Skip to main content
Log in

Novel ternary adders and subtractors in quantum cellular automata

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

In the modern era, advances in CMOS technology have increased the number of transistors and the complexity of computations that can be performed on each chip. Due to the many limitations of this technology, to reduce the size of the chips to the nanotechnology level and to continue Moore’s law, the unique properties of quantum cellular automata have made it a candidate for future integrated circuits. Operational units such as logic and arithmetic units are the main components of processors, among which the operation of addition and subtraction is the most widely used arithmetic operator, and the design of redundant ternary adder without publishing the carry affects the performance of processors. The main aim of this paper is to design a redundant full adder and full subtractor by employing a carry and borrow bit generator module based on ternary QCA (TQCA) innovation. Based on this, the block diagram structure of the ternary redundant adder/subtractor-based TQCA circuit is presented, which includes a proposed new carry/borrow generator gate based on TQCA. The proposed full adder design has 423 ternary cells, area 0.09 µm2 and cost 647.19, and the full subtractor has 431 ternary cells, area 0.09 µm2 and cost 710.7. For validation, the circuits were simulated with the TQCAsim software. The results of this innovation show that the proposed architecture has significant advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Moore GE (1965) Cramming more components onto integrated circuits. Reprinted from Electronics 38(8):114. https://doi.org/10.1109/N-SSC.2006.4785860

    Article  Google Scholar 

  2. Adan AO, Higashi K, Fukushima Y (1999) Analytical threshold voltage model for ultrathin SOI MOSFETs including short-channel and floating-body effects. IEEE Trans Electron Devices 46(4):729–737. https://doi.org/10.1109/16.753707

    Article  Google Scholar 

  3. Chiang MH, Kim K, Chuang CT, Tretz C (2006) High-density reduced-stack logic circuit techniques using independent-gate controlled double-gate devices. IEEE Trans Electron Devices 53(9):2370–2377. https://doi.org/10.1109/TED.2006.881052

    Article  Google Scholar 

  4. Bobba S, Hajj IN (1999) Maximum leakage power estimation for CMOS circuits. In Proceedings IEEE Alessandro Volta memorial workshop on low-power design (pp. 116–124). IEEE. https://doi.org/10.1109/LPD.1999.750412

  5. Khouri KS, Jha NK (2002) Leakage power analysis and reduction during behavioral synthesis. IEEE Trans Very Large Scale Integr Syst 10(6):876–85. https://doi.org/10.1109/TVLSI.2002.808436

    Article  Google Scholar 

  6. Moaiyeri MH, Doostaregan A, Navi K (2011) Design of energy-efficient and robust ternary circuits for nanotechnology. IET Circuits Devices Syst 5(4):285–296. https://doi.org/10.1049/iet-cds.2010.0340

    Article  MATH  Google Scholar 

  7. Thompson SE, Parthasarathy S (2006) Moore’s law: the future of Si microelectronics. Mater Today 9(6):20–25. https://doi.org/10.1016/S1369-7021(06)71539-5

    Article  Google Scholar 

  8. Abu El-Seoud AK, El-Banna M, Hakim MA (2007) On modelling and characterization of single electron transistor. Int J Electron 94(6):573–585. https://doi.org/10.1080/00207210701295061

    Article  Google Scholar 

  9. Seminario JM, Derosa PA, Cordova LE, Bozard BH (2004) A molecular device operating at terahertz frequencies: theoretical simulations. IEEE Trans Nanotechnol 3(1):215–218. https://doi.org/10.1109/TNANO.2004.824012

    Article  Google Scholar 

  10. Meng H, Wang J, Wang JP (2005) A spintronics full adder for magnetic CPU. IEEE Electron Device Lett 26(6):360–362. https://doi.org/10.1109/LED.2005.848129

    Article  Google Scholar 

  11. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58. https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  12. Tougaw PD, Lent CS (1994) Logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825. https://doi.org/10.1063/1.356375

    Article  Google Scholar 

  13. Gorter CJ (1951) A possible explanation of the increase of the electrical resistance of thin metal films at low temperatures and small field strengths. Physica 17(8):777–780. https://doi.org/10.1016/0031-8914(51)90099-7

    Article  Google Scholar 

  14. Fulton TA, Dolan GJ (1987) Observation of single-electron charging effects in small tunnel junctions. Phys Rev Lett 59(1):109. https://doi.org/10.1103/PhysRevLett.59.109

