
Springer Nature 2021 LATEX template

DHSA: Efficient Doubly Homomorphic Secure
Aggregation for Cross-silo Federated Learning

Zizhen Liu1,3, Si Chen2, Jing Ye1,3*, Junfeng Fan2, Huawei
Li1,3 and Xiaowei Li1,3

1*Institute of Computing Technology, Chinese Academy of
Sciences, No.6 Kexueyuan South Road, Beijing, 100190, China.
2Open Security Research, No.18 Science and technology Road,

Shenzhen, 518063, China.
3CASTEST, No.18 Zhongguancun Road, Beijing, 100083, China.

*Corresponding author(s). E-mail(s): yejing@ict.ac.cn;
Contributing authors: liuzizhen18s@ict.ac.cn;

si.chen@osr-tech.com; fan@osr-tech.com; lihuawei@ict.ac.cn;
lxw@ict.ac.cn;

Abstract
Secure aggregation is widely used in horizontal Federated Learn-
ing (FL), to prevent leakage of training data when model updates
from data owners are aggregated. Secure aggregation protocols based
on Homomorphic Encryption (HE) have been utilized in industrial
cross-silo FL systems, one of the settings involved with privacy-
sensitive organizations such as financial or medical, presenting more
stringent requirements on privacy security. However, existing HE-
based solutions have limitations in efficiency and security guar-
antees against colluding adversaries without a Trust Third Party.
This paper proposes an efficient Doubly Homomorphic Secure Aggre-
gation (DHSA) scheme for cross-silo FL, which utilizes multi-key
Homomorphic Encryption (MKHE) and seed homomorphic pseudo-
random generator (SHPRG) as cryptographic primitives. The appli-
cation of MKHE provides strong security guarantees against up to
N − 2 participates colluding with the aggregator, with no TTP
required. To mitigate the large computation and communication cost
of MKHE, we leverage the homomorphic property of SHPRG to
replace the majority of MKHE computation by computationally-friendly

1

ar
X

iv
:2

20
8.

07
18

9v
1

 [
cs

.C
R

]
 1

5
A

ug
 2

02
2

Springer Nature 2021 LATEX template

2 DHSA

mask generation from SHPRG, while preserving the security. Over-
all, the resulting scheme satisfies the stringent security requirements
of typical cross-silo FL scenarios, at the same time providing high
computation and communication efficiency for practical usage. We exper-
imentally demonstrate our scheme brings a speedup to 20× over the
state-of-the-art HE-based secure aggregation, and reduces the traffic
volume to approximately 1.5× inflation over the plain learning setting.

Keywords: Federated Learning, Security, Efficient, Homomorphic

1 Introduction
Recently, federated learning (FL) has emerged as a popular solution to build
machine learning models based on data sets distributed across multiple parties
[1]. Due to concerns of data privacy, participants in FL (e.g. mobile devices or
whole organizations) collaborate to train a machine learning model without
sharing their raw training data [2]. Instead, in each epoch of the training pro-
cess, the model is first trained locally on respective training data, and the local
model update information is exchanged among the participants to generate a
global model. According to application scenarios [20], FL can be divided into
cross-device FL and cross-silo FL. Based on the distribution characteristics of
the data sets, FL can be categorized into vertical FL and horizontal FL. This
paper focuses on the cross-silo, horizontal FL, where a small number of orga-
nizations (e.g. medical or financial institutions) with reliable communications
and relative abundant computing power jointly build a model by updating the
global model with the aggregation of local model updates.

However, as recent studies argue, although the local training data is not
exposed in FL, the exchanged model data still carries extensive information
about the training data. The inference attacks can be potentially exploited
to reveal sensitive information about the training data, which may occur
during the training process or upon the trained model [4–6]. The inference
attacks during the training process refer to the information inferring given
the model update. For example, Deep Leakage from Gradients (DLG) algo-
rithm can completely recover the training data from the uploaded gradients
during the training process [7]. Trained models obtained by FL can also leak
private information about the training data, which can be handled separately.
Consequently, privacy protection techniques including secure multiparty com-
putation (SMC) [8–12], homomorphic encryption [13–17], and differential
privacy [18, 19] are proposed to implement secure aggregation schemes to
address such indirect information leakage issues.

Existing works on privacy-preserving FL have mainly focused on cross-
device settings, where the clients are up to millions of mobile or IoT devices
with limited computing power and unreliable communications. In this sce-
nario, the main challenges are the efficiency of systems with a large number

Springer Nature 2021 LATEX template

DHSA 3

of participants and the resilience against the frequent dropout problem, which
are not the dominant concerns in the cross-silo setting [20]. Instead, in cross-
silo FL, the participating institutions such as medical [21] or financial [20]
put forward more stringent requirements on privacy. On one hand, the model
update and final trained model should be exclusively released to only those
participating organizations, preferably not to external parties including the
central server and any Trust Third Party. On the other hand, in the collud-
ing case, the local model update is desired to be exchanged without exposure.
Efficiency is another concern: computation and communication costs should
be low enough to enable industrial deployment. Besides, the trained model is
expected to achieve the same quality as one obtained from FL with plaintext
learning.

To our knowledge, there exist only a few solutions for secure aggregation
of cross-silo FL settings, where the additively Homomorphic Encryption (HE)
is commonly used for the strong privacy guarantee. With HE, clients encrypt
their updates in such a way that the server can perform aggregation directly
on ciphertexts without deriving any meaningful information about the plain-
texts [14]. However, for deep neural networks with millions of parameters,
direct encryption of gradients brings significant overhead to computation and
communication. One of the state-of-art works, BatchCrypt, develops batch
encryption techniques enabling data-parallel computation and data compres-
sion to improve efficiency [13]. While the computation overhead is amortized
to some extent, the computation time of aggregation is still orders of mag-
nitude larger than plain aggregation without encryption, and communication
traffic is inflated by at least 2 times [13]. More seriously, the security guar-
antee breaks down against collusion threats. Although threshold variant of
homomorphic encryption [15] and multi-input functional encryption [16] are
proposed to handle the colluding threats, these solutions require a Trust Third
Party, which usually is not practical in cross-silo FL.

