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Abstract
This paper designs and develops a computational intelligence-based framework 
using convolutional neural network (CNN) and genetic algorithm (GA) to detect 
COVID-19 cases. The framework utilizes a multi-access edge computing technol-
ogy such that end-user can access available resources as well the CNN on the cloud. 
Early detection of COVID-19 can improve treatment and mitigate transmission. Dur-
ing peaks of infection, hospitals worldwide have suffered from heavy patient loads, 
bed shortages, inadequate testing kits and short-staffing problems. Due to the time-
consuming nature of the standard RT-PCR test, the lack of expert radiologists, and 
evaluation issues relating to poor quality images, patients with severe conditions are 
sometimes unable to receive timely treatment. It is thus recommended to incorporate 
computational intelligence methodologies, which provides highly accurate detection 
in a matter of minutes, alongside traditional testing as an emergency measure. CNN 
has achieved extraordinary performance in numerous computational intelligence 
tasks. However, finding a systematic, automatic and optimal set of hyperparameters 
for building an efficient CNN for complex tasks remains challenging. Moreover, due 
to advancement of technology, data are collected at sparse location and hence accu-
mulation of data from such a diverse sparse location poses a challenge. In this arti-
cle, we propose a framework of computational intelligence-based algorithm that uti-
lize the recent 5G mobile technology of multi-access edge computing along with a 
new CNN-model for automatic COVID-19 detection using raw chest X-ray images. 
This algorithm suggests that anyone having a 5G device (e.g., 5G mobile phone) 
should be able to use the CNN-based automatic COVID-19 detection tool. As part 
of the proposed automated model, the model introduces a novel CNN structure with 
the genetic algorithm (GA) for hyperparameter tuning. One such combination of 
GA and CNN is new in the application of COVID-19 detection/classification. The 
experimental results show that the developed framework could classify COVID-19 
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X-ray images with 98.48% accuracy which is higher than any of the performances 
achieved by other studies.

Keywords Classification · CNN · COVID-19 · Genetic Algorithm · Multi-access 
edge

1 Introduction

An automatic detection of Coronavirus disease 2019 (COVID-19) can be devel-
oped through using the modern computational intelligence techniques and resources 
available on the high-performance computing facilities, e.g., cloud. The advent of 
convolutional neural network (CNN), a variant computational intelligence (CI) tech-
nique, has made the task of feature extraction from images and image analysis effi-
cient. Moreover, the availability of high-performance computing (HPC) facilities, 
e.g., distributed edges on cloud, can help us to access COVID-19 data scattered at 
distant locations Coronavirus disease 2019 (COVID-19) is a highly contagious viral 
disease. It is caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). The first case of COVID-19 was identified in Wuhan, China, in December 
2019, which eventually led to the ongoing pandemic [13, 33]. The World Health 
Organization declared the outbreak a Public Health Emergency of International 
Concern (PHEIC) in January 2020 and a pandemic in March 2020. COVID-19 
symptoms include cough, fever or chills, shortness of breath or difficulty breathing, 
muscle or body aches, sore throat, temporary loss of taste or smell, diarrhea, head-
ache, new fatigue, nausea or vomiting, and congestion or runny nose [25]. In more 
severe cases, the infection can cause pneumonia, the Middle East respiratory syn-
drome coronavirus (MERS-CoV), severe acute respiratory syndrome, kidney failure, 
and even death [19]. Diagnosis and prognosis of COVID-19 usually takes hours. 
Design and development of an automated system for rapid diagnosis/prognosis of 
COVID-19 will help to control spread of such epidemic. In this paper, we propose 
an automated model that uses genetic algorithm (GA) in developing a novel and 
effective CNN referred to as CGFor-Covid, which can assist experts in diagnosing 
COVID-19 from chest X-ray images through utilizing the state-of-art multi-access 
edge-computing 5G access network.

It is estimated that within the first ten months of the COVID-19 pandemic, sus-
pected cases surpassed 10% of the global population (WHO/AP). As of December 
25, 2020, 78,194,947 confirmed cases of COVID-19, including 1,736,752 deaths 
were reported to the WHO from around the world [8]. Traditionally, COVID-19 
is diagnosed through Reverse Transcriptase Polymerase Chain (RT-PCR) testing, 
which has a sensitivity of 37.71% [9]. This test is expensive and takes several hours 
to diagnose the outcome [7, 8]. Chest radiography and computed tomography (CT) 
are also key tools in the diagnosis of lung diseases [22]. Using X-ray radiography is 
cheap, readily available, and the devices can be cleaned easily.

