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Abstract
Power consumption is likely to remain a significant concern for exascale perfor-
mance in the foreseeable future. In addition, graphics processing units (GPUs) 
have become an accepted architectural feature for exascale computing due to their 
scalable performance and power efficiency. In a recent study, we found that we can 
achieve a reasonable amount of power and energy savings based on the selection of 
algorithms. In this research, we suggest that we can save more power and energy 
by varying the block size in the kernel configuration. We show that we may attain 
more savings by selecting the optimum block size while executing the workload. We 
investigated two kernels on NVIDIA Tesla K40 GPU, a Bitonic Mergesort and Vec-
tor Addition kernels, to study the effect of varying block sizes on GPU power and 
energy consumption. The study should offer insights for upcoming exascale systems 
in terms of power and energy efficiency.

Keywords  Block size · Exascale computing · GPU · Power and energy

1  Introduction

The exascale systems (the next generation of high-performance comput-
ing (HPC)) will provide unprecedented processing power and memory so that 
researchers can perform very large-scale simulations. There are many obstacles to 
reaching exascale performance (order 1018 floating-point operations per second) 
such as the increasing power and energy, more fault rate, and updating the appli-
cations from petascale (the current HPC Systems) to exascale computing (the 
next-generation HPC systems) [8, 9, 43, 46]. Among these, power consumption 
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is the main hurdle to achieving exascale performance [43]. Innovations and 
improvements in many areas such as algorithms, architecture, and software are 
required to reach the exascale performance, as the current HPC techniques are not 
suitable for the upcoming exascale systems [8]. Alternative solutions, which can 
survive with energy consumption limitations, are needed to make exascale perfor-
mance a reality.

During the last decade, graphics processing units (GPUs) have become a promis-
ing architecture in the pursuit of exascale systems due to advancements in power 
and performance efficiency. For that reason, we further explored GPUs to provide 
insights for exascale systems in terms of power and energy efficiency. In our experi-
mental study, NVIDIA Tesla K40 [30] GPU was used, which provides outstand-
ing high-performance capabilities with power efficiency. Tesla K40 is specifically 
manufactured by NVIDIA Corporation to give solutions for the most overwhelming 
supercomputing challenges [30]. NVIDIA Corporation also designed other GPUs 
(Kepler architecture) that include Tesla K20 GPU and Tesla K80 GPU. NVIDIA 
Kepler architecture is utilized by numerous scientific applications [37] because of 
its ground-breaking computing technology. Apart from this, Tesla K40 is adopted 
by a large number of top500 [49] and green500 [50] supercomputers, as it provides 
significant supercomputing capabilities. In this study, we used the Compute Uni-
fied Device Architecture (CUDA) [33] as a programming platform on NVIDIA 
Tesla K40 GPU. Some CUDA terminologies related to our experiments are briefly 
described below, as stated in [33]:

•	 Host: means the processor and its memory. In this study, it is the Intel(R) 
Xeon(R) CPU E5-2640 2.50 GHz and its memory.

•	 Device: means the graphics processing unit and its memory. In our case, it is the 
K40 GPU and its memory.

•	 Kernel: is a function that runs on the device. Programs are executed in parallel 
on GPU as kernels. Various threads are used to launch a single kernel at a time. 
In this study, we have Bitonic Mergesort (BM) [1] and Vector Addition (VA) [35] 
kernels, which contain the relevant source codes.

•	 Wrap: is a collection of 32 successively numbered threads inside a single thread 
block.

•	 Block Size (threads per block) and Grid Size (blocks per grid): A CUDA pro-
gram executes parallel functions on the GPU known as kernels that run across 
many parallel threads. The programmer or compiler arranges these threads into 
thread blocks and grids of thread blocks, as described in Figs. 1 and 2.

•	 Kernel Configuration: is defined by block size (threads per block) and grid size 
(blocks per grid). It is calculated based on the product of block size and grid size. 
It needs to be defined while launching the kernel on the GPU. The maximum 
block size for a one-dimensional kernel launch on NVIDIA Tesla K40 GPU is 
1024.

•	 Kernel Launch: Triple angle brackets mark a kernel launch from host code 
to device code. For example, “mykernel <  <  < blocks per grid threads per 
block >  >  > ().” Each thread that executes the kernel is given a unique thread ID 
that is accessible within the kernel through the built-in threadIdx variable. Paral-
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lel threads can be launched using the following way. Launch N blocks per grid 
with M threads per block with kernel <  <  < N, M >  >  > ().