To address the limitations of security and efficiency as mentioned above,
we develop a practical secure aggregation scheme, named doubly homomor-
phic secure aggregation (DHSA), which provably meets the requirements of
cross-silo FL. DHSA comprises two protocols: the Homomorphic Model Aggre-
gation (HMA) protocol and the Masking Seed Agreement (MSA) protocol. In
the HMA Protocol, instead of encrypting all the model data with HE, a sim-
ple masking scheme based on Seed Homomorphic Pseudorandom Generator
(SHPRG) is utilized to hide the model updates. The masks are generated by
SHPRG, taking locally sampled masking seeds as inputs, and the demasking
seed of the aggregation results is computed securely by the MSA protocol,
where multi-key Homomorphic Encryption (MKHE) is utilized to ensure the
aggregation of masking seeds is learned only by the clients, and nothing beyond
the aggregation is revealed. Based on the basic protocols, instead of calling
MSA protocol to return one demasking seed each time the model aggrega-
tion is performed by HMA protocol, we optimize the efficiency by setting up
demasking seeds for multiple epochs during per execution of MSA protocol,

Springer Nature 2021 LATEX template

4 DHSA

which takes advantage of the packing technique of selected MKHE to further
reduce overheads.

In summary, this simple construction has the following merits compared
with other secure aggregation schemes for cross-silo FL:
(1) Securely perform the model update aggregation. The combination of indi-

vidual masking encryption and MKHE provably provides strong privacy
security even when the server colludes with up to N−2 clients. DHSA pro-
vides strong security guarantees without the assumption of TTP, making
the implementation more practical than existing works.

(2) Efficient in both computation and communication aspects. The masking
operation is simple to implement, and we take advantage of the homo-
morphic property of SHPRG to simplify the achievement of demasking
further, enhancing the efficiency from both communication and computa-
tion aspects compared with the previous HE-based solutions. DHSA brings
O(M) computation complexities for each client and the server, where M
is the number of model parameters, and only approximately 1.5× infla-
tion of traffic. We experimentally demonstrate DHSA brings a speedup to
20× over the latest related work, BatchCrypt.

(3) No compromise on accuracy. DHSA experimentally obtains a similar
accuracy than non-secure uncompressed FedAvg.

2 Background and Problem Statement
2.1 Privacy Threats in Federated Learning
The basic concept of federated learning is to protect the privacy of training
data by keeping the training data on local devices. However, the shared model-
related information still carries extensive information about the corresponding
training data, resulting in the exposure of training data privacy from model
inference attacks. Depending on the data exploited by attackers to infer pri-
vacy, the model inference attacks may occur at different stages of FL learning.
Also, the trained model should be protected for its intrinsic commercial value.
Overall, the following three types of privacy concerns can be imposed.
(1) Inference attack during the learning process. The information flow of inter-

mediate results in the learning process mainly includes individual model
updates and the aggregation of clients’ model data. The individual model
updates (model parameters or gradients) can leak sensitive information
about the individual training data. For example, various membership
inference approaches are introduced to verify if a record is in the train-
ing dataset based on the parameter updates [3, 5, 22]; property inference
attacks [22] allow the adversaries to learn sensitive properties of indi-
vidual training data; more seriously, DLG algorithm [7][23] is presented
most lately to completely steal the training data from gradients. The
aggregation of clients’ model data is the merge of multiple contributions,
spontaneously covering up the sensitive information of a single party, with
relatively low risk to reveal the individual information.

Springer Nature 2021 LATEX template

DHSA 5

(2) Inference attack based on the final model outputs. The output of the
trained model is another attack source to reveal training data privacy.
Reference [6] shows even when parties obtain only black-box access to the
final model, an attacker can infer a dataset property based on a set of
queries.

(3) In addition to preventing training data from leaking through inference
attacks, the device or organization may deploy the trained machine learn-
ing model for the financial application, and restrict the ability to inspect,
misuse or steal the model.

2.2 Privacy Solution in Federated Learning
Existing privacy solutions for FL apply privacy protection techniques, includ-
ing Secure Multiparty Computation (SMC) [8–12], Homomorphic Encryption
(HE) [13–17], and Differential Privacy (DP) [18, 19] to address the inference
attacks at different stages. In this section, we briefly review these strategies,
and discuss the applicability for cross-silo FL.

Secure Multi-party Computation (SMC) guarantees that a set of parties
compute a function in a way that each one cannot learn anything except the
output, and SMC-based techniques mainly utilize Yao’s garbled circuits [24]
or secret sharing [25][12][26]. A notable work of SMC-based privacy-preserving
FL is the secure aggregation protocol proposed by Bonawitz et al. [8]. They
develop a double masking solution (Double-mask), which achieves secure
aggregation against colluding participants and is robust to dropout. In this
solution, for any pair of clients, they securely agree upon a shared mask, and
each client generates an individual mask. The message of each client is masked
with N masks in a designed way. By secretly sharing all the masking seeds,
their reconstruction is allowed upon sufficient shares. Thus, Double-mask is
robust to dropouts frequently occurring in cross-device FL. However, the
quadratic growth of computation overhead w.r.t. N is the major bottleneck.
Subsequently, TurboAgg [9] utilizes a circular communication topology to
reduce the computation overhead. SecAgg+ achieves polylogarithmic commu-
nication and computation per client via communication graph [11]. FastSecAgg
presents an FFT-based multi-secret sharing scheme to obtain O(M logN) cost
[10]. Although gaining the improvement of efficiency, the security guarantee of
those works is weaker to some extent. In the cross-silo FL, unlike the massive-
scale user case, all clients are able to participate in each round with robust
connectivity to the system. The above methods that handle the dropout prob-
lems at high overhead are not the best choice for cross-silo settings. In addition,
the sacrifice of security is not acceptable in cross-silo FL. For example, Tur-
boAgg provides the privacy guarantee against up to N/2 colluding parties,
which is insufficient for the security requirements of cross-silo FL.

Apart from SMC, HE is another common tool for addressing the privacy
leakage problem during the learning process of FL, especially of cross-silo
FL, because it seeks stronger guarantees on privacy. Many recent works [13–
16, 27] advocate the use of additively HE schemes, notably Paillier [28], as

Springer Nature 2021 LATEX template

6 DHSA

the primary means of privacy guarantee in FL. In this scheme, all the model
gradients updated by clients are encrypted by HE to ensure no informa-
tion leakage, and the homomorphic property of HE allows the aggregation
operation to be performed directly on ciphertexts without prior decryption.
However, HE performs complex cryptographic operations that are expensive
to compute. Especially for deep neural networks with millions of parameters,
direct encryption of gradients brings significant overhead to computation and
communication. To improve the efficiency of Paillier-based secure aggrega-
tion, BatchCrypt [13] develops new quantization and encoding schemes. This
method achieves batch encryption which enables data-parallel computation
and data compression. Although compared with Paillier without batching, the
computation and communication overheads are significantly reduced, ques-
tions arise about the collusion threats. For all clients utilizing the same secret
and public key pairs, it’s easy to decrypt the ciphertext of others when a client
colludes with the central server. Recent works [15, 16] handle the colluding
problem by developing the distributed decryption method. In these schemes,
different public keys are utilized to encrypt the model data, and the decryption
needs the collaboration of multiple parties. Reference [15] applies the thresh-
old variant of Paillier cryptosystem, where a Trust Third Party distributes
shares of the secret key to the set of participants such that no subset of the
parties smaller than a predefined threshold is able to decrypt values. How-
ever, it is hard to find a TTP in the cross-silo setting actually. From another
point of view, the introduction of TTP is an extra threat to privacy security.
Multi-party homomorphic encryption has been also utilized in secure aggrega-
tion of FL [17, 29] to provide security against colluding parities, nevertheless,
resulting in unacceptable data transmission cost.