In this study, we propose a framework that utilizes the recent 5G technology that 
utilizes the multi-access edge computing facilities because, these technologies help 
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the end-user to use available resources on the cloud with convenience. Figure  1 
shows the proposed framework. As shown in the framework, data are accumulated at 
the central cloud from sparse location through a number of 5G edge and access net-
work. Note that, the edge framework is used once the CNN is trained and optimized 
using a large training dataset. The trained CNN is thus stored in the central cloud 
from where every end-user can access the CNN through 5G edges. The 5G access 
network would help in accessing massive data volume with high throughput while 
the 5G edge would help in executing the low-latency applications, in this frame-
work, the CNN. The idea is to allow access of the CNN by end-user at hand held 
5G devices (e.g., smart phone or tablet/iPAD). If end-user can provide the COVID-
19 X-ray image, the CNN in the central cloud will be used to classify the image 
to either COVID-19 positive or negative case. The success of the proposed frame-
work not only depends on the low-latency high-bandwidth multiple-access edge 
computing but also the classification accuracy of the CNN. Hence, we also design 
and develop an automated computational tool based on Artificial Intelligence (AI) 
techniques to diagnose COVID-19 using X-rays accurately. The subsequent sections 
of this article puts focus toward developing one such new AI techniques so that the 
developed technique can be used in the proposed framework as shown in Fig. 1.

In recent years, the adoption of deep learning (DL), a newly developed AI 
method, has about revolutionary changes in AI research and applications. Convolu-
tional neural network (CNN), a variant of DL, is a widely used deep learning frame-
work in biomedical image classification. A CNN algorithm can be used to extract 

Fig. 1  Proposed framework for automated detection of COVID-19 through using multi-access edge com-
puting and CNN
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features from blocks of convolutional and backpropagation approaches, which in 
turn utilizes one or more pooling layers or fully connected layers. The extracted fea-
tures are then mapped into classification using a classifier. The performance of the 
CNN depends on the initial parameters (e.g., the structure of the CNN, the size of 
the convolution kernel matrix, which is known as the kernel, and so on). These ini-
tial parameters are pre-selected by the user for a given problem. Many studies have 
used CNN for COVID-19 detection by analyzing chest X-ray images. For example, 
Tulin Ozturk et al. [20] proposed a fully automated DarkCovidNet model (a CNN 
model) for COVID-19 classification and achieved an accuracy of 98.08%. However, 
it is unclear how the authors chose the CNN structure. One of the challenges associ-
ated with the use of CNN is to identify a suitable structure for a given problem so 
that the best classification performance can be achieved. In our study, we propose 
and develop a deep CNN model in which a genetic algorithm (GA) is used to iden-
tify a suitable structure for efficiently classifying X-ray images for COVID-19 detec-
tion. The approach of combining GA with neural network architecture was inspired 
by previous studies that have investigated hyperparameter optimization for neural 
networks[5, 14, 17]. GA has been used to solve optimization problems in various 
fields, including autonomous crack detection [4], electromagnetics [1], synthesis of 
antenna patterns [16], computer vision and speech processing [36]. To the best of 
author’s knowledge, the technique has not yet been applied to COVID-19 detection. 
Therefore, the proposed model uses this technique for the first time to classify X-ray 
images for COVID-19 detection.

In summary, the contributions of the current study are as follows: 

1. Proposing a framework through utilizing the state-of-art multi-access edge com-
puting, 5G access network and automated CNN to allow end-users access to the 
CNN for automatic diagnosis of chest X-ray images.

2. Developing a novel and effective CNN model optimized using a GA for COVID 
(CGForCovid), which can assist experts in diagnosing COVID-19 from chest 
X-ray images.

3. Using a GA algorithm to accelerate the CNN architecture design by selecting the 
optimal parameters for the CNN architectures, thereby enhancing model perfor-
mance by reducing the search space and decreasing the computational complexity.

4. Identifying the specific layer of a multilayer CNN structure that provides features 
that enhance classification. The features extracted at each layer of the CNN are 
fed into the classifier individually and classification performance is analyzed.