In our recent studies [3] and [5], it was observed that investigating power and 
energy consumption of basic software building blocks on GPUs, such as sorting 
algorithms, can provide a new perspective to reduce the power requirement of the 
upcoming exascale systems. It was observed that depending on the algorithm’s fun-
damental design, some algorithms provide an inherent power and energy saving as 
compared to other algorithms [3] and [5]. In [3] and [5], it was found that a simple 
Bitonic Mergesort (BM) algorithm [1] was more power- and energy-efficient than a 
performance-optimized Advanced Quicksort (AQ) algorithm [34], while compared 
under various workloads on NVIDIA Tesla K40 GPU. Furthermore, it was sug-
gested that a significant amount of power and energy saving can be achieved based 
on the selection of power- and energy-efficient algorithms. We also identified some 
programming-related factors that affect GPU power consumption. In this research, 
we suggest that further power and/or energy saving can be achieved by selecting 
the proper block size in kernel configuration while executing the workload. In order 
to study the effect of varying block size in GPU kernels, we executed BM [1] and 
VA [35] kernels on a dataset of 512  M elements (unsigned integer random num-
bers) on NVIDIA Tesla K40 GPU. For random number generation, we used the C 

Fig. 1   CUDA hierarchy of threads, blocks, and grids, with corresponding per-thread private, per-block 
shared, and per-application global memory spaces [33]
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built-in method rand() (method for generating pseudo-random numbers) and con-
stant RAND MAX (greatest value returned by the rand() method).

Next, we discuss the two GPU kernels, namely BM [1] and VA [35] that were 
used in the experimental analysis. Firstly, we performed the experiments on BM and 
collected the results. Then, to further validate our findings, we performed the same 
experiments on another GPU kernel, i.e., VA kernel. BM is an example of data-
independent algorithms that was developed by Ken Batcher [7]. BM was designed 
specifically for parallel architectures. It can work as a building method for develop-
ing sorting networks that contain O(n(log2(n)) number of comparators and consist of 
O(n(log2(n)) delay, where n shows the length of the list to be sorted [2]. BM is suit-
able for single instruction, multiple data platforms because it can work in-place and 
with minor interprocess communication. In this study, we used the CUDA version 
of BM that is based on [1]. The other kernel that we used in experiments is a simple 
vector addition program available in CUDA SDK [35]. This program uses two vec-
tors A and B with dimensions (wA, hA) and (wB, wA), respectively, and then divides 
the task among various threads to get the product C of vectors A and B.

We used peak power, average power, energy, and kernel runtime to study the 
power and energy efficiency of the BM and VA kernels with varying block sizes 
[3, 5], and [21]. Furthermore, we studied some GPU performance counters, i.e., 
achieved occupancy and eligible warps metrics (based on NVIDIA Nsight Vis-
ual Studio Edition 5.2 [36]), to know why different GPU kernels exhibit different 
power and energy consumption for similar workloads while varying the block size 

Fig. 2   CUDA hierarchy of threads, blocks, and grids, with corresponding per-thread private, per-block 
shared, and per-application global memory spaces [33]
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in the kernel configuration. It is pertinent to mention that performance counters 
have a relation with the power and energy consumption of kernels executing on 
the GPU, as stated by Luo and Suda [27], “Even with a powerful hardware in 
parallel execution, it is still difficult to improve the application performance and 
reduce energy consumption without realizing the performance bottlenecks of par-
allel programs on GPU architectures.” The power, energy, and performance met-
rics are described below, as stated in [3]:

•	 “Peak Power: is the peak level of GPU power that is reached when the kernel 
is executing on the GPU. The power profile indicates its value.

•	 Average Power: is the average power of a kernel executing on the GPU. It is 
obtained from the power profile of the kernel by adding all the sampled power 
values and dividing them by the total number of obtained power samples.

•	 Energy: is the total energy consumed by the kernel executing on the GPU. The 
area under the power curve of a kernel indicates the total energy consumed 
during execution. This metric is calculated by integrating the power curve 
over kernel runtime.

•	 Kernel Runtime: is the runtime of a kernel that is executing on the GPU. Dur-
ing this time, the GPU consumes more power and energy than its idle state 
power.