Differential Privacy (DP) improves the privacy of machine learning mod-
els by injecting noises [18, 19]. Wei et al. [30] propose a framework based on
the concept of DP to prevent information leakage from model updates. DP
can also be combined with secure aggregation to defense the inference attacks
from trained models [16], or further ensure that the aggregated result does not
reveal additional information to the server [31]. However, the application of
DP always needs to tradeoff between the model quality and privacy protection
levels. It’s challenging for DP itself to provide the required security guaran-
tees of cross-silo FL while preserving the model quality. It can be applied in
our scheme as an independent supplementary component to provide further
security guarantees.

2.3 Problem statement
In this paper, we target privacy of the horizontal, cross-silo federated learn-
ing, where N data owners (also called clients) collaboratively train a model
with M parameters with the coordination of an aggregator (also called the
server). The typical optimization algorithms Federated Averaging is leveraged
to optimize the model [32], where each client provides the local model update
mu and the aggregation result

∑
mu is computed to update the global model.

Springer Nature 2021 LATEX template

DHSA 7

This process is repeated until the model accuracy and loss reach convergence
to obtain the final global model mfinal. Then the trained model is released to
the participating data owners in cross-silo settings. To avoid the inference of
training data privacy from the exchanged model update mu during the learn-
ing process [6], secure aggregation aims to compute

∑
mu without revealing

additional sensitive information beyond the model aggregation.
The threat model is honest-but-curious, and allows colluding. The poten-

tial adversaries in FL may be clients or the server who have access to the
intermediate exchanged information. In the colluding case, the adversary may
control a set of up to T clients, and may also control the aggregator, where the
adversary can view the internal state and all the messages received/sent by
the controlled ones in colluding sets. The adversary attempts to learn about
the model updates from other parties by using the viewed messages exchanged
during the execution of the protocol. As a result, adversaries steal the valued
model or utilize the model data to infer the training data of some clients.

With the above threats under consideration, the goal of the proposed secure
aggregation is to meet the standards of cross-silo FL mainly from the following
three aspects.
(1) Security. As opposed to the cross-device FL setting, the cross-silo FL set-

ting typically requires much more stringent privacy protections for the
training data, and for the trained model [20]. The security requirements
are reflected in the following aspects. (1) A secure solution should prefer-
ably achieve the highest possible value of the collusion threshold (the
maximum number of colluding parties allowed within the security guar-
antee), i.e. Tcol = N − 2. It means that clients and the server learn global
model updates without revealing any additional information (e.g. other
parties’ local model update or training data) even in the worst colluding
cases where the server colludes with N − 2 clients. 1 (2) The exchanged
model data should only be visible to the necessary parties involved. Each
local model update mu can be accessed only by data owner u. The aggre-
gated intermediate model

∑
mu and the final trained model mfinal can

be accessed only by data owners, and in particular, not accessible by the
server or any Trust Third Party.

(2) Efficiency. The privacy-preserving scheme should be able to be imple-
mented efficiently to enable the industrial deployment of cross-silo FL. The
computation and communication overhead should be reduced to minimize
the communication traffic and speed up the learning process.

(3) Model quality. A strong privacy guarantee should not be achieved at the
cost of model quality. The degradation of the trained model’s accuracy
should be minimal compared with the ideal unquantized model trained
without a secure aggregation scheme.

1Note that the security against collusion of N − 1 parties is not considered in the aggregation
scheme, because even in the ideal secure aggregation system, the model data mh of the honest
client can be indicated from

∑
mu and the joint view of N − 1 colluding parties.

Springer Nature 2021 LATEX template

8 DHSA

3 Cryptographic Tools
3.1 Seed Homomorphic PRG
Recall that a pseudorandom generator (PRG) is a deterministic polynomial-
time algorithm F : {0, 1}n → {0, 1}m such that n < m, and for randomly
distributed s ∈ {0, 1}n and r ∈ {0, 1}m, the distributions of F (s) and r are
computationally indistinguishable. A PRG F : χ→ γ, where (χ,⊕) and (γ,⊗)
are groups, is said to be seed homomorphic if the following property holds
[33]: For every s1, s2 ∈ χ, we have that F (s1)⊗ F (s2) = F (s1 ⊕ s2).

An almost Seed Homomorphic Pseudorandom Generator(SHPRG) can be
constructed based on the Learning With Rounding (LWR) problem. With the
public parameters n,m, p, q satisfying p < q, n < m, the SHPRG G(s) : Znq →
Zmq can be defined as G(s) =

⌈
AT · s

⌋
p
, where A is another public parameter

randomly sampled from Zn×mq , s is uniform in Znq , and d·cp is defined as
dxcp = dx · p/qc for x ∈ Zq. It is almost seed homomorphic in the following
sense:

G(s1 + s2) = G(s1) +G(s2) + e, e ∈ [−1, 0, 1]m.
Note that the security of the above SHPRG depends on the hardness of

LWRn,q,p problem [34]. The value of 1/p is proportional to the error rate α
in Learning With Error (LWE), so the selection of parameters should assure
that LWEn,q,1/p has difficulty satisfying the security level objective.

Multiple privacy-critical applications have been built from Seed Homo-
morphic PRG or the related preliminary Key Homomorphic Pseudorandom
Functions, such as distributed PRFs, undatable encryption [33] and private
stream aggregation [35, 36]. The homomorphism property is in support of
specific applications with provable security.

3.2 Multi-key Homomorphic Encryption
Homomorphic Encryption (HE) schemes allow certain mathematical oper-
ations to be performed directly on ciphertexts, without prior decryption.
Exactly, the homomorphic scheme allows some operations to be directly per-
formed on the ciphertexts E(m1) and E(m1) to obtain the result which
corresponds to a new ciphertext whose decryption yields the sum or the mul-
tiplication of the plaintext m1 and m2. The Paillier [13], BFV [37] and CKKS
[38] schemes are the most prevalent HE variants. The Paillier scheme allows
only addition operation to be performed on ciphertexts, while the BFV and
CKKS schemes permit both additions and multiplications. The ciphertext
packing technique of BFV and CKKS allows encrypting multiple data in a
single ciphertext and performing parallel homomorphic operations in a SIMD
manner [39]. In the traditional single-key HE schemes, all the parties involved
share the same key for encryption and decryption, and the decryption can be
done independently at any party.

