i, j, t) estimated by SWANet is included. We expect 
that SADQN will adjust the stop-loss boundary to close positions immediately 
if Pr(i, j, t) increases.

• Market-closing risk ( rt ): In intraday trading, the cointegrated pairs are forced 
to be closed at the end of the trading period if they have not been closed yet. 
However, this type of close, namely exit, usually results in less profit or even 
negative profit because the ideal close positions (i.e., historical mean) are not 
met. Without considering the approaching deadline of trading, more than 16% 
of trades executed by PTDQN [50] end up as exits and nearly 90% of those 
exits loses money. To avoid such loss, we define the market-closing risk as 
the ratio of the remaining time to the end of trading period rt =

T−t

T−tstart
 , where 

t ∈ {tstart,… , T} . Therefore, rt decreases when the deadline approaches, and 
keeps SADQN noticing the deadline.

(20)st = (Spread
(t−n+1)∶t

i,j
, at−1,Post−1

i,j
,Pr(i, j, t), rt)
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• Spread Spread(t−n+1)∶t
i,j

 : Spreadt
i,j

 denotes the spread of stock i and j at time t and 
Spread(t−n+1)∶t

i,j
 is the sequence of spread from time t − n + 1 to t. That is, 

 Only the latest n timestamps are tracked in order to capture the up-to-date 
trends. Note that state st is independent to the identity of stocks but only consid-
ers the values of spread sequences. It is because two different cointegrated pairs 
with identical spread sequences are believed to have similar trends.

• Previous action at−1 : Since each trade generates corresponding transaction cost, 
frequently open and close the trades may result in great accumulated transaction 
cost. To prevent from such condition, the action in the previous time t, termed as 
at−1 , is included in the state by following a similar idea in [24]. The definition of 
action will be detailed later.

• Previous position Post−1
i,j

 : Similar to the previous action above, changing posi-
tions (where a trade is opened) frequently may lead to heavy transaction cost 
[24]. As a result, we also factor in the previous position Post−1

i,j
∈ {−1, 0, 1} of 

the paired stock i and j in the state. To be more specific, at time t − 1 , Post−1
i,j

= 1 
indicates that the position is opened by meeting the upper trading boundary; 
Post−1

i,j
= −1 indicates that it is opened by meeting the lower trading boundary; 

otherwise, the position is not opened.

• Action a ∈ A : In practice, pairs trading strategies manipulate the trading bounda-
ries and stop-loss boundaries as their policies. As a result, an action consists of 
those boundaries, whose unit is the standard deviation with regard to each spread. 
For example, Table  1 illustrates an action set A = {a0, a1,… , a6} . The upper 
and the lower trading boundaries of a0 are +0.5 and -0.5 standard deviations, 
respectively. Note that the action set is predefined and stored in a one-hot encod-
ing representation in order to fit the input format of neural networks. In the case 
of Table 1, a0 and a5 are encoded as [1, 0, 0, 0, 0, 0, 0] and [0, 0, 0, 0, 0, 1, 0], 
respectively. Note that, in each action, there is a pair of symmetric trading 
boundaries. The gap between the two trading boundaries is regarded as the safe 
place for arbitrage. Similarly, there are two symmetric stop-loss boundaries with 
a wider gap. In contrast, if the spread goes beyond either stop-loss boundary, 
the spread may diverge and leads to great loss in pairs trading (details later). 
While the space between the boundaries is narrow, the position is opened and 
closed frequently, leading to lower risk as well as lower profit. In contrast, the 
trades are seldom triggered with wider spaces and hence have greater potential of 

(21)Spread
(t−n+1)∶t

i,j
= ⟨Spread

(t−n+1)

i,j
, Spread

(t−n+2)

i,j
, … , Spreadt

i,j
⟩.

Table 1  An example of action 
set A 

a0 a1 a2 a3 a4 a5 a6

Trading boundary ± 0.5 ± 1.0 ± 1.5 ± 2.0 ± 2.5 ± 3.0 ±∞

Stop-loss boundary ± 2.5 ± 3.0 ± 3.5 ± 4.0 ± 4.5 ± 5.0 ±∞
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profitability. However, the risk of great loss increases as well. To prevent open/
close unprofitable position, such as the states with high occurrence probability of 
structural break or high market-closing risks, we propose a hold action by setting 
both trading boundary and stop-loss boundary as ±∞ to prevent trading from 
loss, as a6 in Table 1. There are two major advantages of incorporating the hold 
action: (1) when a trade has great potential to revert to historical mean quickly, it 
is not necessary to close the trade even the stop-loss boundary is met. By using 
the hold action, it is possible for SADQN to suspend the close and hence ben-
efit from those more profitable arbitrage opportunities. (2) When spreads diverge 
too far from their historical means, even the widest boundary setting may not 
stop from opening those risky positions. However, by using the hold action, 
SADQN is able to forbid those opens to avoid such risks. While none of the pre-
vious methods [24, 30, 50] considers the hold action, we make the first attempt to 
adopt it in SADQN for the aforementioned advantages.