•	 Achieved Occupancy: is the ratio of active warps in each streaming multipro-
cessor (SM) to the maximum possible active warps (on a K40 SM, maximum 
active warps = 64) [25]. A warp becomes active from the time its threads 
begin execution on the SM to the time it completes the last instruction. The 
following equation describes the achieved occupancy:

•	 Eligible Warps: shows the number of cycles that a warp scheduler [30] had 
at least one eligible warp to select from. The higher the percentage of cycles 
with eligible warps, the more efficient the code runs on the target device. A 
streaming multiprocessor (SM) has one or more warp schedulers, each of 
which tries to issues instructions from a warp on each clock cycle. To suf-
ficiently hide latencies between dependent instructions, each warp scheduler 
must have at least one eligible warp to issue an instruction every clock cycle. 
Keeping the achieved occupancy high during kernel runtime avoids situations 
where all warps are stalled and no instructions are issued [36].”

Generally, this research has the following contributions:

•	 The research highlights insights for exascale systems by providing new ways 
to achieve power and/or energy efficiency.

•	 The research demonstrates how power and/or energy saving can be achieved 
by varying the block size in kernel configuration while executing the workload 
on GPU.

(1)Achieved Occupancy =
active warps

maximum active warps
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•	 This paper presents a novel idea of saving power and energy by varying block 
size in a kernel configuration.

The remaining paper is structured as follows. Section 2 presents the related litera-
ture review. Section 3 briefly describes the experimental setup. In Sect. 4, we dis-
cuss the results. Section 5 concludes the work and identifies some future prospects 
from this work.

2 � Literature review

Vila et al. [52] presented the study carried out by NVIDIA Corporation regarding 
the design of exascale systems by incorporating the properties that answer the scal-
ing problems of performance and energy efficiency. The researchers highlighted 
that more innovations in designing algorithms and architecture are required in order 
to bring improvements in the performance of applications for addressing memory 
locality, the scaling issue, and integer execution efficiency.

Dally [18] firstly demonstrated the hurdles of the upcoming exascale systems 
and then discussed the recent techniques to overcome those hurdles. The researcher 
argued that an improvement of 200-fold will be essential in energy per instruction to 
reach the expected exascale performance in a reasonable power budget, i.e., below 
20 Megawatts. Moreover, he argued that a number of creative programming environ-
ments will also be essential for exascale systems’ programming.

Zhao and Chen [56] suggested a GPU general-purpose computing recent predic-
tion on the basis of analyzing various GPU architectures and rules of CUDA pro-
gram execution. They demonstrated that the prediction error of a single program 
was less than 10%, and the average prediction error was less than 6. Obrien et al. 
[38] surveyed power and energy predictive models in high-performance comput-
ing applications and systems. They emphasized the shortcomings of the power and 
energy efficiency models to accurately predict the power and energy consumptions 
keeping in view the heterogeneous behavior of closely integrated high-performance 
computing systems. Furthermore, Bridges et al. [11] surveyed GPU power modeling 
and profiling techniques. They focused on the use of GPU built-in (the internal sen-
sor) and external sensors for measuring GPU power consumption. They also high-
lighted the improvements and hurdles of counter-based GPU power modeling.

Vijaykrishnan et  al. [53] examined the power consumption of applications on 
GPUs and other heterogeneous platforms. Furthermore, Nagasaka et  al. [25] pre-
sented statistical models for GPUs on the basis of performance counters provided by 
vendors. Furthermore, Kasichayanula et al. [23]. showed a study of various micro-
benchmarks running on GPUs from a perspective of power consumption.

Suda and Ren [47] presented two models for the prediction of runtime and energy 
consumption. Their models help programmers to understand the performance and 
energy-saving bottleneck of parallel applications on GPUs. Ren and Suda [48] sug-
gested a load sharing technique for adjusting the workload assignment within the 
CPU and GPU components inside a CUDA processing element (PE) with the objec-
tive of overall power optimization.
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Lim et al. [26] proposed a power model on the basis of McPAT [26] for GPUs. 
Their model used initial data from McPAT that contained detailed GPU config-
uration. Subsequently, they adjusted the model by comparing it with empirical 
data. They used NVIDIAs Fermi architecture for developing the power model. 
Chen et al. [13] suggested an integrated power and performance (IPP) prediction 
model for GPU architecture. Their model is able to predict the optimal number 
of active processors for a given application. The researchers argued that applica-
tion performance cannot be improved when applications reach the peak memory 
bandwidth and utilize more cores. Unlike previous models, their model is able to 
predict the dynamic events happening on the GPU.