Multi-key Homomorphic Encryption (MKHE) is a cryptosystem in which
each party generates its own keys, and the specific operation can be performed

Springer Nature 2021 LATEX template

DHSA 9

on ciphertexts encrypted by different parties. The decryption of the obtained
new ciphertexts is achieved by combining the respective secret keys associated
with these ciphertexts [40]. MK-BFV is a multi-key variant of the BFV HE
scheme [37] which is an Ring Learning With Error (RLWE)-based [41] cryp-
tosystem (refer to Appendix A and B for the details of RLWE and BFV).
So far, there are at least two types of MK-BFV schemes: MK-BFV based on
ciphertexts extension (see Appendix C) [42] and Compact MK-BFV [43]. Since
homomorphic multiplication is not involved in the proposed protocol, only the
linear version of the two types of MK-BFV schemes is stated in this paper.

Let P be a set of N parties that have access to an authenticated channel
and a random common reference string (CRS), the Compact MK-BFV scheme
is consisted of a tuple of steps (KeyGen, Enc, Dec, Eval, Public-key-switching)
based on BFV scheme, which are defined as follows.
• Setup: pp ← MKBFV.Setup(λ). MKBFV.Setup takes the security and

homomorphic capacity parameters as inputs, setting the RLWE dimension
n, ciphertext modulus q, key distribution χ over R, and error distribution
ψ, φ over Rq. With uniformly sampled a ← Rq, the outputs is a public
parameter pp = {n, q, χ, ψ, φ, a}, which is an implicit argument to the other
procedures.

• Key Generation: (ski, cpk)← MKBFV.
∏

KeyGen(pp).
MKBFV.

∏
KeyGen(pp) is a protocol whose input is the public parameter

pp, and outputs are key pairs (ski, cpk) to each party Pi. The protocol is
composed of two steps:

Key Generation Protocol.
Input: Public parameter pp;
Output: {ski, cpk} for each party Pi;
Client Pi:
{ski, pki} ← BFV.KeyGen(pp)}. Generates {ski,pki} by the usual
key generation calculation of BFV, where ski = si,pki = (p0,i, p1)
= (−si · a+ ei, a).
Out:
cpk← MKBFV.ComKey(pk1, pk2...pkN). Given {pki} of all parties,
the common public key is computed by cpk = ([

∑
Pi∈P p0,i]q, p1) =

([−(
∑
Pi∈P si)a+

∑
Pi∈P ei]q, a), and the corresponding secret key

is sk =
∑
Pi∈P si.

• Encryption: cti ← MKBFV.Enc(cpk, xi). Upon receiving the common pub-
lic key cpk and a plaintext xi, MKBFV.Enc(cpk, xi) exploits the usual
encryption calculation of BFV to encrypt message under sk and outputs
cti = BFV.Enc(cpk, xi) ∈ R2

q .
• Decryption: x ← MKBFV.Dec(sk, ct). Given a ciphertext ct encrypting x

and the corresponding secret key sk, MKBFV.Dec runs the usual decryption
calculation of BFV to output x = BFV.Dec(sk, ct).

• Evaluation: ct′ ← MKBFV.Eval(ct1, ct2, F (·)). Given the ciphertexts
ct1, ct2, as well as a linear function F (·), the evaluate function BFV.Eval
outputs the ciphertext ct′ such that BFV.Dec(sk, ct′) = F (x1, x2).

Springer Nature 2021 LATEX template

10 DHSA

• Public-key-switching: ct′ ←
∏

PubKeySwitch(ct,pk′, sk1, ..., skN).∏
PubKeySwitch(ct,pk′, sk1, ..., skN) is a protocol where the participants col-

laboratively re-encrypt the ciphertexts without decrypting them. Given
a ciphertext ct = (c0, c1) under sk =

∑
ski and an output public-key

pk′ = (p′0, p′1) for secret-key sk′, the parties re-encrypt ct under sk′ to obtain
ct′ = (c′0, c′1). The obtained ciphertexts can be decrypted by performing
BEV.Dec(sk′, ct′).

Public Key Switch Protocol.
Public input: ct = (c0, c1), pk′ = (p′0, p′1);
Private input: ski for party Pi;
Output: ct′ = (c′0, c′1);
Client Pi:
(h0,i, h1,i)← MKBFV.ParKeySw(pk′, ski, ct). Samples ui ← χ,
e0,i ← φ and computes (h0,i, h1,i) = (sic1 + uip

′
0 + e0,i, uip

′
1 + e1,i).

Out:
ct′ ← MKBFV.MerKeySw({(h0,i, h1,i)}i∈P). After calculating
h0 =

∑
j h0,j and h1 =

∑
j h1,j upon the given {(h0,i, h1,i)}i∈P ,

MKBFV.MerKeySw outputs the re-encryption ciphertexts ct′ =
(c′0, c′1) = (c0 + h0, h1).

The Compact MK-BFV satisfies the semantic security and can provide
security guarantees against N − 1 colluding adversaries. In this paper, we
implement secure aggregation by exploiting Compact MK-BFV instead of that
based on ciphertext extension. We will explain the reason in the next section.

4 Doubly Homomorphic Secure Aggregation
Scheme

In this section, we describe our proposed doubly homomorphic secure aggrega-
tion scheme (DHSA) for cross-silo FL which includes two layers of protocols:
the Homomorphic Model Aggregation (HMA) protocol for model aggregation
and the Masking Seed Agreement (MSA) protocol for masking seeds aggre-
gation. We begin with the motivation and observation of our design. Then
we describe the overall process of the DHSA scheme. Finally, we describe the
details of the HMA protocol and the MSA protocol.

4.1 Observation
To meet the strict requirements for privacy of cross-silo FL, we propose the
application of MK-BFV. To overcome the efficiency bottleneck, SHPRG is
leveraged in our framework, which also preserves the security property. In
detail, we first show why we apply MK-BFV to cross-silo FL and choose
the Compact version. We then explain why to introduce SHPRG-based HMA
protocol.

