Skip to main content

Advertisement

Log in

Flux-weakening fuzzy adaptive ST-SMO sensorless control algorithm for PMSM in EV

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Aiming at the sensorless control system of Permanent Magnet Synchronous Motor (PMSM) for the pure Electric Vehicle (EV), the issues of slow convergence, phase delay, and chattering caused by Sliding Mode Observer (SMO), a single current flux weakening fuzzy adaptive Super-Twisting (ST) SMO algorithm is proposed in this paper. The fuzzy adaptive algorithm is used to estimate the uncertain boundary and adaptively adjust sliding mode gain, which is used in the ST algorithm to accelerate the convergence speed of sliding mode gain, and eliminate the system delay caused by phase-locked loop and phase compensation, and improve the estimation accuracy of speed and rotor position. The single current flux weakening is used to improve the issues of d-q axis current coupling and enhance the load capacity of the field weakening area of the PMSM. The algorithm is verified by MATLAB/Simulink. The simulation results show that the single current flux-weakening fuzzy ST-SMO algorithm has faster convergence speed in the variable speed and the variable load of PMSM sensorless control system, which has significantly reduced chattering, obtained more accurate speed and rotor position, and has better dynamic response and robustness, and has widened the speed region of PMSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hua YZ, Zhu HQ (2020) Rotor radial displacement sensorless control of bearingless permanent magnet synchronous motor based on MRAS and suspension force compensation. ISA Trans 103(12):306–318. https://doi.org/10.1016/j.isatra.2020.05.005

    Article  Google Scholar 

  2. Teng Q, Bo J, Zhu J (2015) Sensorless model predictive torque control using sliding-mode model reference adaptive system observer for permanent magnet synchronous motor drive systems. Control Theory Appl 32(2):151–162. https://doi.org/10.7641/CTA.2015.13143

    Article  Google Scholar 

  3. Yin S, Xu W, Yu CL (2020) Direct torque control of permanent magnet synchronous motor in ship propulsion system based on memory attenuation Kalman filter. J Coastal Res 110(7):80–86. https://doi.org/10.2112/JCR-SI110-020.1

    Article  Google Scholar 

  4. Liang D, Li J, Qu R (2018) Adaptive second-order sliding-mode observer for PMSM sensorless control considering VSI nonliearity. IEEE Trans Power Electron 33(10):8994–9004. https://doi.org/10.1109/TPEL.2017.2783920

    Article  Google Scholar 

  5. Kuttler S, Benkara KEK, Friedrich G et al (2017) Fast iron losses model of stator taking into account the flux weakening mode for the optimal sizing of high speed permanent internal magnet synchronous machine. Math Comput Simul 131(15):328–343. https://doi.org/10.1016/j.matcom.2016.06.009

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu YS, Li YG, Ma XD et al (2021) Flux-weakening control of dual three-phase PMSM based on vector space decomposition control. IEEE Trans Power Electron 36(7):8428–8438. https://doi.org/10.1109/TPEL.2020.3044574

    Article  Google Scholar 

  7. Peng SQ, Song YY (2018) Sensorless vector control of PMSM based on adaptive fuzzy sliding mode observer. Control Decis 33(4):644–648. https://doi.org/10.13195/j.kzyjc.2017.0058

    Article  MathSciNet  MATH  Google Scholar 

  8. Wei HQ, Yu JZ, Zhang YT et al (2020) High-speed control strategy for permanent magnet synchronous machines in electric vehicles drives analysis of dynamic torque response and instantaneous current compensation. Energy Rep 6(12):2324–2335. https://doi.org/10.1016/j.egyr.2020.08.016

    Article  Google Scholar 

  9. Zerdali E, Barut M (2017) The comparisons of optimized extended Kalman filters for speed-sensorless control of induction motors. IEEE Trans Ind Electron 64(6):4340–4351. https://doi.org/10.1109/TIE.2017.2674579

    Article  Google Scholar 

  10. Quang NK, Hieu NT, Ha QP (2014) FPGA-based sensorless PMSM speed control using reduced-order extended Kalman filters. IEEE Trans Ind Electron 61(12):6574–6582. https://doi.org/10.1109/TIE.2014.2320215

    Article  Google Scholar 

  11. Sun K, Shi YC, Huang LB et al (2015) A 2-D fuzzy logic-based MRAS scheme for sensorless control of interior permanent magnet synchronous motor drives with cyclic fluctuating loads. In: Annual IEEE Applied Power Electronics Conference and Exposition, pp 2475–2481. https://doi.org/10.1109/APEC.2014.6803651

  12. Zhao Y, Qiao W, Wu L (2014) Improved rotor position and speed estimators for sensorless control of interior permanent-magnet synchronous machines. IEEE J Emerg Sel Topics Power Electron 2(3):627–639. https://doi.org/10.1109/JESTPE.2014.2298433

    Article  Google Scholar 

  13. Kim H, Son J, Lee J (2011) A high-speed sliding-mode observer for the sensorless speed control of a PMSM. IEEE Trans Ind Electron 58(9):4069–4077. https://doi.org/10.1109/TIE.2010.2098357