Zhang et al. [55] utilized a tree-based random forest technique for the devel-
opment of a power consumption model with improved accuracy, as compared 
to regression-based methods. They used the model to investigate the correlation 
among individual performance metrics. Likewise, Pool et  al. [42] used random 
forest techniques for studying the power consumption and performance of ATI 
GPUs. Alternatively, Lee et al. [25] developed a power and energy model on the 
basis of energy consumed per unit by each instruction. Roy et al. [45] argued on 
measurement of energy as a foundation for algorithm design and implementation. 
They observed that memory parallelism has a relationship with the energy con-
sumption of algorithms. The researchers used an asymptotic energy complexity 
model [44] for validation. They also observed that a significant energy saving in 
quicksort and mergesort can be attained by varying the parallelization.

Padoin et al. [41] examined iterative applications and studied the load balanc-
ing thresholds for energy saving on those applications. They suggested two new 
versions of energy-aware load balancer with the objective to decrease the energy 
consumption of parallel architectures that execute imbalanced scientific applica-
tions with no loss in performance.

Zecena et al. [54] investigated performance and energy study of both serial as 
well as parallel odd–even sort, shell sort, and quicksort on a shared memory sys-
tem comprising of two quad-core AMD 2380 Opteron processors. The research-
ers used iterative odd–even sort and shell sort algorithms. On the other hand, they 
used a recursive version of quicksort.

Ukidave et  al. [51] studied various methods of optimization for power and 
performance efficiency on a number of heterogeneous platforms that include dis-
crete GPUs, shared memory GPUs, low power system-on-chip devices. They also 
used hardware platforms from NVIDIA, Intel, and Qualcomm Corporations. The 
researchers studied the energy efficiency of optimization techniques for identify-
ing the power-performance trade-off. They found that architectural and algorith-
mic factors have an effect on power consumption. They presented that algorithms 
implementing the same operation may have different performances depending on 
application design and target hardware. Similarly, Padoin et al. [40] evaluated the 
performance and energy efficiency of applications on hybrid CPU and GPU archi-
tecture. They used a scientific application from the area of agroforestry as a sam-
ple and examined how the application workload may affect the energy consump-
tion on hybrid architectures.
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Al-Hashimi et al. [4] investigated power and energy consumption of three control 
loops (for, while, and do-while) on Intel Sandy Bridge CPU. Their study found that 
for loop can provide power saving as compared to the other two loops. Al-Hashimi 
et  al. [5] and Aljabri et  al. [6] studied power and energy consumption of generic 
mergesort and an optimized quicksort on different Intel Architectures, i.e., Sandy 
Bridge and Ivy Bridge, respectively. They found that mergesort can provide power 
saving as compared to quicksort while executing a similar workload. Similarly, 
Jamal et al. [22] (our new research) studied the power efficiency of matrix multipli-
cation algorithms in high-performance computing. Their results suggest that power 
efficiency can be improved by selection of algorithms. In addition, Dlamini et  al. 
[19] performed a meta-analysis of two quicksort and merge sort algorithms. They 
concentrated on energy consumption of embedded systems and mobile devices. 
Likewise, Boughzala et  al. [10] analyzed CUDA kernels by predicting the energy 
consumption through simulation. The researcher claim that their model can be used 
by users to achieve energy efficiency in general-purpose GPU applications. In the 
same way, Kondo et  al. [24] discussed the development of a software framework 
for optimization of code and management of system power for post-petascale super-
computers. Montana and Cheptsov [28] considered achieving energy efficiency by 
logging the energy consumption of different algorithms, and then selecting the more 
energy-efficient algorithm for fulfilling requirements of an application.

Lee et al. [25] used value similarity to improve the power consumption of a reg-
ister file. They presented a warp compression scheme for GPU register files based 
on similarity of register values that resulted in decreasing both dynamic and leakage 
power.

Connors and Qasem [14] investigated the effect of thread block size and register 
allocation on the performance and power efficiency of three heuristic search algo-
rithms. They found a reasonable variation in the performance of codes that were 
executed with identical occupancy levels. They found that the highest occupancy 
did not always result in the best power-performance trade-offs. They also showed 
that, for a given occupancy level, having larger thread blocks, and accordingly fewer 
thread blocks per SM, usually results in improving both power and performance.

