Skip to main content
Log in

Design and analysis of a novel collision notification scheme for IoT environments

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

This paper is the first one that reveals two potential problems in CSMA/CN and proposes an adaptive collision notification (ACN) to solve them. The famous CSMA/CN (collision notification) protocol can detect the ongoing transmission collision early and use CN feedback to inform the sender to abort its transmission immediately, thereby improving the channel utilization. However, there are two potential problems in CN: (a) CN cross-boundary, namely the CN feedback might be later than a standard transmission, and (b) CN interference, namely the CN feedback might interfere with other links. To solve the above problems, in ACN, we design a generalized CN structure and a flexible CN feedback mechanism. The receiver will determine whether to send CN feedback by the collision occurring position for solving the problem (a) and select the transmission power and length of the CN feedback by the interference range for solving the problem (b). We also theoretically quantify the transmission opportunity and power of the CN feedback. We compared ACN and standard CSMA/CN through simulation experiments. Extensive simulations verify that ACN can solve both problems and significantly improve the system throughput, while CSMA/CN will have low throughput due to both problems. Therefore, the design of ACN is an extension of the standard CSMA/CN, which can help wireless network engineers to optimize CSMA/CN network deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Rani S, Koundal D, Kavita V, Ijaz MF, Elhoseny M, Alghamdi MI (2021) An optimized framework for WSN routing in the context of industry 4.0. Sensors 21(19):6474. https://doi.org/10.3390/s21196474

    Article  Google Scholar 

  2. Gupta D, Rani S, Ahmed SH, Verma S, Ijaz MF, Shafi J (2021) Edge caching based on collaborative filtering for heterogeneous ICN-IoT applications. Sensors 21(16):5491. https://doi.org/10.3390/s21165491

    Article  Google Scholar 

  3. IEEE 802.11-WLAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Standard 02.11-2007, June 2007

  4. Sen S, Roy Choudhury R, Nelakuditi S (2012) CSMA/CN: carrier sense multiple access with collision notification. IEEE/ACM Trans Netw 20(2):544–556. https://doi.org/10.1109/TNET.2011.2174461

    Article  Google Scholar 

  5. Spurgeon CE (2000) Ethernet: the definitive guide. O’Reilly Media, Inc., Newton

    Google Scholar 

  6. Vutukuru M, Balakrishnan H, Jamieson K (2009) Cross-layer wireless bit rate adaptation. Comput Commun Rev 39(4):3–14. https://doi.org/10.1145/1594977.1592571

    Article  Google Scholar 

  7. Zhao Q, Feng L, Zhao L, Li Z, Liang Y (2020) SatOpt partition: dividing throughput-stability region for IEEE 802.11 DCF networks. IEEE Trans Veh Technol 69(9):10278–10290. https://doi.org/10.1109/TVT.2020.3004476

    Article  Google Scholar 

  8. Zhao Q, Tsang DHK, Sakurai T (2011) Modeling nonsaturated IEEE 802.11 DCF networks utilizing an arbitrary buffer size. IEEE Trans Mob Comput 10(9):1248–1263. https://doi.org/10.1109/TMC.2010.258

    Article  Google Scholar 

  9. Zhao Q, Tsang DHK, Sakurai T (2009) A simple and approximate model for nonsaturated IEEE 802.11 DCF. IEEE Trans Mob Comput 8(11):1539–1553. https://doi.org/10.1109/TMC.2009.69

    Article  Google Scholar 

  10. Shahin N, Ali R, Kim SW, Kim Y-T (2019) Cognitive backoff mechanism for IEEE802.11ax high-efficiency WLANs. J Commun Netw 21(2):158–167. https://doi.org/10.1109/JCN.2019.000022

    Article  Google Scholar 

  11. Ali R, Shahin N, Zikria YB, Kim B, Kim SW (2019) Deep reinforcement learning paradigm for performance optimization of channel observation-based MAC protocols in dense WLANs. IEEE Access 7:3500–3511. https://doi.org/10.1109/ACCESS.2018.2886216

    Article  Google Scholar 

  12. Wang L, Wu K, Hamdi M (2013) Attached-RTS: eliminating an exposed terminal problem in wireless networks. IEEE Trans Parallel Distrib Syst 24(7):1289–1299. https://doi.org/10.1109/TPDS.2012.228

    Article  Google Scholar 

  13. Xiang Z, Han S, Peng H, Pei Y, Liang Y-C (2021) A cross-layer analysis for symbiotic network using CSMA/CN protocol. IEEE Internet Things J 8(7):5697–5709. https://doi.org/10.1109/JIOT.2020.3032126

    Article  Google Scholar 

  14. Zhao Q, Xu F, Wang S (2017) CSMA/CN+: improving the performance of collision notification for wireless LANs. China Commun 14(7):1–10. https://doi.org/10.1109/CC.2017.8010976

    Article  Google Scholar 

  15. Song L, Liao Y, Bian K, Song L, Han Z (2016) Cross-layer protocol design for CSMA/CD in full-duplex WiFi networks. IEEE Commun Lett 20(4):792–795. https://doi.org/10.1109/LCOMM.2016.2519518