• Transition Probability, T = Pr(st+1|st, a) : The transition probability 
T = Pr(st+1|st, a) estimates the probability of state st+1 at time t + 1 condition to 
the given state st and the action a. Unlike model-based reinforcement learning 
that all the transition probabilities are given, SADQN learns them through data.

• Reward Function, R(st, at, st+1) : In order to maximize the transaction cost-aware 
objective function formulated in Eq. (3), SADQN adopts a widely used concept, 
net return [50], in the reward function. The net return of a cointegrated pair of 
stocks i and j at time t is defined as follows: 

 where topen is the timestamp of the latest open position to t. It is worth noting 
that the difference of stock prices (e.g., pi,t − pi,topen ) is normalized to the corre-
sponding stock price at the open position (e.g., pi,topen ). The reason is twofold: (1) 
If it is not normalized, those pairs with greater differences would be more pre-
ferred after learning. However, they could also bring greater risks. (2) It is more 
fair to put equal attention on those pairs with smaller differences but great nor-
malized differences since they are profitable as well. It is possible that SADQN 
can earn great profit by elaborating the trading volume (i.e., vi,t and vj,t ). Overall, 
the net return is the normalized profit generated by a transition from the current 
state st to the next state st+1 via action a and the transaction cost has been already 
deducted. However, the original definition of net profit [50] in Eq. (22) are not 
aware of risks. In this regard, we categorize three different close conditions: nor-
mal close, stop-loss close, and exit. We detail them and define the risk-aware 
reward R(st, at, st+1) for each condition as follows:

• Normal close: Normally, a positive profit is returned when the spread is closed at 
its historical mean in trading periods. Besides, to avoid risky situations, it is more 

(22)NRt
i,j
=

(

vi,t ×
pi,t − pi,topen

pi,topen
+ vj,t ×

pj,t − pj,topen

pj,topen

)

− C × (||vi,t
|
| +

|
|
|
vj,t

|
|
|
),
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encouraged to close positions at where the risks of structural breaks and market 
close are low. Accordingly, we formulate the reward of normal close as below: 

 where the complement of occurrence probability of structural break 1 − Pr(i, j, t) 
and market-closing risk rt discount the net return NRt

i,j
 . As a result, the reward of 

normal close is great if the net profit is great and both the risks are low. 1000 is 
a constant, following [50], denoting the profitability of normal close. Generally, 
this type of reward is positive.

• Stop-loss close: When the spread diverges beyond expectation, it is necessary to 
close positions immediately to avoid further loss. In this case, the reward is set to 
negative since it usually causes great loss. The reward stop-loss close is defined as 
follows: 

 where the absolute net return measures the amplitude of loss. 1000 is a con-
stant similar to normal close. Under this formulation, when the estimated risks 
increase, the negative reward is amplified to alert the pairs trading strategy to 
stay away from such dangerous situations.

• Exit: The trades are forced to be closed (namely exit) when the trading period ends 
every day. However, it is hard to guarantee the profit is positive when exit happens. 
Due to the dynamic trends, the return could be either positive or negative. There-
fore, the reward of exit is defined as below: 

 By following [50], the constant term (i.e., ±500 ) is set to half of that in the other 
close conditions because exit usually causes less profit, no matter it is positive or 
negative.

Although structural breaks are risky and are likely to cause tight boundaries, the posi-
tion of spread could be still far away from the stop-loss boundaries and hence terminate 
with normal close or exit later. Besides, SAPT comprehensively considers multiple risk 
features, including the structural break probabilities, market-closing risk, etc. There-
fore, there could be a chance that SAPT still considers the trading environment is safe 
with structural breaks when other indicators report safe, and SAPT decides to fix the 
boundaries accordingly.

Equipped with the above definitions of MDP, given the current state st at time t, 
SADQN aims at selecting the best action at of maximum Q-value Q∗(st, at) , which is 
defined as the sum of expected reward as follows:

(23)R(st, at, st+1) = 1000 × NRt
i,j
× rt × (1 − Pr(i, j, t)),

(24)R(st, at, st+1) = −1000 ×
|
|
|
NRt

i,j

|
|
|
× (1 − rt) × Pr(i, j, t),

(25)R(st, at, st+1) =

{
500 × NRt

i,j
× rt × (1 − Pr(i, j, t)), if NRt > 0

−500 ×
|
|
|
NRt

i,j

|
|
|
× (1 − rt) × Pr(i, j, t), otherwise .