Coplin and Burtscher [17] investigated source code optimization and its outcome 
on GPU performance, power draw, and energy efficiency. They examined 128 ver-
sions of two n-body codes and evaluated the active execution time and the power 
consumption of each code version on three inputs, various GPU clock frequen-
cies, two arithmetic precisions, and with and without ECC. Most of the previous 
works rely on using external power meters, and statistical and estimation models 
for power and energy investigations. Recent high-performance GPUs come with an 
on-board sensor that can be queried dynamically to collect power-related data from 
the GPU board. Burtscher et al. [12] used the GPU onboard sensor for power and 
energy measurements on NVIDIA Kepler K20 GPU. Their work identified various 
anomalies in power and energy measurements. In addition, Coplin and Burtcher 
[16] studied the power and energy consumption of irregular and regular programs 
executing on K20 GPU using the onboard GPU sensor. Furthermore, Coplin and 
Burtscher [15] investigated the energy efficiency, power draw, and runtime of 34 
programs from 5 general-purpose GPU benchmark suites. Likewise, Ferro et al. [20] 
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investigated the GPU sensors to obtain high-resolution power profiles of real and 
benchmark applications. They developed their own tools for querying the sensors of 
two different models of NVIDIA GPUs in order to compare their accuracy.

Exploiting the GPU built-in sensor, Ikram et  al. [21] (our previous work) pro-
posed an experimental approach for measuring power and energy consumption of 
GPU kernels on NVIDIA Kepler GPUs using the GPU on-board sensor. The experi-
mental approach can help us obtain the power profile of any program executing on 
Kepler GPUs. Using the power profile, we can investigate the peak power, energy, 
and kernel runtime of the kernel executing on the GPU. This experimental approach 
was used by Al-Hashimi et al. [5] (our previous work) to study the power and energy 
consumption of Bitonic Mergesort (BM) and Advanced Quicksort (AQ) on NVIDIA 
Tesla K40 GPU. They observed that in most cases, a simple BM offers a consider-
able power and energy advantage over an optimized quicksort algorithm. Further-
more, Abulnaja et  al. [3] (our previous work) investigated power and energy con-
sumption of BM and AQ based on performance evaluation. The study identified that 
some algorithms (such as BM) have inherent power and energy advantage over other 
algorithms while executing the same workload, which can offer new ways to address 
the power obstacle of exascale systems.

Inspired by the observations in the above studies, this paper takes an orthogonal 
approach to investigate power and/or energy-saving techniques that can be fruitful 
for the exascale systems. In this regard, we propose how power and/or energy saving 
can be achieved by varying the block size in kernel configuration while executing 
the workload on GPU.

3 � Experimental setup

The experimental study was conducted on a Fujitsu HPC workstation (system speci-
fication given in Table 1) with a dedicated NVIDIA Tesla K40 GPU as a test plat-
form. We used NVIDIA System Management Interface (NVSMI) [32] to read the 
GPU sensor for obtaining the power profile of the kernel executing on the GPU. 
NVSMI is a cross-platform utility that can provide dynamic monitoring and man-
agement of activities occurring on NVIDIA GPUs. NVSMI is based on C-based 
NVIDIA Management Library (NVML) [31]. Data from NVSMI are recorded into 
a log file, which contains NVSMI Logs recorded at a sampling rate of 66.6 Hz. The 
information includes power management data and performance states with proper 
timestamps as explained in [3, 5, 21], and [32].

Table 1   System specifications

Manufacture Model CPU Menory

Fujitsu CELSIUS M720 POWER Intel(R) Xeon(R) CPU E5-2640 2.50 GHZ, 2494 
MHZ & 8.00 GB

8.0 GB
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The Visual Studio 2013 compiler configured in release mode and × 64 active 
solution platform was used for executing the code on NVIDIA Tesla K40 GPU. 
In order to leverage the parallel programming capabilities offered by NVIDIA 
GPUs, we used the Compute Unified Device Architecture (CUDA) [33] as a pro-
gramming platform in our experiments. Apart from NVSMI and CUDA, we used 
Origin 6.0 [39] (a tool for mathematical and statistical analysis) and MS Excel 
Worksheets to accomplish experiments effectively on Tesla K40 GPU.

We used a dataset of 512  M elements in our experiments as expressed in 
Table 2. In order to execute each element of the input array on a different thread 
for parallel execution on the GPU, we need to launch a kernel with 512 M threads. 
For that reason, we selected different block sizes starting from 1 (the minimum on 
NVIDIA K40) and going till 1024 (the maximum on NVIDIA K40). It should be 
noted that an optimum block size must be a power of 2. Thus, for a kernel con-
figuration with 512 M threads, we changed both the block size and grid size, as 
expressed in Table 2.