    Article  Google Scholar 

  15. Zhuang L, Guo L, Chou SY (1998) Silicon single-electron quantum-dot transistor switch operating at room temperature. Appl Phys Lett 72(10):1205–1207. https://doi.org/10.1063/1.121014

    Article  Google Scholar 

  16. Khademhosseini V, Dideban D, Ahmadi MT, Ismail R (2019) The impact of vacancy defects on the performance of a single-electron transistor with a carbon nanotube island. J Comput Electron 18(2):428–435. https://doi.org/10.1007/s10825-018-01290-3

    Article  Google Scholar 

  17. Zhang R, Walus K, Wang W, Jullien GA (2004) A method of majority logic reduction for quantum cellular automata. IEEE Trans Nanotechnol 3(4):443–450. https://doi.org/10.1109/TNANO.2004.834177

    Article  Google Scholar 

  18. Linn E, Rosezin R, Tappertzhofen S, Böttger U, Waser R (2012) Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations. Nanotechnology 23(30):305205. https://doi.org/10.1088/0957-4484/23/30/305205

    Article  Google Scholar 

  19. Pershin YV, Di Ventra M (2011) Neuromorphic, digital, and quantum computation with memory circuit elements. Proc IEEE 100(6):2071–2080. https://doi.org/10.1109/JPROC.2011.2166369

    Article  Google Scholar 

  20. Wu XW, Prosser FP (1990) CMOS ternary logic circuits. IEE Proc G-Circuits Devices Syst 137(1):21–27

    Article  Google Scholar 

  21. Moaiyeri MH, Mirzaee RF, Doostaregan A, Navi K, Hashemipour O (2013) A universal method for designing low-power carbon nanotube FET-based multiple-valued logic circuits. IET Comput Digital Tech 7(4):167–181

    Article  Google Scholar 

  22. Modi S, Tomar AS (2010) Logic gate implementations for quantum dot cellular automata. In 2010 International Conference on Computational Intelligence and Communication Networks, (pp 565–567), IEEE. https://doi.org/10.1109/CICN.2010.111

  23. Mohaghegh SM, Sabbaghi-Nadooshan R, Mohammadi M (2018) Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model. Comput Electr Eng 71:43–59. https://doi.org/10.1016/j.compeleceng.2018.07.001

    Article  Google Scholar 

  24. Bajec IL, Zimic N, Mraz M (2006) The ternary quantum-dot cell and ternary logic. Nanotechnology 17(8):1937. https://doi.org/10.1088/0957-4484/17/8/023

    Article  Google Scholar 

  25. Pecar P, Bajec IL (2011) The key elements of logic design in ternary quantum-dot cellular automata. In: Calude CS, Kari J, Petre I, Rozenberg G (eds) Unconventional computation. Springer, Berlin, pp 177–188. https://doi.org/10.1007/978-3-642-21341-0_21

    Chapter  Google Scholar 

  26. Mohaghegh S, Sabbaghi-Nadooshan R (2018) Innovative model for ternary QCA gates. IET Circ Devices Syst 12(2):189–195. https://doi.org/10.1049/iet-cds.2017.0276

    Article  Google Scholar 

  27. Pain P, Sadhu A, Das K, Kanjilal MR (2020) Physical proof and simulation of ternary logic gate in ternary quantum dot cellular automata. In: Maharatna K, Kanjilal MR, Konar SC, Nandi S, Das K (eds) Computational advancement in communication circuits and systems. Springer, Singapore, pp 375–385. https://doi.org/10.1007/978-981-13-8687-9_34

    Chapter  Google Scholar 

  28. Mohammadi Mohaghegh S, Sabbaghi-Nadooshan R, Mohammadi M (2019) Design of a ternary QCA multiplier and multiplexer: a model-based approach. Analog Integr Circ Sig Process 101(1):23–29. https://doi.org/10.1007/s10470-019-01465-3

    Article  Google Scholar 

  29. Bhoi BK, Misra NK, Pradhan M (2017) A universal reversible gate architecture for designing n-bit comparator structure in quantum-dot cellular automata. Int J Grid Distrib Comput 10(9):33–46. https://doi.org/10.14257/ijgdc.2017.10.9.03

    Article  Google Scholar 

  30. Bubna M, Mazumdar S, Roy S, Mall R (2007) Designing cellular automata structures using quantum-dot cellular automata. In 14th Annual IEEE Internationsl Conference on High Perference Compufing. https://doi.org/10.1007/s10470-019-01465-3

  31. Lakshmi SK (2010) Efficient design of logical structures and functions using nanotechnology based quantum dot cellular automata design. Int J Comput Appl 3:31–33. https://doi.org/10.5120/726-1019