5. Conducting extensive experiments and comparing the results with the classifica-
tion performances of systems reported in other recent studies.

2  Related work

The world has experienced significant social and economic disruption since the 
beginning of the COVID-19 pandemic. These problems can be solved, or at least 
curbed through quick and reliable COVID-19 detection by deploying AI tools ([6, 
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11, 34]). Many studies have attempted to detect COVID-19 cases automatically 
using computational techniques. Given that this study focuses on detecting COVID-
19 from X-ray images, this section reviews existing studies that used X-ray images 
for COVID-19 case identification.

A comparative study was undertaken by the authors in [8] of RT-PCR and chest 
CT during the peak of the Italian epidemic, showing high sensitivity and specific-
ity scores for detection using chest CT images. Tulin Ozturk et  al. [20] proposed 
a fully automated DarkCovidNet model with a binary classification accuracy of 
98.08%. In the first few months of the pandemic, medical imaging data were scarce, 
and so to tackle this issue, Abdul Waheed et  al. [29] used generative adversarial 
network (GAN) to generate new data and CNN for detection. The authors’ COVID-
GAN model displayed an improved accuracy of 95%, where training on the original 
data yielded 85% accuracy. COVID-NET, a deep CNN model using open access 
data, has also been proposed [30]. A framework consisting of seven deep learning 
architectures such as VGG19, ResNetV2, InceptionV3 and MobileNetV2, known 
as COVIDX-Net yielded an F1-score of up to 0.91 [12]. A rather novel algorithm 
referred to as Capsnet, which was designed for image classification, has been used 
in Convolutional Capsnet [28], which gives 97.24% accuracy on binary classifica-
tion. A transfer learning-based model nCOVnet achieved 88% overall accuracy and 
97.62% true positive rate [21]. Existing CNN architecture design algorithms require 
extensive work to manually design the CNN architecture, which often show slow 
performance for the complete model design. However, for users who may lack 
domain knowledge on CNNs, it is necessary to have powerful design that can offer 
an automatic way to tune model structure. GAs are inspired by the way biological 
development works, which involves selecting the population, and outputting more 
than one solution without being stuck to a local optimum [23, 32]. Therefore, GA 
can perform efficient optimization operations for selecting the optimal hyperparam-
eter for deep neural network-based models. The researchers also implemented differ-
ent optimization models for the selection of CNN hyperparameters using GA.

In NSANet [27], a new genetic CNN method was discussed for encoding the 
CNN architecture in multiple phases to replace the convolutional layers to build the 
final CNN. For each phase, the model architecture is gradually developed as a small 
unit known as a “cell” in Genetic CNN, and afterward, multiple building blocks 
of CNNs are ordered and encoded. The order of such building blocks is manually 
adjusted based on the first and last building blocks, and a binary string encoding 
method is used to encode the blocks connections. Setting all of these parameters 
is figured out manually with no techniques for acceleration having been designed, 
and this limits the applicability of the proposed model for complex datasets such as 
x-ray images. A population-based training (PBT) algorithm for utilizing GA for neu-
ral network model hyperparameter selection was presented in [14]. PBT serves as a 
practical way to augment the standard training of neural network models using adap-
tive schedules. The proposed algorithm led to an outstanding improvement in the 
performance of neural network-based models, including hierarchical reinforcement 
learning, deep reinforcement learning, GANs, and machine translation. In [37], the 
authors proposed two hybrid models for the prediction and classification of HGB-
anemia, nutritional anemia, deficiency anemia, and folate deficiency anemia. The 
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model worked by initiating the GA for the purpose of selecting the optimal hyperpa-
rameters for the stacked autoencoder (SAE) and CNN. The system achieved a clas-
sification accuracy of 98.50%. In [27], GA was used to automate the CNN archi-
tecture design method. The authors targeted their work toward inexperienced users 
who lack CNN domain knowledge, specifically due to the value of their algorithm 
in automatically selecting the optimal CNN architecture to address the image clas-
sification process with 96.78% accuracy. Bakhshi et  al. [3] proposed fast-CNN, a 
rapid and automatic CNN building architecture for image classification. Fast-CNN 
uses GA to define suitable CNN optimization parameters, including the learning 
rate, number of layers, momentum, number of feature maps, and weight decay fac-
tor. Similarly, in [35], the authors sought to solve the same problem using a variable 
length GA. The algorithm automatically searches for a CNN’s optimal hyperparam-
eters considering the expected depth increases of the CNN model and search space, 
which grows the number of hyperparameters selection time.