    Article  Google Scholar 

  16. Zhang J, Shen H, Tan K, Chandra R, Zhang Y, Zhang Q (2012) Frame retransmissions considered harmful: improving spectrum efficiency using micro-ACKs. In: Proceedings of Annual Interenational Conference on Mobile Computing and Networking, MOBICOM, No. June 2014, pp 89–100. https://doi.org/10.1145/2348543.2348557

  17. Yao J, Xiong T, Zhang J, Lou W (2016) On eliminating the exposed terminal problem using signature detection. IEEE Trans Mob Comput 15(8):2034–2047. https://doi.org/10.1109/TMC.2015.2478459

    Article  Google Scholar 

  18. Ji X, Wang J, Liu M, Yan Y, Yang P, Liu Y (2014) Hitchhike: riding control on preambles. In: IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, Canada, pp 2499–2507. https://doi.org/10.1109/INFOCOM.2014.6848196

  19. Zhang X, Shin KG (2012) E-MiLi: energy-minimizing idle listening in wireless networks. IEEE Trans Mob Comput 11(9):1441–1454. https://doi.org/10.1109/TMC.2012.112

    Article  Google Scholar 

  20. Magistretti E, Gurewitz O, Knightly EW (2014) 802.11ec: collision avoidance without control messages. IEEE/ACM Trans Netw 22(6):1845–1858. https://doi.org/10.1109/TNET.2013.2288365

    Article  Google Scholar 

  21. Wang W, He S, Zhang Q, Jiang T (2020) Enabling low-power OFDM for IoT by exploiting asymmetric clock rates. IEEE/ACM Trans Netw 28(2):602–611. https://doi.org/10.1109/TNET.2020.2966112

    Article  Google Scholar 

  22. Wang Z, Zhao Q, Feng L, Xu F (2021) How much benefit can dynamic frequency scaling bring to WiFi? IEEE Trans Mob Comput 20(3):1046–1063. https://doi.org/10.1109/TMC.2019.2958323

    Article  Google Scholar 

  23. Gaber A, Omar A (2015) A study of wireless indoor positioning based on joint TDOA and DOA estimation using 2-D matrix pencil algorithms and IEEE 802.11ac. IEEE Trans Wirel Commun 14(5):2440–2454. https://doi.org/10.1109/TWC.2014.2386869

    Article  Google Scholar 

  24. Yamasaki R, Ogino A, Tamaki T, Uta T, Matsuzawa N, Kato T (2005) TDOA location system for IEEE 802.11b WLAN. In: IEEE Wireless Communications and Networking Conference, 2005, vol 4, pp 2338–2343. https://doi.org/10.1109/WCNC.2005.1424880

  25. Choi W, Lim H, Sabharwal A (2015) Power-controlled medium access control protocol for full-duplex WiFi networks. IEEE Trans Wirel Commun 14(7):3601–3613. https://doi.org/10.1109/TWC.2015.2408338

    Article  Google Scholar 

  26. Goldsmith A (2005) Wireless communications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  27. Kay S (1998) Fundamentals of statistical signal processing, vol 2. Prentice Hall, London

    Google Scholar 

  28. Shih K-P, Chen Y-D (2005) CAPC: a collision avoidance power control MAC protocol for wireless ad hoc networks. IEEE Commun Lett 9(9):859–861. https://doi.org/10.1109/LCOMM.2005.1506727

    Article  Google Scholar 

  29. Zhao Q, Xu F, Yang J, Zhang Y (2017) CSMA/CQ: a novel SDN-based design to enable concurrent execution of channel contention and data transmission in IEEE 802.11 networks. IEEE Access 5:2534–2549. https://doi.org/10.1109/ACCESS.2017.2665554

    Article  Google Scholar 

  30. Ma Z, Feng L, Wang Z (2019) Supporting asymmetric transmission for full-duplex smart-home networks. IEEE Access 7:34807–34822. https://doi.org/10.1109/ACCESS.2019.2902363

    Article  Google Scholar 

  31. Xu F, Zhao Q, Zeng Y (2016) How well does CSMA/CN work in WLANs? IEEE Trans Veh Technol 65(9):7662–7669. https://doi.org/10.1109/TVT.2015.2495250

    Article  Google Scholar 

  32. ANSI/IEEE Std 802.11, Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, 1999 edition (R2007)

  33. Radunović B, Chandra R, Gunawardena D (2012) Weeble: enabling low-power nodes to coexist with high-power nodes in white space networks. In: CoNEXT 2012—Proceedings of 2012 ACM Conference on Emerging Networking Experiments and Technologies, pp 205–216. https://doi.org/10.1145/2413176.2413201

  34. Skordoulis D, Ni Q, Chen H-H, Stephens AP, Liu C, Jamalipour A (2008) IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs. IEEE Wirel Commun 15(1):40–47. https://doi.org/10.1109/MWC.2008.4454703

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded in part by the National Natural Science Foundation of China (File Nos. 61872451 and 61872452), in part by the Science and Technology Development Fund, Macau SAR (File Nos. 0098/2018/A3, 0037/2020/A1, and 0062/2020/A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Feng, L., Yang, J. et al. Design and analysis of a novel collision notification scheme for IoT environments. J Supercomput 78, 18130–18152 (2022). https://doi.org/10.1007/s11227-022-04585-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04585-2

Keywords

Navigation