Skip to main content
Log in

An image super-resolution method based on polynomial exponential function and non-uniform rectangular partition

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Image texture features and details are extremely important in image super-resolution. Meanwhile, preserving image texture features and details with less running time is also a significant problem to be solved. This paper proposes an image super-resolution method based on polynomial exponential function and non-uniform rectangular partition to restore the image structure and the details of edges and textures. The algorithm performs least-squares fitting according to the image grayscale to divide the low-resolution image into several different rectangular regions. By substituting the coordinates into each regional polynomial exponential function, the approximated regional high-resolution sub-image can be obtained to form the final whole high-resolution image. The proposed method can better represent the image textures in complex regions and effectively preserve edge details and suppress artifacts. The experimental results demonstrate that the proposed method is significantly superior to the state-of-the-art methods in the terms of subjective vision, objective quantitative evaluation, and execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Irani M, Peleg S (1991) Improving resolution by image registration. CVGIP Graphic Models Image Process 53(3):231–239. https://doi.org/10.1016/1049-9652(91)90045-L

    Article  Google Scholar 

  2. Shim JS, Ju YW, Park SC (2018) Design and implementation of a pedestrian recognition algorithm using trilinear interpolation based on HOG-UDP. J Supercomput 78:787–800. https://doi.org/10.1007/s11227-017-2160-1

    Article  Google Scholar 

  3. Yao X, Wu Q, Zhang P, Bao F (2021) Weighted adaptive image super-resolution scheme based on local fractal feature and image roughness. IEEE Trans Multimed 23:1426–1441. https://doi.org/10.1109/TMM.2020.2997126

    Article  Google Scholar 

  4. Zhu S, Zeng B, Zeng L, Gabbouj M (2016) Image interpolation based on non-local geometric similarities and directional gradients. IEEE Trans Multimed 18(9):1707–1719. https://doi.org/10.1109/TMM.2016.2593039

    Article  Google Scholar 

  5. Caiming Z, Xin Z, Xuemei L, Fuhua C (2013) Cubic surface fitting to image with edges as constraints. In: 2013 IEEE International Conference on Image Processing, pp. 1046–1050 https://doi.org/10.1109/ICIP.2013.6738216

  6. Allebach J, Wong PW (1996) Edge-directed interpolation. In: Proceedings of 3rd IEEE International Conference on Image Processing, pp. 707–710 . https://doi.org/10.1109/ICIP.1996.560768

  7. Jing G, Choi YK, Wang J, Wang W (2014) Gradient guided image interpolation. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 1822–1826 , https://doi.org/10.1109/ICIP.2014.7025365

  8. Nayak R, Patra D (2018) Enhanced iterative back-projection based super-resolution reconstruction of digital images. Arab J Sci Eng 43:7521–7547. https://doi.org/10.1007/s13369-018-3150-1

    Article  Google Scholar 

  9. Tang Z, Deng M, Xiao C, Yu J (2011) Projection onto convex sets super-resolution image reconstruction based on wavelet bi-cubic interpolation. In: Proceedings of 2011 International Conference on Electronic Mechanical Engineering and Information Technology, pp. 351–354 , https://doi.org/10.1109/EMEIT.2011.6022950

  10. Freeman WT, Liu C (2011) Markov random fields for super-resolution and texture synthesis. The MIT Press, Massachusetts

  11. Belekos SP, Galatsanos NP, Babacan, SD, Katsaggelos, AK (2009) Maximum a posteriori super-resolution of compressed video using a new multichannel image prior. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 2797–2800, https://doi.org/10.1109/ICIP.2009.5414174

  12. Dong C, Loy CC, He K, Tang X (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307. https://doi.org/10.1109/TPAMI.2015.2439281

    Article  Google Scholar 

  13. Kim J, Lee JK, Lee KM (2016) Accurate image super-resolution using very deep convolutional networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654, https://doi.org/10.1109/CVPR.2016.182

  14. Liang Y, Wang J, Zhou S, Gong Y, Zheng N (2016) Incorporating image priors with deep convolutional neural networks for image super-resolution. Neurocomputing 194:340–347. https://doi.org/10.1016/j.neucom.2016.02.046

    Article  Google Scholar 

  15. Sun X, Nasrabadi NM, Tran TD (2020) Supervised deep sparse coding networks for image classification. IEEE Trans Image Process 29:405–418. https://doi.org/10.1109/TIP.2019.2928121

    Article  MathSciNet  MATH  Google Scholar 

  16. Gu S, Zuo W, Xie Q, Meng D, Feng X, Zhang L (2015) Convolutional sparse coding for image super-resolution. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1823–1831 ,https://doi.org/10.1109/ICCV.2015.212

  17. Yu H, Huang T-Z, Deng L-J, Zhao X-L (2017) Super-resolution via a fast deconvolution with kernel estimation. EURASIP J Image Video Process 3(1):1687–5281. https://doi.org/10.1186/s13640-016-0125-6

    Article  Google Scholar 

  18. Qiao C, Li D, Guo Y, Liu C, Jiang T, Dai Q, Li D (2021) Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat Methods 18:194–202. https://doi.org/10.1038/s41592-020-01048-5