Based on these recent studies, and also inspired by the successful optimization of 
CNN hyperparameters using GA, this study proposes the application of a GA-initi-
ated automatic CNN architecture design for COVID-19 X-ray image classification.

3  Overview of the method

In this study, we propose and develop the so-called CGForCovid model, a CNN 
structure for COVID-19 classification that uses GA to optimize the hyperparameters 
and determine suitable kernel sizes for the CNN structure. A kernel is a matrix that 
acts like a filter and moves over the input data, performing the dot product with 
the sub-region of input image. Figure 2 shows a schematic diagram of the proposed 
CGForCovid model. As shown in the figure, the model receives the COVID-19 
X-ray image dataset as input, and after preprocessing the dataset, two datasets (train-
ing/test sets) are prepared for the experiment evaluation. Afterward, the training 

Fig. 2  The proposed CGForCovid model
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dataset is used as input to the CNN algorithm. The GA is used to select the hyper-
parameter values, thereby optimizing the CNN model. In the optimization process, 
GA starts with a range of values for kernel sizes as initial population, crossover and 
mutation, and the offspring population. GA is used to select the best and most signif-
icant combinations of the CNN model hyperparameters (i.e., kernel sizes). Finally, 
the achieved CNN model is used to classify patient health status. Figure 3 shows one 
such CNN architecture that can be used for COVID-19 X-ray images (RGB images 
of size 224 × 224 × 3 ) classification. The following subsections describe how GA is 
used to optimize an initially chosen CNN structure.

Before describing the combined GA-CNN model, let us first introduce the GA 
and CNN in brief.

3.1  The genetic algorithm

GA is a variant of the popular evolutionary algorithm (EA). The difference between 
GA and EA is that in the latter, the chromosomes represent real numbers, while in 
GA chromosomes represent binary numbers. EA is the most feasible solution that 
is widely used for many optimization problems. The concept of EA is inspired by 
Darwinism, a biological evolutionary theory of nature that posits the survival of the 
fittest. This makes it significantly different compared to other search engines as it 
allows sampling through large search effectively. In EA/GA, an initial population is 
randomly generated as candidate solutions followed by three operations: selection, 
crossover, and mutation. Each individual solution is represented as a chromosome 
that consists of a set of strings, each with their own fitness value. Fitness value is 
a score (e.g., classification accuracy of a model) that determines how satisfactory 
the solution is. A population is the set of current sets of solutions (chromosomes) 
from which new sets of solutions are to be generated. To select the parent string 
from the current population, the probability of each string in the population of the 

Fig. 3  An architecture of the CNN used in CGForCovid Model
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current generation is determined considering the fitness value. Crossover in GA gen-
erates new generations by mating parent solutions (chromosomes) by crossing over 
the strings at some point to produce offspring. Mutation introduces variation into the 
population with a time interval by changing certain bit values in the string (chromo-
some). These operations are executed iteratively to create new generations until a 
stopping criterion is reached. The objective of EA/GA is either to minimize or maxi-
mize the fitness value based on survival of the fittest criterion.

3.2  Convolutional neural network

A typical CNN structure has one or more convolutional layer (CNN kernel) that 
extracts the significant feature set from the input dataset with its own filters. There is 
one or more pooling layer used in the CNN. The pooling layer decreases the size of 
the intermediate features without losing significant information from the feature set. 
The last layer of the CNN is typically used to classify data using the extracted fea-
tures. By consolidating the layers, a CNN model is constructed, and using a training 
algorithm and dataset, the internal encoding parameters of the CNN are adjusted to 
classify/predict COVID-19 cases. There is no known approach available for select-
ing the best CNN structure for a problem. While attempting to use CNN for COVID-
19 detection, we found that CNN kernel size affects classification performance. 
Therefore, optimization is important because poor classification accuracy may not 
necessarily be due to noisy data or algorithms suffering from weak learning; it also 
results from a poor combination of parametric values.