Springer Nature 2021 LATEX template

DHSA 11

4.1.1 Why utilize Compact MK-BFV?
The first concern of our solution is privacy security, which is especially crit-
ical to cross-silo FL. The main security goals are as follows: (1) achieve the
N − 2 collusion threshold. (2) ensure that only the data owners have access
to the aggregated intermediate model update and the final trained model.
(3) provide the privacy guarantee obviating the need for a TTP. We propose
a solution utilizing the multi-key variants of BFV to simultaneously address
these challenges. Different from the threshold Paillier utilized in previous work
[15], the distributed encryption and decryption keys in MK-BFV are gener-
ated individually or jointly among participants without the assistance of the
TTP. Besides, the corresponding ciphertexts can be successfully decrypted
only when all related parties share the partial computation results. Thus, in
general, up to N − 1 colluding parties can be tolerated without the assump-
tion of TTP, and for the aggregating operation in FL, up to N − 2 colluding
parties can be tolerated.

As a preparation, we investigate the applicability of the two mainstream
constructions of MK-BFV in secure aggregation. One of the choices is the con-
struction based on ciphertexts extension [42]. We found it infeasible to apply
it in secure aggregation because the curious server has the ability to learn the
individual model data. To achieve secure aggregation based on this type of
MK-BFV, the following steps should be taken. Each client Pi encrypts indi-
vidual model updates with the individual public key pki to obtain encrypted
model data cti = (c0,i, c1,i) and uploads it to the server for aggregation. The
server extends all cti’s to cti’s ∈ RN+1

q before summing them up. As discussed
in Appendix C, for addition arithmetic, the summed ciphertexts associated to
N different parties have the form ct′ = (

∑N
i=1 c0,i, c1,1, c1,2, ...c1,N) ∈ RN+1

q .
To decrypt the result,

〈
ct′, (1, s1, ..., sN)

〉
needs to be calculated. While for

FL scenarios, all clients perform distributed decryption under the coordina-
tion of the server, which consists two phases: first, each client Pi provides
the partial decryption shares µi = ct′[i] · si + ei = c1,i · si + ei(mod q) and
uploads it to the server; then the server merges all received µi’s by computing
µ = ct′[0] +

∑N
i=1 µi.

Problem arises now that both the raw ciphertexts cti = (c0,i, c1,i) before
being extended and the partial decryption share µi of client i can be accessed
by the server. The curious server can retrieve the individual model data
by computing c0,i + µi, which seems inevitable due to only simple addition
operation is involved in the FL systems considered.

Instead, we invoke the Compact MK-BFV scheme, where a common public
key is set up collaboratively to encrypt individual model updates. By doing
so, all ciphertexts, including the individual model update and the aggregation,
can only be decrypted jointly by all related participants. The aggregation of
ciphertexts is done in accordance with the conventional ciphertexts additive
operation without extension, and the partial decryption result combines the
sum over all ciphertexts as well as the individual secret key. Even when the

Springer Nature 2021 LATEX template

12 DHSA

server gets access to the individual ciphertexts and all the partial decryption
results, the server cannot decrypt the individual ciphertexts.

Further, to meet the request of cross-silo FL that the trained model and
aggregated intermediate model updates should be released to no external par-
ties, including the server, the Public Key Switch (PKS) protocol in Compact
MK-BFV allows the final decryption to be performed by clients. As opposed
to the two-step decryption in MK-BFV, which causes the plaintext to leak to
the server, the PKS protocol in Compact MK-BFV adjusts the partial decryp-
tion by adding a new LWE instance and returns a new ciphertext instead of
the plaintexts after merging. The new ciphertexts can be decrypted with the
specific secret key, which is kept private by the clients.

4.1.2 Why propose SHPRG-based Homomorphic Model
Aggregation protocol?

Although MK-BFV-based protocol already provides a secure aggregation solu-
tion meeting the security requirements, directly applying it on the model
updates with millions of entries induces prohibitively large computation and
communication overhead. Therefore, we introduce SHPRG to perform the
encryption and decryption of the model update instead of MK-BFV, which
is the bulk of the computation, while only the seed of SHPRG is aggregated
using MK-BFV. We leverage the following traits of SHPRG to reduce the over-
heads: (1) the almost additive homomorphic property

∑
iG(xi) ≈ G(

∑
i xi).

(2) efficient to compute compared with MK-BFV operations. (3) the size of
inputs (seed) is much smaller than the size of outputs.

Explicitly, data owner u encrypts its local modal update by

yu = xu +G(ku),

and the summed model update is decrypted by∑
u

xu ≈
∑
u

yu −G(k0),

where ku is the SHPRG seed generated by data owner u, and k0 =
∑
u ku

is the aggregated seed from MK-BFV-based protocol. In this way, the strong
security guarantee from MK-BFV can be preserved, and significant efficiency
improvement is gained from using SHPRG.

4.2 Overview of Doubly Homomorphic Secure
Aggregation Scheme

As discussed above, DHSA is constructed with two layers of protocols: the
model updates are securely shared and aggregated following the Homomorphic
Model Aggregation (HMA) protocol, which calls the Masking Seed Agreement
(MSA) protocol to return the demasking seed to the clients and enable demask-
ing to obtain the global model update. Figure 1 depicts the mechanism of the

Springer Nature 2021 LATEX template

DHSA 13

Fig. 1 The combination mechanism of two layers of protocols.

combination of the two protocols, which guides the following design of DHSA.
The most straightforward construction to build secure aggregation is that, for
every epoch t where HMA is performed to do aggregation of model updates,
MSA is called once to provide the current demasking seed kt0. Recall that in
cross-silo scenarios, all participating clients in CN remain available during the
whole iterative learning process of FL, which means the model aggregation in
the HMA protocol for every epoch is over the same set of clients. As a result,
the demasking seeds kt0’s for all involved epochs correspond to the same set
of clients. Thus, masking and demasking seeds for multiply epochs utilized in
the HMA protocol can be prepared in advance. Figure 2 depicts the overall
process of the mechanism. The MSA protocol is firstly carried out to set up
the masking seed pairs for τ epochs, which are consumed in the next τ rounds
of the HMA protocol. If the FL training convergences within τ epochs, the
execution is ended. If not, all the participants call the MSA protocol another
time and repeat the steps until the convergence is achieved.

This construction can be implemented more efficiently because we take
advantage of the SIMD technique of BFV by packing multiple masking seeds
in one BFV ciphertext. In addition to the SIMD optimization, we can evaluate
multiple ciphertexts in one execution of the MSA protocol. As a result, only
a single round of communication is required for each learning epoch of FL
to perform the HMA protocol. It’s sufficient to perform the MSA protocol

Springer Nature 2021 LATEX template

14 DHSA

• Assumption: N Clients CN = {c1, c2, ..., cN} jointly train a DNN model
whose number of trainable parameters is M , under the coordination of the
server A; the number of masking seed pairs agreed in per Masking Seed
Agreement Protocol is τ ;

• While the model has not converged to desired performance:

– Masking Seed Agreement Protocol.
Input: Ku = {k1

u, k
2
u, ..., k

τ
u} from each client u.