(26)Q∗(st, at) = Est+1[R(s
t, at, st+1) + � max

at+1
Q(st+1, at+1)|st, at],



3862 J.-Y. Lu et al.

1 3

where � ∈ [0, 1] is a factor discounting the maximum possible Q-values in the 
future. To approximate the Q-value, SADQN stacks several fully connected layers 
to learn and extract sophisticated information, as illustrated in the yellow rectangle 
in Fig. 4. For simplicity, the neurons in the fully connected layers are gathered to 
be the learnable parameter set � . Accordingly, the loss function to approximate the 
Q-value is defined as follows:

That is, we aim to approximate the original Q-value Q(st, at;�) to the target Q-value 
Q∗(st, at) by learning the parameters � . In each iteration of the training phase, the 
original Q-value Q(st, at) of each corresponding action at and st is first derived from 
the fully connected layers and then is used to, respectively, update � and Q-value 
Q∗(st, at) as follows:

where � is the learning rate. The learning parameters in � are learned by the gradient 
descent. The time complexity of Eq. 28 is O(|A| + |st|) , where |A| and |st| denote the 
number of actions and the dimension of a state. The new Q-value is updated by the 
sum of the current Q-value Q(st, at) and the difference between the current Q-value 
Q(st, at) and the expected maximum Q-value R(st, at, st+1) + � maxat+1 Q(s

t+1, at+1) . 
The time complexity of updating Q-value is O(|A|), which is much smaller than con-
ventional Q-learning ( O(|S| × |A|) ) asymptotically. The training process stops until 
the loss is converged or a predefined maximum iteration is met. Finally, in the infer-
ence stage, given a state st , the action at ∈ A with the maximum derived Q-value is 
the output of SADQN.

6  Experiments

In this section, we describe the large-scale dataset used in Sect.  6.1. The experi-
mental setup and results of structural break detection are, respectively, presented 
in Sects.  6.2 and 6.3; the experimental setup and results of learning pairs trading 
strategy are detailed in Sects. 6.4 and 6.5. Finally, real case studies in special envi-
ronment of stock markets, including the impact of coronavirus (COVID-19) and 
the volatile market, are provided as well. For further experiments, we conduct the 
experiments on a workstation equipped with two Intel E5-2683 V3 CPUs, a Titan X 
Pascal graphics card and 189 GB main memory, and the entire proposed framework 
is implemented by Python with Keras and Keras-RL.3

(27)L(�) = (R(st, at, st+1) + � max
at+1

Q(st+1, at+1) − Q(st, at;�))
2
.

(28)� ← � − �∇�L(�)

(29)Q(st, at) ← Q(st, at) + �[R(st, at, st+1) + � max
at+1

Q(st+1, at+1) − Q(st, at)],

3 Keras-RL, https:// github. com/ keras- rl/ keras- rl.

https://github.com/keras-rl/keras-rl.
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6.1  Data preparation

We collect the stock tick data from the top 150 companies in the Taiwan Stock 
Exchange Capitalization Weighted Stock Index (TAIEX)4 to ensure the liquidity. 
The data are collected from November 1st, 2017 to May 31st, 2020. Following [61], 
to approximate the real market environment, stock prices are aggregated to volume-
weighted average prices in minute scale. Figure 7 illustrates the index of the TAIEX 
dataset. It is worth noting that TAIEX includes important trends, such as bear, bull, 
and oscillating markets, during this period.

Taiwan stock market opens from 09:00 to 13:30, where the last 5 min before close 
will not have any trade due to the call auction mechanism. As illustrated in Fig. 8, 
in the first 150 min, we apply the VECM [28] to extract the cointegrated pairs every 
day. There are 19,872 cointegrated pairs extracted in total. The following 115 min 
are the interval for trading.

Fig. 7  Index of TAIEX from 2018/1 to 2020/5

0 150 265 270

Forma�on Period Trading Period

minuteminuteminuteminute

Call Auc�on

Fig. 8  Illustration of formation and trading period in the Taiwan stock market

4 Taiwan Stock Exchange Corporation (TWSE), https:// www. twse. com. tw/ en/.

https://www.twse.com.tw/en/
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6.2  Experiment setup for structural break detection

Since labeling ground truth of breakpoints requires experienced experts and is 
time-consuming, we follow [41] to obtain breakpoints with [54] developed by 
Yahoo. 75% and 25% of the data are, respectively, used for training and testing, 
and the last 20% of the training data are for validation. All the time series, includ-
ing stock prices and spreads, are normalized to eliminate offsets by following 
[11].

6.2.1  Evaluation metrics

To evaluate the performance, we define that a true breakpoint at time bp is 
detected whether the breakpoint alerted by an algorithm is in the time interval 
[bp − �1, bp + �2] , where �1 and �2 are given tolerances ranging from 0 to 70 min. 
In general, setting a great �1 is more conservative (sensing structural breaks early) 
and setting a great �2 is more aggressive (allowing late responses to structural 
breaks). Therefore, the setting of �1 and �2 can depend on the personality or the 
strategy of the agents. In our case, since SAPT has already considered the risk 
factors in its state function (potentially making SAPT conservative), we set �1 to 0 
in order to maximize the profitability. The evaluation metrics are listed as follow:

• True Detection Rate: the ratio of the number of detected breakpoints to the 
number of all breakpoints.