    Article  Google Scholar 

  19. Deng X, Zhang Y, Xu M, Gu S, Duan Y (2021) Deep coupled feedback network for joint exposure fusion and image super-resolution. IEEE Trans Image Process 30:3098–3112. https://doi.org/10.1109/TIP.2021.3058764

    Article  Google Scholar 

  20. Andreas L, Martin D, Luc VG, Radu T (2020) Srflow: Learning the super-resolution space with normalizing flow. In: Computer Vision –ECCV 2020, pp. 715–732, https://doi.org/10.1007/978-3-030-58558-7_42

  21. Niu B, Wen W, Ren W, Zhang X, Yang L, Wang S, Zhang K, Cao X, Shen H (2020) Single image super-resolution via a holistic attention network. In: Computer Vision –ECCV 2020, pp. 191–207, Springer, Cham https://doi.org/10.1007/978-3-030-58610-2_12

  22. Zeng K, Yu J, Wang R, Li C, Tao D (2017) Coupled deep autoencoder for single image super-resolution. IEEE Trans Cybern 47(1):27–37. https://doi.org/10.1109/TCYB.2015.2501373

    Article  Google Scholar 

  23. Huang JB, Singh A, Ahuja N (2015) Single image super-resolution from transformed self-exemplars. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5197–5206 https://doi.org/10.1109/CVPR.2015.7299156

  24. Zhang Y, Fan Q, Bao F, Liu Y, Zhang C (2018) Single-image super-resolution based on rational fractal interpolation. IEEE Trans Image Process 27(8):3782–3797. https://doi.org/10.1109/TIP.2018.2826139

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang Y, Wang P, Bao F, Yao X, Zhang C, Lin H (2020) A single-image super-resolution method based on progressive-iterative approximation. IEEE Trans Multimed 22(6):1407–1422. https://doi.org/10.1109/TMM.2019.2943750

    Article  Google Scholar 

  26. Zhang Y, Cai Z, Xiong G (2021) A new image compression algorithm based on non-uniform partition and u-system. IEEE Trans Multimed 23:1069–1082. https://doi.org/10.1109/TMM.2020.2992940

    Article  Google Scholar 

  27. U K, He X, Yang B, Qi D, Tang Z (2010) A novel image denoising algorithm based on non-uniform rectangular partition and interpolation. In: Proceedings of the 2010 International Conference on Multimedia Communications. MEDIACOM ’10, pp. 9–12. IEEE Computer Society, USA ,https://doi.org/10.1109/MEDIACOM.2010.25

  28. Yuan X, Cai Z (2019) An adaptive triangular partition algorithm for digital images. IEEE Trans Multimed 21(6):1372–1383. https://doi.org/10.1109/TMM.2018.2881069

    Article  Google Scholar 

  29. Li Y, U K (2021) Zero-watermark method based on non-uniform btc partition. In: 2021 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), pp. 1–6 https://doi.org/10.1109/ICWAPR54887.2021.9736187

  30. Wen Z-T, Gundersen GG, Heittokangas J (2018) Dual exponential polynomials and linear differential equations. J Differ Equ 264(1):98–114. https://doi.org/10.1016/j.jde.2017.09.003

    Article  MathSciNet  MATH  Google Scholar 

  31. Vincent F, Besson O, Chaumette E (2014) Approximate maximum likelihood estimation of two closely spaced sources. Signal Process 97:83–90. https://doi.org/10.1016/j.sigpro.2013.10.017

    Article  Google Scholar 

  32. Spurbeck MS, Mullis CT (1998) Least squares approximation of perfect reconstruction filter banks. IEEE Trans Signal Process 46(4):968–978. https://doi.org/10.1109/78.668550

    Article  Google Scholar 

  33. Han X, Han J (2019) Bicubic b-spline surfaces constrained by the biharmonic PDE. Appl Math Comput 361:766–776. https://doi.org/10.1016/j.amc.2019.06.025

    Article  MathSciNet  MATH  Google Scholar 

  34. Bevilacqua M, Roumy A, Guillemot C, Morel MlA (2012) Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of the British Machine Vision Conference, pp. 13501–13510 https://doi.org/10.5244/C.26.135

  35. Zeyde R, Elad M, Protter M (2012) On single image scale-up using sparse-representations. In: Curves and Surfaces, Berlin, Heidelberg, pp. 711–730 https://doi.org/10.1007/978-3-642-27413-8_47

  36. Arbeláez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916. https://doi.org/10.1109/TPAMI.2010.161

    Article  Google Scholar 

  37. Pendock GJ, Sampson DD (1997) Signal-to-noise ratio of modulated sources of ASE transmitted over dispersive fiber. IEEE Photonics Technol Lett 9(7):1002–1004. https://doi.org/10.1109/68.593380

    Article  Google Scholar 

  38. Sampat MP, Wang Z, Gupta S, Bovik AC, Markey MK (2009) Complex wavelet structural similarity: a new image similarity index. IEEE Trans Image Process 18(11):2385–2401. https://doi.org/10.1109/TIP.2009.2025923

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Macau University of Science and Technology Foundation (No. FRG-21-020-FI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KinTak U.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., U, K. & Luo, H. An image super-resolution method based on polynomial exponential function and non-uniform rectangular partition. J Supercomput 79, 677–701 (2023). https://doi.org/10.1007/s11227-022-04691-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04691-1

Keywords

Navigation