    Article  Google Scholar 

  32. Akbari-Hasanjani R, Sabbaghi-Nadooshan R, Tanhayi MR (2021) New polarization and power calculations with error elimination in ternary QCA. Comput Electr Eng 96:107557. https://doi.org/10.1016/j.compeleceng.2021.107557

    Article  Google Scholar 

  33. Usha M, Dhare V (2017) Quantum-dot cellular automata (QCA): a survey. arXiv preprint arXiv:1711.08153. https://doi.org/10.48550/arXiv.1711.08153

  34. Dysart TJ, Kogge PM(2008) System reliabilities when using triple modular redundancy in quantum-dot cellular automata. In 2008 IEEE International Symposium on defect and fault tolerance of VLSI systems, (pp 72–80), IEEE. https://doi.org/10.1109/DFT.2008.25

  35. Ahmadpour SS, Mosleh M, Heikalabad SR (2020) An efficient fault-tolerant arithmetic logic unit using a novel fault-tolerant 5-input majority gate in quantum-dot cellular automata. Comput Electr Eng 1(82):106548

    Article  Google Scholar 

  36. Navidi A, Sabbaghi-Nadooshan R, Dousti M (2021) TQCAsim: an accurate design and essential simulation tool for ternary logic quantum-dot cellular automata. Sci Iranica 0(0):0–0. https://doi.org/10.24200/sci.2021.53471.3256

    Article  Google Scholar 

  37. Macucci M, Iannaccone G, Francaviglia S, Pellegrini B (2001) Semiclassical simulation of quantum cellular automaton circuits. Int J Circuit Theory Appl 29(1):37–47. https://doi.org/10.1002/1097-007X

    Article  Google Scholar 

  38. Bajec IL, Mraz M (2005) Towards multi-state based computing using quantum-dot cellular automata. In: Teucher C, Adamatzky A (eds) Unconventional computing: from cellular automata to Wetware. Luniver Press, Beckington, pp 105–116

    Google Scholar 

  39. Tehrani MA, Bahrami S, Navi K (2014) A novel ternary quantum-dot cell for solving majority voter gate problem. Appl Nanosci 4(3):255–262. https://doi.org/10.1007/s13204-013-0208-y

    Article  Google Scholar 

  40. Khan A, Arya R (2021) Optimal demultiplexer unit design and energy estimation using quantum dot cellular automata. J Supercomput 77(2):1714–1738. https://doi.org/10.1007/s11227-020-03320-z

    Article  Google Scholar 

  41. Blair E, Lent C (2018) Clock topologies for molecular quantum-dot cellular automata. J Low Power Electron Appl 8(3):31. https://doi.org/10.3390/jlpea8030031

    Article  Google Scholar 

  42. Huang J, Momenzadeh M, Schiano L, Ottavi M, Lombardi F (2015) Tile-based QCA design using majority-like logic primitives. ACM J Emerg Technol Comput Syst (JETC) 1(3):163–185. https://doi.org/10.1145/1116696.1116697

    Article  Google Scholar 

  43. Shankar R (2020) Fundamentals of physics II: electromagnetism, optics, and quantum mechanics. Yale University Press, New Haven

    Book  Google Scholar 

  44. McDermott LC (1984) Research on conceptual understanding in mechanics. Phys Today 37(7):24–32

    Article  Google Scholar 

  45. Li B, Wang J, Ding G, Fu H, Lei B, Yang H, Bi J, Lei S (2021) A high-performance and low-cost montgomery modular multiplication based on redundant binary representation. IEEE Trans Circuits Syst II Express Briefs 68(7):2660–2664. https://doi.org/10.1109/tcsii.2021.3053630

    Article  Google Scholar 

  46. He Y, Chang CH (2008) A power-delay efficient hybrid carry-lookahead/carry-select based redundant binary to two’s complement converter. IEEE Trans Circuits Syst I Regul Pap 55(1):336–346. https://doi.org/10.1109/tcsi.2007.913610

    Article  MathSciNet  Google Scholar 

  47. Abid Z, Wang W (2008) New designs of redundant-binary full adders and its applications. In 2008 IEEE international symposium on circuits and systems, (pp 3366–3369), IEEE. https://doi.org/10.1109/iscas.2008.4542180

  48. Gladshtein M (2011) Quantum-dot cellular automata serial decimal adder. IEEE Trans Nanotechnol 10(6):1377–1382. https://doi.org/10.1109/TNANO.2011.2138714