We used the experimental setup described in [21] with some modifications, 
for investigating the effect of block size on GPU kernel power and energy con-
sumption. The experimental setup is briefly described here using Fig.  3, which 
shows the full power profile (idle + active) of GPU while executing a BM Kernel 
on a dataset of one Giga elements. The power profile illustrates the current power 
draw of the NVIDIA Tesla K40 GPU board that was monitored through the built-
in GPU sensor at a sampling frequency of 66.6  Hz (as recommended in [12]) 
through NVSMI [32]. Idle and active states of Tesla K40 GPU, kernel runtime, 
and peak power are highlighted in Fig.  3, i.e., point “A” shows the active state 
starting point (at this point the GPU power level starts increasing), point “B” 
identifies the GPU peak power, and point “C” shows the end of the GPU active 
state, as the GPU power level reaches the idle state power (20.57 W for NVIDIA 
Tesla K40 GPU [30]) again.

The idea of this research is to explore the effect of varying block size on GPU 
power and energy consumption, and to provide insights for next-generation high-
performance computing (exascale) by providing new ways to achieve power and 
energy efficiency. For this purpose, we selected two fundamental building blocks 
of various high-performance computing applications that are sorting algorithms 
and vector addition.

Table 2   Kernel size for 512 M 
elements with varying block 
size and grid size

Block size Grid size Kernel size

1 536,870,912 536,870,912
64 8,388,608 536,870,912
128 4,194,304 536,870,912
256 2,097,152 536,870,912
512 1,048,576 536,870,912
1024 524,288 536,870,912
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The stepwise description of the experimental procedure for executing BM or 
VA on a dataset of 512 (536,870,912) Mega (M) elements is below:

	 1.	 Invoke NVIDIA System Management Interface (NVSMI) from command 
prompt to read on-board GPU sensor; create a log file; and generate a query to 
record power readings, performance states, and timestamps at a sampling rate 
of 66.6 Hz (every 15 ms). This sampling rate (66.6 Hz) results in accurate power 
measurements as recommended in [12].

	 2.	 A dataset of 512 M unsigned integer random numbers is generated at runtime 
in the source code using rand() % RAND MAX.

	 3.	 A GPU kernel, i.e., Bitonic Mergesort (BM) or Vector Addition (VA), is 
launched on the dataset in the source code with varying block sizes in the kernel 
configuration based on Table 2. For every block size, the kernel configuration 
is such that each number in the input array is allocated one thread for parallel 
execution on the GPU.

	 4.	 As the source code gets executed, stop NVSMI execution in the command 
prompt.

	 5.	 Extract data from NVSMI log files to MS Excel Worksheet and filter data for 
power draw, performance states, and timestamps.

	 6.	 Extract power and timestamps values only for P0 performance state (GPU active 
state) from MS Excel Worksheet to a mathematical package, i.e., Origin 6.0 
[39].

	 7.	 Find the kernel runtime from the power profile and timestamps values using the 
following equation based on Fig. 3:

(2)Kernel Runtime = t
C
− t

A

Fig. 3   Full power profile of GPU (idle state + active state) for BM: Dataset = 1G elements [3]
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where tA and tC represent the timestamps of the power profile at Point A and 
Point C, respectively.

	 8.	 Obtain the power profile of the dataset over kernel runtime and record the peak 
power. Based on Fig. 3, the peak power is described by the following equation: 
Obtain power profile of the dataset over kernel runtime and record the peak 
power. Based on Fig. 3, the peak power is described by the following equation:

where P (t) indicates the power profile of the kernel that is executing on the 
GPU, tB represents the timestamps of the power profile at Point B, and PtB 
indicates the peak power, which represents the maximum value in the power 
profile, as shown in Figure 3.

	 9.	 Obtain the average power from the power profile based on the following equa-
tion based on Fig. 3:

	10.	 Using Origin 6.0, integrate power curve to obtain energy consumption of the 
kernel using the following equation based on Fig. 3:

where tA ≤ t ≤ tC
	11.	 Obtain achieved occupancy and eligible warps using NVIDIA Nsight Visual 

Studio Edition 5.2 [36].
	12.	 Repeat step 1 to step 11 10 times to compute average values for peak power, 

average power, energy, kernel runtime, achieved occupancy, and eligible warps.

We first executed BM 10 times based on the above experimental procedure and 
collected the average results for each metric. In order to further validate the results, 
we conducted the same experiment on another kernel, i.e., VA kernel. Identical 
observations were derived from both the experiments (explained in Sect. 4.)