• Partial Detection Rate [51]: the ratio of the number of breakpoints that are 
alerted earlier than bp to the number of all breakpoints.

• Missed Rate: the ratio of the number of non-detected breakpoints to the num-
ber of all breakpoints.

• False Detection Rate [51]: the ratio of the number of spreads without break-
points but alerted by an algorithm to the number of spreads without breakpoints.

• Average Delay: the average time difference between the timestamp of the 
detected breakpoint and the timestamp of the actual breakpoint (ground truth).

6.2.2  Comparison methods

We compare SWANet with statistical methods, change-point detection methods, 
and a variant of SWANet:

• 3-std [17, 32, 43]: In pairs trading, finance experts often alert structural 
breaks if the spread exceeds a predefined threshold. Following [32, 43], we 
derive the standard deviation of each spread in the formation period every day 
and the threshold is set to three standard deviation of each spread.

• ADF [25]: Augmented Dickey–Fuller test is a widely used statistical method 
to test whether a time series is stationary or not. Following the original litera-
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ture, ADF obtains its stationary parameters in formation period every day and 
returns a breakpoint whenever the spread becomes non-stationary in trading 
period.

• BCD [1]: Bayesian online change-point detection is a popular method to 
detect abrupt changes in time series data online. A breakpoint is reported by 
BCD if it is identified as a change point.

• LSTM [40]: Long short-term memory is the state-of-the-art recurrent neural 
network (RNN) method for time series analysis. The inputs of LSTM are the 
stock prices and the spreads of cointegrated pairs, which are identical to the 
descriptions in Sect. refsec:hybrid.

• SWANet: The method proposed in this paper. The continuous wavelet CNN 
and LSTM are combined in parallel, and a fully connected layer is responsible 
for integrating their information to derive the occurrence probability of struc-
tural breaks. The architecture is shown in Fig.  5. If the derived occurrence 
probability is greater than 90%, than a breakpoint is returned (detailed later). 
Comparing with LSTM, we show the power of integrating continuous wavelet 
CNN and LSTM.

• SWANet-S: SWANet-S is a variant of SWANet. The main differences are that 
SWANet-S connects the continuous wavelet CNN and the LSTM in series and 
the final result is directly determined by the LSTM. The architecture is shown 
in Fig. 9. Similarly, if the occurrence probability is greater than 90%, a break-
point is returned. Comparing with SWANet-S allows us to study which way to 
combine is better.

Note that the statistical methods, 3-std and ADF, detect structural breaks offline, 
which is not ideal for real cases. The other methods are tested online.

Fig. 9  SWANet-S architecture
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6.3  Experimental results of structural break detection

Table  2 compares multiple evaluation metrics of each method. SWANet and 
SWANet-S outperform the other baselines in all the metrics, manifesting that 
learning from both frequency- and time-domain features are important for struc-
tural break detection. The improvement in partial detection rate and false detec-
tion rate, which are 61.3% and 61.9%, respectively, are especially significant 
compared to traditional methods. The results explain that SWANet seldom makes 
false detection in cointegrated pairs, thereby keeping more arbitrage opportuni-
ties for pairs trading strategies.

SWANet improves LSTM by at least 5.3% in all metrics because SWANet 
extracts sophisticated frequency-domain features from scalograms with two-
dimensional convolution layers additionally. To have a closer look, Fig. 10 shows 
the distribution of delay of all methods. The timestamps of detected breakpoints 
by SWANet and SWANet-S are closer to the real breakpoints compared to LSTM. 
Figure 11 depicts the distribution of output occurrence probability of structural 
breaks of SWANet. The output is clearly separated into two clusters, where the 
one with higher probability ( ≥  90%) represents those are suspect breakpoints 
returned by SWANet. As a result, we recommend to set the threshold to be 90% in 
TAIEX dataset.

For sensitivity tests, Fig. 12 shows the true detection rates over different delay 
tolerance �2 in testing data. Neural network-based methods are significantly better 
than the others because they are capable of extracting effective features from time 
series data. When the delay tolerance is small (i.e., 10  min), SWANet signifi-
cantly outperforms those statistical methods by at least 182%, showing stronger 
potential in use of real stock markets. Moreover, SWANet improves SWANet-S by 
at least 2.6%, which manifests that the fully connected layers integrates the paral-
lel combination of continuous wavelet CNN and LSTM successfully, rather than 
concatenating them in series. As mentioned in Sect.  2, ADF and BCD perform 

Table 2  Performance of each method ( � = 20 min)

The best method in each case/experiment is marked as bold. It is a convention of the machine learning 
field

Miss rate (%) True detection 
rate (%)

Partial detection 
rate (%)

False detection 
rate (%)

Average 
delay 
(min)