3.3  Combining GA with CNN

In our proposed CGForCovid model, chest X-ray images are used as input to the 
model. For each individual image input X and kernel K, the following convolution 
operation is used,

where ∗ represents the discrete convolution operation. Here, the kernel matrix K is 
slid over the input matrix L ( size(L) > size(M) ) to extract features through the con-
volution operation. After the convolution, the achieved features are further rectified 
using a nonlinear activation function. Leaky rectified linear unit (Leaky ReLu) has 
recently grown in popularity as an activation function because it does not change the 
size of the input and does not suffer from the vanishing gradient problem. In CGFor-
Covid, Leaky ReLu is used as the rectifier at each convolutional layer. Equation 2 
explains the calculation used in the Leaky ReLu function.

(1)(X ∗ K)(i, j) =
∑

m

∑

n

K(m, n)X(i − m, j − n)

(2)Leaky ReLu (x) =

{

0.01x for x < 0

x for x ≥ 0
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The GA used in CGForCovid has a single objective because only one fitness value/
score (i.e., classification accuracy for the training/validation dataset) is maximized 
using the standard GA operators of selection, crossover, and mutation. The chromo-
some of the GA is a potential solution/kernel size of the CNN for COVID-19 classi-
fication. As such the GA should provide a suitable kernel size for the CNN structure 
to maximize COVID-19 classification accuracy. Algorithm 1 shows the procedure 
used to identify suitable kernel size in pseudo-code. 

As described in the algorithm, it starts to build the CNN model with a defined 
population size and maximal generation number. The GA algorithm begins to 
work iteratively by searching for suitable optimization parameters (kernel size) for 
the CNN architecture to classify whether the patient is COVID-19-positive or not 
from the collected image dataset. To encode the CNN model, a set of iterations are 
conducted to randomly initialize a population with the predefined maximal popula-
tion size PN; that is to say each generation consists of PN populations. In the pro-
cess of evolution, the fitness of each individual chromosome in each population is 
calculated. Once the best chromosomes are identified based on the fitness score, a 
new population is generated from the selected chromosomes through the crossover 
operation. This process of evolution continues up to a maximum generation, and the 
best chromosome in the last generation is regarded as the suitable kernel size for the 
CNN structure for COVID-19 detection.
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4  Experimental setup and results

4.1  Experimental setup

The proposed model utilizes GA for optimizing CNN structure. Following list of 
parameters for GA were used to conduct the experiment:

Max Iteration: 500
Generation=10
Population size:100
Mutation probability:0.01
Elite ratio: 1
Crossover probability: 0.5
Parents portion: 1
Crossover type: uniform

16-256 filters for each convolution layer were used in the proposed CGForCovid 
model. Each convolutional layer in the CNN was followed with a softmax layer, 
which is a fully connected dense neural network classifier, to observe accuracy per-
formance before building up the next block of convolutional layers. To downsize the 
input X-ray images, the maxpool method was used in all the pooling operations. The 
maxpool method works by taking the maximum pixel value determined by its filter. 
The final CNN architecture was evaluated using fivefold cross-validation for differ-
ent classifiers (several classifiers were used at the last layer of the CNN), including 
Dense (traditional fully connected neural network), random forest, and decision tree. 
The model thus classifies the input X-ray images either as COVID-19 positive or 
COVID-19 negative cases.

To identify the layer of the CNN that provided the optimal features, a classifier 
was used at the end of each layer to classify the data using extracted features by 
the respective CNN layer. To determine which classifier in combination with the 
extracted features provided better classification performance, three different classi-
fiers were tested: fully connected neural network classifier with the random forest 
classifier and decision tree. The performance of each stage/layer of the CNN archi-
tecture was investigated by training the models with categorical cross-entropy as the 
loss function, a learning rate of 0.0001 for the Adam optimizer, and using a fully 
connected neural network as a classifying layer.

To overcome the overfitting problem, 20% of the training X-ray data were used 
for validation and 80% for training the CNN model. Additionally, to test robustness 
of the CGForCovid model, fivefold cross-validation was used. The parameters of the 
models used in the study are shown in Tables 2 and 3. The Keras platform written in 
Python was used to conduct all experiments. In the study, all implementations were 
executed on a system with a 64-bit Intel Core I5 processor, and 12 GB of RAM.
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4.2  Dataset

X-ray images were obtained from a dataset developed by Joseph Paul Cohen and 
Paul Morrison and Lan Dao [15]. This dataset contains chest X-ray and CT scan 
images of COVID-19, MERS, SARS, and ARDS. The dataset includes frontal and 
lateral view imagery and metadata, including the time since first symptoms, survival 
status, and location. We opted to use X-ray images for our study, of which there are 
420 COVID-19 positive cases and 505 COVID-19 negative cases in our X-ray data-
set. Figure 4 shows example X-ray images of COVID-19 positive cases, and Fig. 5 
illustrates X-ray images of COVID-19 negative cases from the dataset.