4 � Results evaluation

Figure  4 shows the average power and peak power consumption of Bitonic 
Mergesort (BM) versus various block sizes. The results suggest that for smaller 
block sizes (block size < 64), the GPU average power and peak power consump-
tion are low. As we increase the block size (block size > 64), the peak power and 
average power also get increase and remain almost at the same level for block 
size between 128 and 1024. It is pertinent to mention that lower peak power and 
average power at lower block size (block size < 128) are due to the lower achieved 

(3)Peak Power = max (P(t)) = P
t
B

(4)Average Power =

∑t
C

t=t
A

P(t)

number of samples

(5)Energy =

t
C

∫
t
A

P(t)
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occupancy and eligible warps across the streaming multiprocessors of the Tesla 
K40 GPU. As identified in [3] that occupancy has a relation with both perfor-
mance and power consumption of the kernel executing on the GPU. Figures  5 
and 6 show the energy consumption and kernel runtime of BM with varying block 
sizes, i.e., 64 to 1024, respectively. We have not shown results of energy and ker-
nel runtime for 1 block size, as both these metrics have very large values, i.e., 

Fig. 4   BM: power vs block size

Fig. 5   BM: energy vs block size

Fig. 6   BM: kernel runtime vs block size
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68,475.97  J and 784.48  s, respectively. The energy consumption of BM is very 
high because of higher kernel runtime, lower achieved occupancy, and lower eli-
gible warps while executing with a block size of 1. The results of kernel runt-
ime for BM are shown in Fig. 6. The results reveal that lower block size (block 
size < 64) consumes more energy but has the benefit of lower peak power and 
average power consumption.

Next, we discuss why different block sizes have different power, energy, and 
kernel runtime? To know the answer, we studied some performance counters, i.e., 
achieved occupancy and warp issue efficiency as discussed in Sect. 1. Figures 7 and 
8 show the results of BM achieved occupancy and eligible warps versus various 
block sizes, respectively. Figure 7 suggests that the achieved occupancy is very low 
for block size 1 and 64, i.e., 15.12 and 42.75%, respectively, while for larger block 
size (block size > 64), we have adequate achieved occupancy. For a block size of 128, 
we have the highest achieved occupancy and eligible warps, i.e., 85.50 and 37.52%, 
respectively. A further increase in the achieved occupancy leads to an undesirable 
effect on the kernel performance due to reduction in resources per thread [36]. On 
the other hand, lower achieved occupancy leads to poor instruction issue efficiency 
because of fewer eligible warps to hide latency between dependent instructions [3]. 
As shown in Fig. 8, for lower block size (blocksize < 128), we have fewer eligible 
warps. This is because of lower achieved occupancy at smaller block sizes. As the 

Fig. 7   BM: achieved occupancy vs block size

Fig. 8   BM: eligible warps vs block size
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achieved occupancy gets higher (block size > 64), the percentage of eligible warps 
also gets higher.

Achieved occupancy and eligible warps have also an effect on kernel runtime and 
energy consumption of the kernels. As shown in Figs. 7 and 8, the highest achieved 
occupancy and eligible warps are at a block size of 128. If we observe Figs. 5 and 
6, we can find that the minimum energy and kernel runtime are also at a block size 
of 128. Investigating achieved occupancy and observing its effect on kernel runtime, 
power, and energy when running at different occupancy levels, should be considered 
as one of the first levels triages in examining kernels’ performance on the device. 
Thus, a desirable block size can be chosen based on power or energy saving. In this 
particular case, if we want energy saving, we should select a block size of 128. On 
the other hand, if we want power saving, we should select a block size less than 128. 
Accordingly, if both power and energy saving are required, then a trade-off between 
power and energy should be identified. The trade-off should be an optimal setting 
(means block size) for both power and energy. For instance, in the case of BM, if 
both power and energy saving are required, an optimal block size should be 1024 
because, at this block size, BM is consuming 140.39 watts of power, 1758.37 J of 
energy, and kernel runtime of 16.30 s. This is a trade-off setting for BM under which 
power saving is achieved at the cost of a slight increase in energy and kernel runt-
ime. In summary, the results suggest that block size have a significant effect on the 
power, energy, and kernel runtime of the code executing on the GPU, and properly 
selecting block size result in both power and energy saving whichever is desirable.