3-std 30.5 24.4 19.6 44.9 22.310
ADF 27.4 15.6 39.3 54.8 24.729
BCD 52.8 11.4 24.5 34.6 22.342
LSTM 22.4 44.7 3.6 5.7 18.284
SWANet-S 18.4 46.0 8.4 13.2 17.319
SWANet 21.0 47.3 3.2 5.1 17.315



3867

1 3

Structural break‑aware pairs trading strategy using deep…

(a) 3-std (b) ADF

(c) BCD (d) LSTM

(e) SWANet-S (f) SWANet

Fig. 10  Delay distribution
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Fig. 11  Occurrence probability 
of structural break

Fig. 12  True detection rate of each method

Fig. 13  Case 1
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worse than the 3-std because of the high sensitivity of detection in high fluctua-
tion and variety in the financial market.

6.3.1  Case study

We pick two cases which have obvious structural breaks to explain the perfor-
mance of each method. As shown in Fig. 13, the first case is the pair of stock id 
2308 and 2439 on May 22nd, 2019, in which the breakpoint roughly locates at 
the time interval from the 80th minute to the 90th minute. BCD and ADF are too 
sensitive such that they detect the breakpoint early. In contrast, LSTM is too late 
(roughly 20 min) to detect the structural break. SWANet, SWANet-S, and 3-std 
perform well in this case. Figure 14 shows the second case, which is the pair of 

Fig. 14  Case 2

Tes�ng Period

Tes�ng Period

Tes�ng Period

Training Period Tes�ng Period

January February March April May June

Sliding Window  #1

Sliding Window  #2

Sliding Window  #3

Sliding Window  #4

Training Period

Training Period

Training Period

Fig. 15  An example of training and testing with sliding window
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stock id 2492 and 2912 on May 24th, 2019. The breakpoint also roughly locates 
at the time interval from the 70th minute to the 90th minute. SWANet is the only 
method to find the right position of the breakpoint in this case.

6.4  Experiment setup for pairs trading strategy optimization

6.4.1  Simulation

To mitigate the influence of slippage in TAIEX, we set the maximum trading 
shares of each stock to 5000 and initial capital to 10 million New Taiwan dol-
lars (TWD) [53]. Following [22], we construct the training and testing data with 
sliding windows as shown in Fig.  15. To be more specific, the transactions in 
two months are used for training and those in the following one month are used 
for testing. The last two weeks in training data are used for validation. Conse-
quently, all the models learn from recent market trends. The default transaction 
cost, following Taiwan’s law, is the transaction tax, which is 0.15% of the stock 
price. Among most of the major stock markets in the world, the transaction cost 
in Taiwan stock market is the highest. All the models play the roles of dealers and 
follow the day trading strategy in the simulation.

6.4.2  Evaluation metrics

We evaluate the performance of each pairs trading strategy from two crucial and 
widely used aspects: profit and risk. The details are listed as follows:

• Indicators of Profit:
• Cumulative net profit: The cumulative profit of the investment after subtract-

ing transaction cost.
• Indicators of Risk [70]:
• Maximum drawdown (MDD): The drawdown is the measurement of down-

side risk from a peak in the account balance AccBalance, where AccBalance 
is the sum of cumulative net profit and initial capital. Maximum drawdown is 
defined as: 

 Note that greater MDD represents higher risks.

• Sharpe ratio: With risk consideration, Sharpe ratio is evaluated by average 
return in excess of risk-free rate under volatility of risk. Sharpe ratio is formu-
lated as: 

(30)MDD(T) = max
��(0,T)

[

max
t�(0,�)

AccBalance(t) − AccBalance(�)

AccBalance(t)

]

(31)Sharpe ratio =
Rp − Rf

�p
,
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 where Rp is the average of daily returns. Rf  is the risk-free rate, which is set to 
0 as [50]. �p is the standard deviation of the daily returns which measures the 
volatility.

• Sortino ratio: By using the standard deviation of negative profit instead of 
total profit, Sortino ratio evaluates the excess return under downside devia-
tion. Sortino ratio is formulated as: 

 where Rp and Rf  are the same as Sharpe ratio, and �dp is the downside deviation 
of the daily returns which measures the downside volatility.

6.4.3  Comparison methods

• PTDQN: PTDQN [50] is a deep Q-network which learns pairs trading strate-
gies by optimizing trading and stop-loss boundaries, but it only considers the 
spread as the state and adopts the return as the reward in deep Q-network.

• OPT-LSTM [71]: OPT-LSTM applies an unsupervised OPTICS clustering 
algorithm to select pairs and conducts LSTM to predict spread based on its 
trend. Following the original literature, the trading boundaries are fixed to 
one standard deviation of each spread and no stop-loss boundary is included.

• SAPT: The proposed method which factors in the occurrence probability 
of structure break, the market-closing risk, the transaction cost with a hold 
action.