    Article  Google Scholar 

  49. Kharbash F, Chaudhry GM (2008) The design of quantum-dot cellularautomata decimal adder. In 2008 IEEE International Multitopic Conference (pp 71–75), IEEE. https://doi.org/10.1109/INMIC.2008.4777710

  50. Gladshtein MA (2009) Algorithmic synthesis of a combinational adder of decimal digits encoded by the Johnson-Mobius code. Autom Control Comput Sci 43(5):233–240. https://doi.org/10.3103/S0146411609050022

    Article  Google Scholar 

  51. Gladshtein MA (2010) (2010) The signal propagation delay reduction of the combinational adder of decimal digits encoded by the Johnson-Mobius code. Autom Control Comput Sci 44(2):103–109. https://doi.org/10.3103/S0146411610020069

    Article  Google Scholar 

  52. Janez MI, Bajec IL, Pecar P, Jazbec AN, Zimic N, Mraz M (2008) Automatic design of optimal logic circuits based on ternary quantum-dot cellular automata. WSEAS Trans Cir and Sys 7:919–928

    Google Scholar 

  53. Pecar P, Janez M, Zimic N, Mraz M, Bajec IL (2009) The ternary quantum-dot cellular automata memorizing cell. In2009 IEEE Computer Society Annual Symposium on VLSI. (pp. 223–228). IEEE. https://doi.org/10.1109/ISVLSI.2009.32

  54. Pecar P (2011) Introducing interconnection crossing in ternary quantum-dot cellular automata. Proceedings of the ICQNM (pp 1–5)

  55. Arjmand MM, Soryani M, Navi K, Tehrani MA (2012) A novel ternary-to-binary converter in quantum-dot cellular automata. In 2012 IEEE Computer society annual symposium on VLSI. (pp 147–152). IEEE. https://doi.org/10.1109/ISVLSI.2012.41

  56. Das K, De D (2013) Realisation of semiconductor ternary quantum dot cellular automata. Micro Nano Lett 8(5):258–263. https://doi.org/10.1049/MNL.2012.0618

    Article  Google Scholar 

  57. Bajec IL, Pečar P (2012) Two-layer synchronized ternary quantum-dot cellular automata wire crossings. Nanoscale Res Lett 7(1):1–6. https://doi.org/10.1186/1556-276X-7-221

    Article  Google Scholar 

  58. Arjmand MM, Soryani M, Navi K (2013) Coplanar wire crossing in quantum cellular automata using a ternary cell. IET Circuits Devices Syst 7(5):263–272. https://doi.org/10.1166/jctn.2015.3942

    Article  Google Scholar 

  59. Bhattacharjee P, Das K, De M, De D (2015) SPICE modeling and analysis for metal island ternary QCA logic device. In: Mandal JK, Satapathy SC, Sanyal MK, Sarkar PP, Mukhopadhyay A (eds) Information systems design and intelligent applications. Springer, New Delhi, pp 33–41. https://doi.org/10.1007/978-81-322-2250-7_4

    Chapter  Google Scholar 

  60. Das K, De D, De M (2016) Modified ternary Karnaugh map and logic synthesis in ternary quantum dot cellular automata. IETE J Res 62(6):774–785. https://doi.org/10.1080/03772063.2016.1176541

    Article  Google Scholar 

  61. Kamali SF, Tabrizchi S, Mohammadyan S, Rastgoo M, Navi K (2020) Designing positive, negative and standard gates for ternary logics using quantum dot cellular automata. Comput Electr Eng 83:106590. https://doi.org/10.1016/j.compeleceng.2020.106590

    Article  Google Scholar 

  62. Ronaghi N, Faghih Mirzaee R, Sayedsalehi S (2020) Triangular quantum-dot cellular automata wire for standard ternary logic. Int J Theor Phys 59(12):3821–3839. https://doi.org/10.1007/s10773-020-04634-7

    Article  MATH  Google Scholar 

  63. Dehbozorgi L, Sabbaghi-Nadooshan R, Kashaninia A (2021) Realization of processing-in-memory using binary and ternary quantum-dot cellular automata. J Supercomput. https://doi.org/10.1007/s11227-021-04152-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Sabbaghi-Nadooshan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadamgahi, S.M., Sabbaghi-Nadooshan, R. & Navi, K. Novel ternary adders and subtractors in quantum cellular automata. J Supercomput 78, 18454–18496 (2022). https://doi.org/10.1007/s11227-022-04593-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04593-2

Keywords

Navigation