4.3  Performance metrics

For all the simulations, a binary classifier is initialized to predicts all the data 
instances with four possible outcomes: TP (true positive), TN (true negative), FP 
(false positive), and FN (false negative).

Fig. 4  COVID-19-positive 
X-ray images
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– TP: correct positive prediction
– FP: incorrect positive prediction
– TN: correct negative prediction
– FN: incorrect negative prediction

Accuracy is calculated as the total number of two correct predictions (TP + TN) 
divided by the total number of a dataset (P + N).

• Accuracy = (tp+tn)/(tp+tn+fp+fn)

Fig. 5  COVID-19-negative X-ray images
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Sensitivity (recall or true positive rate) is calculated as the number of correct posi-
tive predictions (TP) divided by the total number of positives (P).

• Sensitivity (recall or true positive rate) = tp/(tp+fn)

Specificity (true negative rate) is calculated as the number of correct negative pre-
dictions (TN) divided by the total number of negatives (N).

• Specificity (true negative rate) = tn/(tn+fp)

Precision (positive predictive value) is calculated as the number of correct positive 
predictions (TP) divided by the total number of positive predictions (TP + FP).

• Precision (positive predictive value) = tp/(tp+fp)

F1 score is the harmonic mean of the precision and recall.

• F1=(2*precision*recall)/(precision+recall)

A receiver operating characteristic curve, or ROC curve, is a graphical plot that 
illustrates the diagnostic ability of a binary classifier system by plotting the true 
positive rate against the false positive rate at various threshold settings. When using 
normalized units, the area under the curve (AUC) of the ROC plot is equal to the 
probability that a classifier will rank a randomly chosen positive instance higher 
than a randomly chosen negative one [10].

4.4  Experimental results of the proposed model

In this study, a combination of state-of-art CI technologies: GA and CNN (CGFor-
Covid) was proposed to classify the COVID-19 X-ray image dataset. Table 1 lists 
the detailed parameters achieved by using the proposed CGForCovid model for the 
selected dataset. The proposed model uses 16 convolution layers to classify COVID-
19 X-ray images. Compared to another CNN known as Darknet-19, that model used 
19 convolutional layers to classify COVID-19 X-ray images. Moreover, the pro-
posed model can be used for any COVID-19 dataset because the GA identifies a 
suitable CNN structure if the training dataset changes. In contrast, Darknet-19 is not 
adaptive under a change of training dataset.

Table 2 reports the experimental results for the dataset discussed in Section 2. 
To identify the layer of the CNN that can provide the best feature set for effectively 
identifying COIVD-19 cases, features extracted from each block (see column 1 in 
the table for block numbers) are individually fed into the respective classifiers to 
classify the data. As the table shows, block number 7 provided the best features 
that assisted in classifying the COVID-19 cases, achieving 98.91% accuracy. This 
experimental results demonstrate that the optimization of a CNN using GA can 
deliver COVID-19 classification with high accuracy, as well as a 98.907 AUC score. 
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Table 1  The experimental 
hyperparameters of the 
CGForCovid model