Output: K0 = {kt0 =
∑
u∈CN

ktu : 1 6 t 6 τ} to each client.
– For the training epoch t = 1, 2, ...τ , do

- Homomorphic Model Aggregation Protocol.
Input: the list of model update and masking seed pairs
{mt

u, k
t
u, k

t
0}u∈CN

from each client u.
Output: the aggregation of all clients’ model updates mt

0 =
∑
u∈CN

mt
u

to each client.
- If the model converges to the desired performance, end the for-loop.

Fig. 2 The Overview of Doubly Homomorphic Secure Aggregation.

once every τ epochs, which significantly reduces the number of rounds of
communication. For the FL process with a total of T epochs, if T is not bigger
than τ , the MSA protocol is executed once. Otherwise, it is executed for dT/τe
times. We can adjust the setting of τ to match different FL applications. Next,
we will describe the HMA and the MSA protocols in detail, respectively.

4.2.1 The Homomorphic Model Aggregation Protocol
In the Homomorphic Model Aggregation Protocol, the aggregation of clients’
local models is computed under the orchestration of the server, ensuring no
information about the individual models is revealed beyond their aggregated
value. Figure 3 shows the HMA protocol over the online clients that construct
the set CN . Each client first locally samples a random masking seed as the input
to the SHPRG and stretches it to a mask for all entries of the model update.
Then, they upload masked model update yu = xu +G(ku) to the server. The
server aggregates the uploaded data of online clients, and broadcasts y0 =∑
yu to online clients who receive k0 from MSA. The clients remove the mask

which isG(k0) from y0, and dequantize the result before computing the average
to obtain the updated global model. Besides, malicious clients combining the
uploaded data from different epochs may induce information leakage about
the individual client. To address this threat, clients apply different masking
seeds in different epochs to obtain disposable masks.

We instantiate the protocol by the almost seed homomorphic PRG intro-
duced in Section 2. Since the output of SHPRG is in Zmp , we set the public
modulus P in our scheme equal to p, and the model updates are prepro-
cessed by the quantization operation, which converts each bounded local
model update to w-bit integer before adding masks. For a model update m in

Springer Nature 2021 LATEX template

DHSA 15

Homomorphic Model Aggregation Protocol
Parameter: a random matrix A

R← Zµ×Mq , µ, q, p,M ∈ N, with q > p, µ <
M
Input: {mu, ku}u∈CN

, k0 =
∑
u∈CN

ku;
Output: m0 =

∑
u∈CN

mu;
Client u:
1: Preprocess the model update mu and encrypt the quantized model update
xu to return yu = xu +G(ku) mod P .
2: Upload yu to the server.
Server :
1: Collect yu of all clients, and do the aggregation to return y0 =

∑
u∈CN

yu
mod P .
2: Broadcast the masked aggregation result y0 to all online clients.
Client u:
1: After receiving y0 =

∑
u∈CN

yu mod P , decrypt it by computing x0 =
y0 −G(k0) mod P , where k0 is returned by the MKA protocol.
2: Dequantize x0 to obtain the final aggregation model update m0 =∑
u∈CN

mu.
Fig. 3 The Homomorphic Model Aggregation Protocol.

[mmin,mmax), the quantized value of m is

Q(m) =
⌊

2w(m−mmin)
mmax −mmin

⌋
,

where bac is the flooring function that maps a ∈ R to the largest integer not
greater than a. The aggregation of quantized value over N parties is at most
N(2w − 1), so we set p > N(2w − 1) to make sure the summed model update
does not overflow. For summation result x, the corresponding dequantization
is performed by

Q−1(x) = 2−w(mmax −mmin)x+Nmmin.

4.2.2 The Masking Seed Aggregation Protocol
In the Masking Seed Agreement protocol, the server and clients jointly
compute the demasking seeds which are the sum of the masking seeds of corre-
sponding clients, i.e.k0 =

∑
ku. The inputs of the MSA protocol are masking

seeds for τ epochs Ku = {k1
u, k

2
u, ..., k

τ
u} from each client u, where ktu is gener-

ated independently by the client u ∈ CN for epoch t, and kept private by the
individual. The demasking seeds for τ epochs K0 = {k1

0, k
2
0, ..., k

τ
0} are com-

puted and released to only clients without revealing the individual masking
keys, which is achieved by the compact MK-BFV technique.

As illustrated in Figure 4, the first step of the protocol is key generation to
set up the common public key and the re-encryption key. Each client generates

Springer Nature 2021 LATEX template

16 DHSA

a pair of secret and public keys individually, and the common public key is
computed for encryption based on the individual pubic keys. Here, the same
public parameter is taken as the input of the key-generation algorithm so that
the multi-key homomorphic arithmetic is supported. For a client u, after the
individual key pair {sku,pku} obtained, it uploads the public key pku to the
server. The server combines all received public keys to return a common public
key cpk, and broadcasts it to all the clients for encryption. Also, one leader
client generates the re-encryption key pair and releases it to other clients who
have access to the final decryption in a secure manner. The Diffie-Hellman
Key Agreement technique and Authenticated Encryption can be combined to
prevent revealing the re-encryption key pair to any external party including
the server [8]. It’s not the core of our work, so implementation details are
omitted here. The re-encryption secret key should be kept private by clients
who are the model receiver. To verify the validation of the re-encryption key
pair, each client performs encryption and decryption on the received key pair
to check the correctness of the decryption result.

After key generation, the participants perform two rounds of communica-
tion for encryption, evaluation, re-encryption and the final decryption. In the
first round, each client encrypts the masking seeds with the common pub-
lic key before sending it to the server. Then, the server aggregates all the
received ciphertexts to return the encrypted sum over all masking seeds, which
is ct =

∑
ctu under the joint secret key sk =

∑
sku. In the next round,

the clients and the server execute the PubKeySwitch protocol to re-encrypt∑
ctu outputting the ciphertext ReEnc(ct)=Enc(pkr, Dec(sk,ct)) which can

be decrypted with the re-encryption secret key skr. Finally, related clients uti-
lize skr to decrypt the received ciphertexts ctr and obtain the demasking seeds.

5 Correctness and Security
In this section, we state our correctness and security theorems. We consider
clients in CN and the server A execute DHSA with inputs mCN

= {mu : u ∈
CN}, | CN |= N .

5.1 Correctness
Here, we provide a preceding statement of correctness prior to the security
analysis.

Theorem 1 (Correctness Theorem) If participants in CN follow the HMA proto-
col, given the demasking seed k0 returned by the MSA protocol, clients can obtain∑
u∈CN

mu with negligible noise.