In order to further validate the above results and observations, we repeated 
the experiments on another kernel, i.e., vector addition (VA) kernel, as shown in 
Figs. 9, 10, 11, 12, 13. We found a similar trend as in the case of BM. For exam-
ple, in the case of VA kernel, for smaller block size (block size < 128), we have 
lower peak power and average power. Similarly, as in the case of BM, here again, 
energy and kernel runtime is very high for smaller block size (block size < 128). 
More interestingly, Figs. 10 and 11 suggest that the VA kernel has the minimum 
energy and kernel runtime at a block size of 128, as was the case for the BM 
kernel. The results also suggest that higher achieved occupancy can be attained 

Fig. 9   VA: power vs block size
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by selecting block size greater than 64 both in the case of BM and VA kernels, as 
shown in Figs. 7 and 12, respectively. The same trend is also observed for eligible 
warps metrics for both BM and VA kernels, as shown in Figs. 8 and 13, respectiv
ely.

Fig. 10   VA: energy vs block size

Fig. 11   VA: kernel runtime vs block size

Fig. 12   VA: achieved occupancy vs block size
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The results further suggest that in a high-performance computing environment, 
a reasonable power or energy saving (whichever is desirable) can be achieved by 
selecting a proper block size in kernel configuration while executing the code on the 
GPU. The results of BM and VA kernels are summarized in Tables 3 and 4.

Fig. 13   VA: eligible warps vs block size

Table 3   BM kernel results with varying block size

Block size Average power 
(W)

Peak power (W) Energy (J) Kernel 
runtime 
(S)

Achieved 
occupancy 
(%)

Eligible warps 
(%)

1 87.29 94.35 68,475.97 784.8 15.12 12.23
64 105.68 132.92 2120.92 20.05 42.75 23.89
128 109.49 149.65 1649.97 15.06 85.50 37.52
256 111.66 147.55 1660.11 14.85 83,039 36.49
512 111.83 144.71 1670.28 15 82.36 35.06
1024 107.77 140.39 1758.37 16.3 81.33 31.18

Table 4   VA kernel results with varying block size

Block size Average 
power 
(W)

Peak power (W) Energy (J) Kernel 
runtime 
(S)

Achieved 
occupancy 
(%)

Eligible warps (%)

1 60.51 91.79 859.91 14.23 18.61 1.98
64 66.72 100.56 595.99 8.96 40.41 20.13
128 66.66 101.13 479.27 7.21 83.00 23.98
256 66.56 103.02 583.04 8.79 80.88 23.74
512 66.6 104.65 576.37 8.68 77.27 23.48
1024 65.96 103.15 585.42 8.9 76.13 23.32
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5 � Conclusions

This study identifies that block size in a kernel configuration has a significant effect 
on the power and energy consumption of the kernel executing on the GPU. Selecting 
kernel configuration with power-optimum, energy-optimum, or both power- and-
energy-optimum block size can offer a reasonable amount of power and/or energy 
saving for kernels executing on GPUs. The exascale research community can ben-
efit from the obtained results in selecting the optimum block size for applications 
executing on GPUs in order to reduce the excessive power requirements of exascale 
systems. Two kernels (BM and VA kernels) were investigated to study the effect of 
varying block size in kernel configuration on GPU power and energy consumption. 
In general, the following are some key observations from this study:

•	 Changes in the block size (threads per block) significantly affect the power, 
energy, and performance efficiency of the kernel executing on the GPU. For the 
prospective exascale computing environment, investigating power and energy 
consumption with varying block size should also be taken into consideration 
along with achieved occupancy as first-level triage to determine the power, 
energy, and performance efficiency of kernels executing on GPUs.

•	 Lower block size generally results in lower achieved occupancy and lower eligi-
ble warps across all the streaming multiprocessors (SMs). Having lower achieved 
occupancy and eligible warps across all the SMs limit the warp scheduler’s abil-
ity to make forward progress that results in higher kernel runtime and higher 
energy consumption of the algorithm (even with significantly lower power con-
sumption).

•	 Keeping the block size very small (block size < 64) results in very high kernel 
runtime and energy but on the other hand, lower block size has an advantage of 
lower power consumption. So, if both power and energy saving are required, 
then a trade-off between power and energy should be identified that should be an 
optimal setting (means block size) under which both power and energy are at an 
acceptable range.

As future work, it would be interesting to repeat these experiments on other het-
erogeneous architectures and investigate some other fundamental algorithms along 
with BM and VA kernels. Additionally, it would also be interesting to investigate 
how the system will react in the concurrent execution mode with respect to varia-
tion in kernel configuration. Furthermore, it would also be attracting to add some 
optimization algorithms and develop a unique formula to get the best block size and 
grid size.
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