Layer # Block # Layer(type) Output Shape Param #

1 1 conv2d (None, 224, 224, 16)
2 batch_normalization (None, 224, 224, 16)
3 LeakyReLU (None, 224, 224, 16)
4 MaxPooling2D (None, 112, 112, 16)
5 2 conv2d (None, 112, 112, 32)
6 batch_normalization (None, 112, 112, 32)
7 LeakyReLU (None, 112, 112, 32)
8 conv2d (None, 112, 112, 16)
9 batch_normalization (None, 112, 112, 16)
10 LeakyReLU (None, 112, 112, 16)
11 conv2d (None, 112, 112, 32)
12 batch_normalization (None, 112, 112, 32)
13 LeakyReLU (None, 112, 112, 32)
14 MaxPooling2D (None, 56, 56, 32)
15 3 conv2d (None, 56, 56, 64)
16 batch_normalization (None, 56, 56, 64)
17 LeakyReLU (None, 56, 56, 64)
18 conv2d (None, 56, 56, 32)
19 batch_normalization (None, 56, 56, 32)
20 LeakyReLU (None, 56, 56, 32)
21 conv2d (None, 56, 56, 64)
22 batch_normalization (None, 56, 56, 64)
23 LeakyReLU (None, 56, 56, 64)
24 MaxPooling2D (None, 28, 28, 64)
25 4 conv2d (None, 28, 28, 128)
26 batch_normalization (None, 28, 28, 128)
27 LeakyReLU (None, 28, 28, 128)
28 conv2d (None, 28, 28, 64)
29 batch_normalization (None, 28, 28, 64)
30 LeakyReLU (None, 28, 28, 64)
31 conv2d (None, 28, 28, 128)
32 batch_normalization (None, 28, 28, 128)
33 LeakyReLU (None, 28, 28, 128)
34 MaxPooling2D (None, 14, 14, 128)
35 5 conv2d (None, 14, 14, 256)
36 batch_normalization (None, 14, 14, 256)
37 LeakyReLU (None, 14, 14, 256)
38 conv2d (None, 14, 14, 128)
39 batch_normalization (None, 14, 14, 128)
40 LeakyReLU (None, 14, 14, 128)
41 conv2d (None, 14, 14, 256)
42 batch_normalization (None, 14, 14, 256)
43 LeakyReLU (None, 14, 14, 256)
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Moreover, using different classifiers at the last level of the model, we sought to 
identify the optimally performing classifier. As the table shows, all three classifiers, 
namely neural network, decision tree, and random forest, achieved the same level of 
classification performance for COVID X-ray image classification. This demonstrates 
that the combined use of GA and CNN can generate features that are significant for 
COVID-19 classification.

After achieving an impressive classification performance for the training and test 
data (80% of the data were randomly selected to train the model, while the remain-
ing 20% were used to test the model), a fivefold cross-validation scheme was used to 
achieve a generalized performance of the proposed CGForCovid model. The graphs 

Table 1  (continued) Layer # Block # Layer(type) Output Shape Param #

44 6 conv2d (None, 14, 14, 128)
45 batch_normalization (None, 14, 14, 128)
46 LeakyReLU (None, 14, 14, 128)
47 7 conv2d (None, 14, 14, 256)
48 batch_normalization (None, 14, 14, 256)
49 LeakyReLU (None, 14, 14, 256)
50 conv2d (None, 14, 14, 2)
51 batch_normalization (None, 14, 14, 2)
52 flatten (Flatten) (None, 392)
53 dense (Dense) (None, 2)

Fig. 6  Classification performances for each of the fivefolds using CGForCovid along with a decision tree 
at the last layer as classifier
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Fig. 8  Classification performances for each of the fivefolds using CGForCovid along with a neural net-
work (i.e., softmax) at the last layer as classifier

in Figures 6, 7 and 8 show the performance variation in terms of different perfor-
mance metrics (e.g., accuracy, F1-score, AUC, sensitivity, specificity, and precision) 
across different folds. Figures  6, 7, and 8 show that the performance variation is 
insignificant if the classifiers are varied that are used after having features extracted 
using the combination of GA and CNN. One such performance signifies that the 
GA-optimized CNN can extract influential features from the X-ray images. Table 3 
shows the variation in classification performance among different classifiers (i.e., 
those that were used as the last layer of the CNN) for fivefold cross-validation. As 
shown in the table, the classifier neural networks can achieve a better performance 
in terms of accuracy (98.49 ± 0.45), F1-score (98.31 ± 0.50), AUC (98.37 ± 0.46), 
and Sensitivity (97.14 ± 0.65), while Random Forest can provide better Specificity 
(99.80 ± 0.44) and Precision scores (99.76 ± 0.55). Although neural networks can 
improve performance, the performance differences among these classifiers are neg-
ligible (especially between neural network and random forest). Moreover, the small 
standard deviation (e.g., for neural network the standard deviation for accuracy is 
0.45) across the fivefold cross-validation scores indicates that the proposed model 
not only provide a very impressive classification performance for COVID-19 identi-
fication but also is a steady system.