• SAPT w/o Break: SAPT without considering the structure break probability.
• SAPT w/o Time: SAPT without considering the market-closing risks.
• SAPT w/o Hold: SAPT without the hold action. In other words, unlike 

SAPT, this method does not trade whenever it meets a trading or stop-loss 
boundary.

• SAPT-3-std: SAPT using the structure break probability predicted by 3-std.

(32)SortinoRatio =
Rp − Rf

�dp
,

(a) Cumulative net profit with 0.15% trans-
action cost

(b) Cumulative net profit with 0 transaction
cost

Fig. 16  Feature influence on cumulative net profit from 2018/1 to 2020/5
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• SAPT-ADF: SAPT using the structure break probability predicted by ADF.
• SAPT-BCD: SAPT using the structure break probability predicted by BCD.
• SAPT-LSTM: SAPT using the structure break probability predicted by 

LSTM.

6.5  Experimental results of pairs trading strategy optimization

6.5.1  Performance analysis

Figure 16 presents the cumulative net profit of each method with different transac-
tion cost in the testing dataset. PTDQN and OPTICS-LSTM perform worse because 
they do not optimize a transaction cost-aware objective nor the cost-aware reward 
function, and hence, the profit is consumed by the transaction cost at 0.15%. Moreo-
ver, OPTICS-LSTM fixes its cointegrated pairs after training, which does not reflect 
the bumpy intraday trading market. SAPT outperforms the others by at least 77%, 
manifesting that all of the three modules are crucial in optimizing pairs trading strat-
egies. To be more specific, the influence of the three modules is stronger when the 
transaction cost is higher, evident by that SAPT improves the cumulative net profit 
by 77% with 0.15% transaction cost. On the other hand, compared to the other vari-
ants, SAPT w/o Hold, respectively, increases at least 15% and 25% of the number 
of trades and unprofitable trades, leading to the least profit in high-transaction-cost 
environment (0.15%). The result shows the effectiveness of the hold action to filter 

Fig. 17  Trade volume of SAPT and PTDQN in each month from 2018/1 to 2020/5

Table 3  Trade counts and net 
profit of SAPT and PTDQN in 
2020/5

Normal 
close count

Stop-loss 
close count

Exit close count Profit

SAPT 7656 461 267 743,485
PTDQN 8342 342 358 647,546
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out unprofitable open positions as well as to reduce the amount of trades. However, 
SAPT w/o Hold outperforms SAPT in low-transaction-cost environments (0% trans-
action cost) for the cumulative net profit by 1.7%, as shown in Fig.  16b. This is 
because SAPT w/o Hold improves the number of profitable trades by 39.3% from 
the environment of 0.15% to 0% transaction cost, whereas the number of unprofit-
able trades are increased only 2.9%. Compared to SAPT w/o Hold, SAPT looks for 
steady profit even in the low-transaction-cost environment by incorporating the hold 
action to alleviate risks and hence losing those very profitable but risky arbitrage 
opportunities.

Figure  17 illustrates the total number of transactions for the positions opened 
every month, where the blue and the orange bars are the trading volume of SAPT 
and PTDQN, respectively. Overall, SAPT is more conservative than PTDQN since 
the total amount of open positions of SAPT is fewer (43,772 vs. 68,161). However, 
combined with the results in Fig. 16a that SAPT actually earns more profit, SAPT 
strikes a better balance between risks and profit than PTDQN. On the other hand, 
the difference of total open counts between SAPT and PTDQN during the pandemic 
period of COVID-19 (2020/2 to 2020/5) is far less than that not in the pandemic 
period (10.1% vs. 147%). It shows that SAPT becomes aggressive during the pan-
demic by adjusting the trading boundaries and invoking less hold action such that 
opening profitable trades is easier. The average monthly profit of SAPT during the 
pandemic thus increases 143%. That is, SAPT is adaptive to market environment.

To examine the reward function designed for the normal close, stop-loss close 
and exit, we compare the behavior of SAPT and PTDQN in May 2020, as shown 
in Table  3. Surprisingly, the amount of normal close of SAPT is 8.2% less than 
PTDQN, which is because PTDQN does not take the transaction cost into consid-
eration, and hence, several unprofitable positions are triggered. In contrast, SAPT 
invokes more profitable normal close than PTDQN by 2.3%, which further increases 
8.2% profit of each trade with normal close in average. On the other hand, SAPT has 
34.8% more stop-loss close than PTDQN in terms of amount since SAPT includes 
the market-closing risk and the occurrence of structural break in the reward function 

Table 4  Risk indicators of each 
method

The best method in each case/experiment is marked as bold. It is a 
convention of the machine learning field

Sharpe ratio Sortino ratio MDD

SAPT 4.30 13.18 0.020
SAPT w/o Break 3.45 9.53 0.044
SAPT w/o Time 3.42 9.78 0.043
SAPT w/o Hold 3.07 6.71 0.090
PTDQN 1.01 1.41 0.169
SAPT-3-std 1.07 1.77 0.143
SAPT-ADF − 0.23 − 0.32 0.127
SAPT-BCD − 3.15 − 2.95 0.250
SAPT-LSTM − 1.32 − 1.49 0.297
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to avoid trading at high-risk positions. In addition, by considering the market-clos-
ing risk, SAPT decreases 25.4% of the amount of exit, leading to 38.7% reduction of 
the total loss caused by exit. Overall, the cost- and risk-aware reward function signif-
icantly changes SAPT ’s behavior and effectively improves the total profit by 14.8%.