Springer Nature 2021 LATEX template

DHSA 17

Proof Because the selected PRG is almost seed-homomorphic, we have:∑
n
i=1G(ki) = G(

∑
n
i=1ki) + e mod p

where, e ∈ {−n + 1, ..., 0, 1, ..., n− 1}
(1)

For the HMA protocol, yu = mu + G(ku) mod P , where G(ku) ∈ ZMP , P = p, p >
N(2w − 1) + 1), we have:

m0 =
∑
u∈CN

yu −G(k0) mod P

=
∑
u∈CN

(mu + G(ku))−G(
∑
u∈CN

ku) mod P

=
∑
u∈CN

mu +
∑
u∈CN

G(ku)−G(
∑
u∈CN

ku) mod P

=
∑
u∈CN

mu + e0 mod P, e0 ∈ {−N + 1, ..., 0, 1, ..., N − 1}

(2)

�

The noise here is insignificant relative to the domain of aggregated quan-
tized model updates which is N(2w − 1), and can be demonstrated to have
a negligible impact on the quality of the trained model experimentally. We
conclude that the model aggregation can be computed correctly based on the
given k0.

5.2 Security
Then we show that DHSA achieves the two aspects of security goals set for
cross-silo FL as described in Section 2.4. We prove our scheme is secure against
the server colluding with up to N−2 clients in the honest-but-security setting.
Those clients and the server learn nothing more than their own inputs, and
the sum of the inputs, masking seeds and masks of the other clients. Note
that for the ideal aggregation scheme, if the server corrupts a set of clients,
the partial aggregation result of the remaining clients will be disclosed as well.
The information obtained by the colluding participants in our scheme is the
same as the ideal case. Meanwhile, the security guarantee is established on
the setting without a TTP, where intermediate model data is visible to the
necessary parties involved.

We consider the execution of DHSA with privacy threshold Tcol = N − 2,
and underlying cryptographic primitives are instantiated with security param-
eters Λ. In such a secure aggregation execution, the view of a client u consists
of its internal state (including its model update mu, masking seed ku, mask
G(ku), demasking seed k0, individual key pair for MK-BFV {sku,pku}, the
aggregated model update

∑
mu) and all messages this party received from

other parties (including common public key cpk, ciphertexts ct and ctr). The
view of the server A consists of the received information including individul
public keys {pku}u∈CN

, ciphertexts {ctu}u∈CN
, the partial re-encyption share

Springer Nature 2021 LATEX template

18 DHSA

{ReEncu(ct)}u∈CN
and the masked model updates {yu}u∈CN

. The messages
sent by this party will not be part of the view because they can be determined
using the other elements of its view.

Given any subset V ⊂ CN ∪ A, let REALCN ,Tcol,Λ
V be a random variable

representing the combined views of all parties in V in the execution of DHSA,
where the randomness is over the internal randomness of all parties, and the
randomness in the setup phase. We show that for any such set V of honest-
but-curious clients of size up to N − 2, the joint view of V can be simulated
given the inputs of the clients in V, and the sum of the inputs, masking seeds
and masks of the other clients.

Theorem 2 (Security Theorem) There exists a probabilistic polynomial time (PPT)
simulator SIM such that for all CN , mCN

, and V ⊂ CN∪A, | V\A |< N−1, the output
of SIM is computationally indistinguishable from the joint view of REALCN ,Tcol,Λ

V of
the parties in V:

REALCN ,Tcol,Λ
V (mCN

, CN) ≈ SIMCN ,Tcol,Λ
V (mV , zm, zk, zg, CN)

zm =
∑

u∈CN\V

mu, zk =
∑

u∈CN\V

ku, zg =
∑

u∈CN\V

G(ku) (3)

Proof We prove the theorem by a standard hybrid argument. We will present a series
of hybrids from variable REAL to SIM where any two subsequent random variables
are computationally indistinguishable. We assume that A ∈ V, which indicates the
view of the server should be considered. The case where A is not in V is much easier
to prove and is omitted for brevity.

Hyb0 In this hybrid, the variables are distributed exactly as in REAL. We choose
a specific client u′ in CN \ V. For this client, based on the given zm, zk
and zg, we can write as yu′ = mu′ +G(ku′) = zm + zg −

∑
u∈CN\V\{u′} yu,

ku′ = zk −
∑
u∈CN\V\{u′} ku.

Hyb1 In this hybrid, for a party u in CN \ V \ {u′}, in HMA protocol instead of
sending yu = mu + G(ku), we send yu = mu + Pu, where Pu is uniformly
random. For u′, the masked data is still generated by yu′ = zm + zg −∑
u∈CN\V\{u′} yu. The security of SHPRG guarantees that the distribution

of {yu : u ∈ CN \V \{u′}} is identically distributed to the corresponding one
in Hyb0. On the other hand, yu′ is determined by {yu : u ∈ CN \ V \ {u′}},
zm and zg, so the distribution of {yu : u ∈ CN \ V} is identically distributed
to that in Hyb0.

Hyb2 In this hybrid, for party u in CN \ V \ {u′}, we replace the uploaded data
in HMA protocol by yu = Pu, which is possible since Pu was obtained in
Hyb1 to be uniformly random, mu + Pu is also uniformly random. For the
chosen client u′, its uploaded data is still computed by yu′ = zm + zk −∑
u∈CN\V\{u′} yu, which makes the joint view of clients in CN \ V consis-

tent with the previous one, and the joint distribution of the data uploaded

Springer Nature 2021 LATEX template

DHSA 19

by clients in CN stays identical. Hence the joint view of the participants
including the server is indistinguishable from the previous hybrid.

Hyb3 In this hybrid, for a party u in CN \ V \ {u′}, in Encryption and Aggre-
gation step of the MSA protocol, instead of sending BFV.Enc(ku), we
send BFV.Enc(Pu′), where Pu

′ is uniformly random. Based on the secu-
rity of BFV, the ciphertexts are distributed identically. For u′, ku′ =
zk −

∑
u∈CN\V\{u′} P

′
u, which guarantees that the joint distribution of the

data uploaded by clients in CN stays identical. The masking seeds uploaded
by clients in the MSA protocol sum up to k0 staying identical to the previous
one.