Figure 9 shows the normalized confusion matrices of the models. The row of the 
matrix represents the instances in the actual class, while the column represents the 
instances in a predicted class. As the confusion matrix shows, no non-COVID cases 
were classified as COVID cases and only 12 out of 408 patients were misclassified 
as non-COVID cases. Certainly, such high classification accuracy would encourage 
physicians/radiologists/professionals to use the proposed automated COVID classi-
fier. Figure 10 shows the ROC curve for the fivefold cross-validation test scheme. As 
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usual, the curve is close to the point (0,1.0), which reveals the effectiveness of the 
proposed classifier.

5  Comparison with existing work

Table 4 reports the COVID-19 classification performances achieved in several previ-
ous studies. As shown in the table, [2] used transfer learning with VGG-19 feature 
extraction model for input images, achieving an accuracy of 93.48%. Our proposed 
model’s performance is 5% better than that of the model of [2]. Similarly, our model 
is at least 6.08% better than that of Wang and Wong [30], 3.1% better than that of 

Fig. 9  Confusion Matrix for 
CGForCovid model

Fig. 10  CGForCovid model ROC Curve
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Sethy and Behra [24], and 8.48% better than that of Hemdan et al. [12]. As the table 
reports, outperformed all others that have recently been proposed in terms of clas-
sification performance. It should be noted that all the classification accuracies with 
‘*’ symbols are reported by the respective studies. Hence, the comparison might 
not be fair. For a fair comparison, the same dataset and data distribution among the 
fivefolds should be used. In our experiment, we implemented the same deep learn-
ing neural network that was used in DarkCovidNet [20]. Table 5 lists the parameters 
used to design and develop DarkCovidNet. The penultimate row in Table 4 shows 
the classification performance achieved using DarkCovidNet [20]. As the last two 
rows in the table indicate, the proposed model outperformed DarkCovidNet [20] by 
1.94%. This performance improvement serves as empirical proof that the proposed 
model provides a better deep neural network structure compared to the structure of 
DarkCovidNet [20] for classifying COVID-19 cases.

Table 5  List of parameters 
to design and develop 
DarkCovidNet-19 Model

Type Filters Size/Stride Output

Convolutional 32 3 × 3 224 × 224

Maxpool 2 × 2∕2 112 × 112

Convolutional 64 3 × 3 112 × 112

Maxpool 2 × 2∕2 56 × 56

Convolutional 128 3 × 3 56 × 56

Convolutional 64 1 × 1 56 × 56

Convolutional 128 3 × 3 56 × 56

Maxpool 2 × 2∕2 28 × 28

Convolutional 256 3 × 3 28 × 28

Convolutional 128 1 × 1 28 × 28

Convolutional 256 3 × 3 28 × 28

Maxpool 2 × 2∕2 14 × 14

Convolutional 512 3 × 3 14 × 14

Convolutional 256 1 × 1 14 × 14

Convolutional 512 3 × 3 14 × 14

Convolutional 256 1 × 1 14 × 14

Convolutional 512 3 × 3 14 × 14

Maxpool 2 × 2∕2 7 × 7

Convolutional 1024 3 × 3 7 × 7

Convolutional 512 1 × 1 7 × 7

Convolutional 1024 3 × 3 7 × 7

Convolutional 512 1 × 1 7 × 7

Convolutional 1024 3 × 3 7 × 7

Convolutional 1000 1 × 1 7 × 7

Avgpool
Softmax
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6  Conclusion and future directions

Monitoring and tracking patient health status is a critical target in the ongoing 
COVID-19 pandemic. The advent of modern and efficient computational intelli-
gence techniques like deep learning neural networks and high-performance distrib-
uted computing facilities can aid in automatically tracking and detecting COVID-
19 cases. This study proposes a new model for accurately classify and diagnosing 
COVID-19 using state-of the art deep learning models, especially GAs and CNNs. 
The proposed CGForCovid model will help to reduce clinician workload sig-
nificantly during the pandemic and will work as a decision support system. In the 
future, the model can be extended to help rehabilitate affected patients in a timely 
manner. In this regard, we plan to implement the proposed framework as a protocol 
and develop a Raspberry Pi-based device to be deployed at a number of hospitals.
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