From the perspective of risk control, the upper part of Table  4 shows the 
Sharpe ratio, Sortino ratio, and MDD of all the pairs trading methods. SAPT 
outperforms the others by at least 24.7% among all the three indicators, mani-
festing that SAPT controls the risks effectively. It is worth noting that SAPT 
has the greatest improvement on Sortino ratio comparing with others (34.7%), 
showing significant profitability while the market is generally suffering from a 
decline (i.e., downside risks). SAPT w/o Hold has the worst MDD, Sharpe ratio, 
and Sortino ratio among its variants, which means removing the hold action 
loses the mechanism to filter out unprofitable trades. However, all of the variants 
of SAPT outperform PTDQN by at least 46% in all risk indicators, manifesting 
that the proposed risk control mechanisms are effective.

In the lower part of Table  4, we study the performance of SAPT by adopt-
ing different structural break prediction methods. The proposed SAPT using 

(a) Index of VIX (b) Price of 0050.TW between 2020/1 and
2020/5

Fig. 18  VIX index and 0050.TW price during COVID-19

(a) TAIEX index between 2020/1 and
2020/5

(b) Profit between 2020/1 and 2020/5

Fig. 19  Pairs trading during COVID-19
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SWANet significantly outperforms the other baselines among all risk indica-
tors. While 3-std and ADF are statistical methods that do not require labeled 
structural breaks, they have shown significant declines of all risk indicators, 
compared to SAPT. Moreover, SAPT-ADF even has negative Sharpe ratio and 
Sortino ratio, since its revenue per trade is negative (-262.04 TWD per trade). 
This result also qualifies our simulated labels and the proposed structural break 
detection method SWANet.

6.5.2  Case study: the market panic caused by coronavirus disease 2019

Due to the outbreak of the coronavirus disease 2019 (COVID-19) which had brought 
up uncertainty and panic to the market and even triggered circuit breaker in the stock 
market all over the world. Chicago Board Options Exchange Volatility Index (VIX 
Index) had risen drastically in March 2020 as shown in Fig. 18a, manifesting that the 
market is full of panic and is expecting high volatility [72]. In our dataset, TAIEX 
had fallen over 3500 points (28.7%) from January to March, and had risen 2500 
points (26.8%) back from late March to May, as shown in Fig. 19a. To justify the 
pairs trading strategy, the commonly used buy-and-hold strategy is adopted for com-
parison. Since TAIEX is not an instrument for trading, the Taiwan 50 ETF (0050.
TW)5 had a similar trend as TAIEX as shown in Fig. 18b, which had been used to 
serve as the buy-and-hold trading target. Figure  19b shows the profit of different 
methods in test data. SAPT has higher profit comparing with PTDQN, while buy-
and-hold method suffers from a great loss. It is because pairs trading has the char-
acteristic to offset the system risks in the market, and hence, it is less likely to suffer 
from a great loss compared to the buy-and-hold method. Moreover, there exist more 
divergences of spread in volatile markets, resulting in more arbitrage opportunities.

(a) TAIEX index on March 17, 2020 (b) Profit on March 17, 2020

Fig. 20  Pairs trading in high-volatility market on March 17, 2020

5 TAIEX includes the stocks with top 50 market value and it is accounted more than 70% of the total 
market value in Taiwan stocks [45].
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6.5.3  Cases study: volatile market

The economic growth slowed down due to the COVID-19 pandemic. The Federal 
Reserve System (FED) announced to reduce interest rate and the pessimism in the 
future market6 even triggered the circuit breaker in US stock market in the next trad-
ing day. As the Taiwan stock market is highly related to the international financial 
environment [45], there is an intensive fluctuation in the Taiwan stock market on 
March 17, 2020. TAIEX dropped 279 points (2.9%) during the trading period, as 
shown in Fig. 20a, which is the trading day with the highest volatility in our dataset. 
Moreover, the VIX index, which indicates how panic the market is, even came to a 
peak as shown in Fig. 18a. Figure 20b compares the daily net profit of SAPT and 
PTDQN on March 17. SAPT outperforms PTDQN by 45%, manifesting that SAPT 
has greater hedging ability in highly volatile market. This is because SAPT takes the 
market factors into consideration including structural break probability, transaction 
cost and time remain ratio. The trade count of SAPT has dropped 45% comparing 
with PTDQN, which shows the effectiveness of selecting better decision and timing 
to trigger trades with better return.