    Article  Google Scholar 

  14. Yang J, Dou M, Zhao D (2016) Adaptive sliding mode observer for sensorless control of five-phase permanent magnet synchronous motor. J Northwestern Polytechnical Univ 34(6):1057–1064. https://doi.org/10.3969/j.issn.1000-2758.2016.06.021

    Article  Google Scholar 

  15. Liang DL, Li J, Qu RH (2017) Sensorless control of permanent magnet synchronous machine based on second-order sliding-mode observer with online resistance estimation. IEEE Trans Ind Appl 53(4):3672–3682. https://doi.org/10.1109/TIA.2017.2690218

    Article  Google Scholar 

  16. Song XD, Fang JC, Han BC et al (2015) Adaptive compensation method for high-speed surface PMSM sensorless drives of EMF-based position estimation error. IEEE Trans Power Electron 31(2):1438–1449. https://doi.org/10.1109/TPEL.2015.2423319

    Article  Google Scholar 

  17. Bhaumik A, Das S (2021) Predictive torque control strategy for speed adaptive flux observer based sensorless induction motor drive in flux-weakening region. IEEE Trans Power Electron 36(12):14110–14118. https://doi.org/10.1109/TPEL.2021.3089611

    Article  Google Scholar 

  18. Yoo J, Lee J, Sul SK (2021) Analysis of instability in torque control of sensorless PMSM drives in flux weakening region. IEEE Trans Power Electron 36(9):10815–10826. https://doi.org/10.1109/TPEL.2021.3063720

    Article  Google Scholar 

  19. Wang YW, Wu JB, Guo ZJ et al (2021) Fuzzy adaptive super-twisting algorithm based sliding-mode observer for sensorless control of permanent magnet synchronous motor. J Eng 12:788–799. https://doi.org/10.1049/tje2.12076

    Article  Google Scholar 

  20. Wang B, Zhao YZ, Yu Y et al (2016) Speed-sensorless induction machine control in the field-weakening region using discrete speed-adaptive full-order observer. IEEE Trans Power Electron 31(8):5759–5773. https://doi.org/10.1109/TPEL.2015.2496350.s

    Article  Google Scholar 

  21. Dybkowski M, Orlowska-Kowalska T, Tarchala G (2013) Sensorless traction drive system with sliding mode and MRAS(CC) estimators using direct torque. Automatika 54(3):329–336. https://doi.org/10.7305/automatika.54-3.169

    Article  Google Scholar 

  22. Miguel C, Heredero DP, Gross G et al (2020) Maximum torque per voltage flux-weakening strategy with speed limiter for PMSM drives. IEEE Trans Ind Electron 68(10):9254–9264. https://doi.org/10.1109/TIE.2020.3020029

    Article  Google Scholar 

  23. Ekanayake S, Dutta R, Rahman MF et al (2019) Performances of a fractional-slot concentrated-winding permanent magnet synchronous machine under position sensorless control in deep flux-weakening region. IEEE Trans Ind Appl 55(6):5938–5946. https://doi.org/10.1109/TIA.2019.2931269

    Article  Google Scholar 

  24. Liu X, Wang C, Han Y (2017) Second-order sliding mode control of DFIG based variable speed wind turbine for maximum power point tracking. Acta Autom Sin 43(8):1434–1442. https://doi.org/10.16383/j.aas.2017.e150252

    Article  MATH  Google Scholar 

  25. Chi TR, Nguyen BH, Trovo JP et al (2020) Effect of battery voltage variation on electric vehicle performance driven by induction machine with optimal flux-weakening strategy. IET Electr Syst Transp 10(4):351–359. https://doi.org/10.1049/iet-est.2020.0013

    Article  Google Scholar 

  26. Blondin MJ, Trovao J (2019) Soft computing techniques for cruise controller tuning for an off-road electric vehicle. IET Electr Syst Transp 9(4):196–205. https://doi.org/10.1049/iet-est.2019.0008

    Article  Google Scholar 

  27. Essam E, Mohamed E (2020) Voltage regulation feedback and deadbeat predictive current control of interior PM machines. Int Trans Electr Energy Syst. https://doi.org/10.1002/2050-7038.12413

    Article  Google Scholar 

  28. Guo JQ, Liu X, Li SH (2021) Flux-weakening control for variable flux reluctance flux reluctance machine excited by zero-sequence current considering zero-sequence resistive voltage drop. IEEE Trans Energy Convers 36(1):272–280. https://doi.org/10.1109/TEC.2020.3005137

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the sub-project of the National Key Research and Development Program (2016YFD0700103-02) and the National Natural Science Foundation of China (51675163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongwei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, J., Guo, Z. et al. Flux-weakening fuzzy adaptive ST-SMO sensorless control algorithm for PMSM in EV. J Supercomput 78, 10930–10949 (2022). https://doi.org/10.1007/s11227-021-04264-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-021-04264-8

Keywords

Navigation