Fig. 21  A case of SAPT (top) and PTDQN (middle) undergoing structural breaks (bottom). Only the 
trading period is displayed

6 Federal Reserve slashes interest rates to zero as part of wide-ranging emergency intervention,https:// 
www. washi ngton post. com/ busin ess/ 2020/ 03/ 15/ feder al- reser ve- slash es- inter est- rates- zero- part- wide- 
rangi ng- emerg ency- inter venti on/.

https://www.washingtonpost.com/business/2020/03/15/federal-reserve-slashes-interest-rates-zero-part-wide-ranging-emergency-intervention/.
https://www.washingtonpost.com/business/2020/03/15/federal-reserve-slashes-interest-rates-zero-part-wide-ranging-emergency-intervention/.
https://www.washingtonpost.com/business/2020/03/15/federal-reserve-slashes-interest-rates-zero-part-wide-ranging-emergency-intervention/.
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6.5.4  Case study: how SWANet affects SADQN

To investigate the effectiveness of combining SWANet and SADQN, Fig. 21 shows 
the trading period of a cointegrated pair of stocks Delta Electronics, Inc. (2308.TW) 
and Quanta Computer Inc. (2382.TW) on July 27, 2018. The top and the middle 
plots show the policies of SAPT and PTDQN, respectively. The orange and the yel-
low lines indicate their strategies, where the solid lines and the dotted lines represent 
the stop-loss and the trading boundaries, respectively. The bottom plot presents the 
occurrence probability of structural break predicted by SWANet. In the beginning of 
the trading period (time 0), SAPT and PTDQN have identical boundaries. They both 
open at time 2 while the spread (black solid lines) meets the trading boundaries. 
Based on the principle of pairs trading strategy, both of them expect the spread will 
converge to mean (i.e., zero in a normalized spread) so they can make profit between 
the gap of the open positions and the mean.

However, the policy of SAPT suddenly changes (i.e., the trading and the stop-loss 
boundaries shift) at time 5 (gray vertical dotted line) and the trade is closed at time 
6 since the spread meets the new stop-loss boundary. This sudden change credits to 
the high occurrence probability of structural break starting at time 4, as shown in 
the bottom plot. SAPT senses the structural break (i.e., fading away from the mean) 
so it tightens its boundaries immediately to avoid unexpected loss. On the other 
hand, PTDQN does not aware of the risk of structural breaks so it does not change 
its boundaries accordingly. In this case, the trade is closed until time 72, when the 
spread meets a wider stop-loss boundary, compared to SAPT. Therefore, the loss of 
PTDQN is roughly 150% of the loss of SAPT.

6.5.5  Case study: market‑closing risk

Figure 22 illustrates the trading actions of PTDQN on July 23, 2019 with the cointe-
grated pair of stocks Delta Electronics, Inc. (2308.TW) and Formosa Petrochemical 
Corp. (6505.TW). PTDQN opens at time 240 (green triangle). However, it does not 
aware that the market is closing at time 265, and hence is forced to exit (red triangle) 

Fig. 22  A case of forced close by exit
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according to Taiwan’s law7. This forced close results in −  6.8% return of invest-
ment. On the other hand, SAPT includes the market-closing risk rt in the state set 
of SADQN, making SAPT aware the risk of exit and trigger the hold action. Unlike 
PTDQN, SAPT avoids the loss.

7  Conclusion and future work

To the best of our knowledge, there is no prior research considering risk controls, 
including structural breaks, and transaction costs in optimizing pairs trading strat-
egy. In this paper, to tackle this urgent need, we propose a two-phase framework 
SAPT. The first-phase SWANet detects structural breaks by extracting not only 
time-domain features from stock price and spread with an LSTM but also fre-
quency-domain features from scalogrames by using a continuous wavelet CNN. The 
second-phase SADQN optimizes the structural break-aware pairs trading strategy 
with a deep Q-network. Via experimental results and real case studies in the large-
scale dataset TAIEX in Taiwan stock market, we show that: (1) SWANet outper-
forms conventional statistical methods by at least 93.9% in terms of true detection 
rate, (2) SADQN, respectively, outperforms the other state-of-the-art methods by at 
least 456% and 934% in terms of profit and Sortino ratio, and (3) SAPT is robust in 
volatile market environment caused by COVID-19 pandemic. For the future work, 
while there are 1730 stocks potentially generating about 1.5 million pairs in Taiwan 
stock market in 2020, monitoring all the pairs in real time requires huge compu-
tation resources. Therefore, federated learning and distributed learning frameworks 
that distribute partial data to multiple resources are potentially promising to address 
the needs. Nevertheless, how to strike a good balance between the scalability and 
the performance (e.g., cumulative profit) learned from partial data should be care-
fully examined.
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