Hyb4 In Re-encryption step of the MSA protocol, for a party v in V, send
(r0,v, r1,v) = (svc1 + uvp

′
0 + e0,v, uvp

′
1 + e1,v); for a party u in CN \ V \ {u′},

replace the uploaded data by (r0,u, r1,u) = (a0,u, a1,u) where a0,u, a1,u
are uniformly random in Rq. The usual RLWE assumption suffices the
replacement is indistinguishable. For the specific party u′, shared data
(r0,u′ , r1,u′) = (a0,u′ , a1,u′), and a0,u′ , a1,u′ are computed by a0,u′ = c0

′−c0−∑
u∈CN\V\{u′} r0,u−

∑
v∈V h0,v, a1,u′ = c1

′−
∑
u∈CN\V\{u′} r1,u−

∑
v∈V h1,v

where ctr = (c0′, c1′) is a public output. By doing this, the distribution of
{(r0,u, r1,u) : u ∈ CN} is identically distributed to that in Hyb3, and also
the simulated key switch shares sum up to ctr, making sure the joint view
of the outputs of other rounds identical to the previous hybrid.

Hyb5 In this hybrid, in Key Generation round of MSA protocol, cpk=(p0, p1) is
the output, and its transcript is the tuple (p0,1, p0,2, ...p0,N) of all the parties’
shares. In our simulator, for a party v in V, pkv = (p0,v, p1) is generated by
p0,v = −sv · p1 + ev. For a party u in CN \V \ {u′}, we substitute the locally
generated public key pku by (p0,u, p1), where p0,u is uniformly random from
Rq. For client u′, we compute p0,u′ = p0 −

∑
u∈CN\V\{u′} p0,u −

∑
v∈V p0,v

and send pku′ = (p0,u′ , p1) to the server. Here, cpk = (p0, p1) is the public
output. Thus, the simulated shares sum up to p0 which means the output
cpk of this round is equal to the real ones, and the distribution is indistin-
guishable from that of the previous hybrid. The view of other rounds of MSA
protocol results in valid keys and ciphertexts of the BFV scheme, which
indeed preserves its semantic security. Also, the final decryption can be per-
formed successfully and output the real result, preventing the adversary
from distinguishing it.

�

Thus, the PPT simulator SIM that samples from the distribution described
in the last hybrid can output computationally indistinguishable from REAL,
the distribution can be computed based on mV , zm, zk, zg. The joint view of
up to N − 2 clients can be simulated without learning individual data, which
means our scheme can preserve the security against the aggregator colluding
with an arbitrary subset of up to N − 2 clients.

Besides, the masking seeds in the HMA protocol and the encryption keys
in the MSA protocol are generated locally or collaboratively computed among

Springer Nature 2021 LATEX template

20 DHSA

clients. Our scheme provides a strong security guarantee without the need for
a TTP.

As a side note, the Public Key Switch protocol achieves the goal to release
the intermediate global model and trained model to clients only. Although one
concern is that the re-encryption keys (skr, pkr) for the PKS protocol in MSA
introduces secretly shared information among clients, which may be disclosed
to the server in colluding case, it does not violate the security goal because the
re-encryption key can only be used to decryption the re-encryption ciphertexts
ctr. In the Re-encryption step, to collaboratively compute ctr, all the clients
need to upload the partial key switch share ReEnci(ct), which is computed
upon the aggregated ciphertexts ct, to the server for merging. In honest-but-
curious setting, if the colluding adversaries learn skr to decrypt ctr, only the
aggregation result will be revealed. Even in the ideal aggregation scheme,
as soon as the clients obtain the plain aggregation results, the aggregation
results will be disclosed if the server corrupts any client. Thus, the information
exposure at this level is not a limitation of PKS protocol. In comparison, for
the previous scheme based on conventional single-key HE, the individual model
update will be exposed to someone else for all ciphertexts can be decrypted
with the same secret key. In colluding cases, the clients may learn other clients’
ciphertexts, or the server may learn the secret key, which enables an illegal
decryption. DHSA enables the final decryption done by clients, meanwhile
avoiding the exposure of individual model updates against colluding.

In all, DHSA achieves the security goals described in Section 2.4, and
provides a stronger privacy guarantee compared with previous solutions, as
shown in Tables 1.

5.3 Experimental Settings
• Benchmarking Models. We implement three representative machine learn-

ing applications in FL, and perform plain aggregation and DHSA for each
one. Our first application is a CNN model consisting of two convolutional
layers with a total of about 0.2M parameters, trained over the Fashion-
MNIST dataset [44]. In another application, we train ResNet18 [45] with
11M parameters on the CIFAR10 dataset [46]. In the third application, we
use Shakespeare dataset [47] to train a customized LSTM [48] with 1.25M
parameters. The three applications are based on different types of machine
learning models of various sizes, and cover the learning tasks for image
classification and text generation. The optimization approach for federated
learning is the Federated Averaging algorithm [49]. For plain FedAvg aggre-
gation, the model updates are represented by real-valued vectors of 32 bits
and uploaded for aggregation without encryption. For DHSA, before being
encrypted, the bounded model weights are quantized into 16-bit unsigned
integers, i.e. w = 16.

• Homomorphic Model Aggregation Protocol Implementation. In our imple-
mentation, we set the baseline setting of parameters of SHPRG used in the

Springer Nature 2021 LATEX template

DHSA 21

T
ab

le
1

C
om

pa
ri

so
n

of
pr

iv
ac

y-
pr

es
er

vi
ng

ap
pr

oa
ch

es
in

F
L

sy
st

em
s.

D
ou

bl
e-

m
as

k
Ba

tc
hC

ry
pt

T
P

PO
IS

O
N

D
O

N
O

ur
s

T
c
o
l1

α
N

(α
∈

(0
,1

))
×

α
N

(α
∈

(0
,1

))
N
−

2
N
−

2

Se
cu

ri
ty

G
lo

ba
lm

od
el

re
le

as
ed

Se
rv

er
cl

ie
nt

s
se

rv
er

qu
er

ie
r2

cl
ie

nt
s

N
on

-a
ss

um
pt

io
n

of
T

T
P

X
X

×
X

X

C
om

m
un

ic
at

io
n

(T
ep

oc
hs

)
R

ou
nd

s
4T

T
4T

2T
+

1
T

+
3d
T
/τ
e

E
ffi

ci
en

cy

Tr
affi

c
in

fla
tio

n
1
∼

2
>

2
>

10
0

>
20

1
∼

2

C
om

pu
ta

tio
n(
T

ep
oc

hs
)

O
(M

N
2)

O
(M

)
O

(M
)

O
(M

)
O

(M
)

1 T
co

l
of

D
ou

bl
e-

m
as

k
an

d
T

P
m

et
ho

ds
is

de
te

rm
in

ed
by

th
e

pa
ra

m
et

er
iz

ed
th

re
sh

ol
d

se
tt

in
g
t

=
α
N

,
w

hi
ch

m
ea

ns
th

e
de

cr
yp

tio
n

of
th

e
ag

gr
eg

at
ed

va
lu

e
ne

ed
s

th
e

qu
er

y
of

at
le

as
t
t

da
ta

pa
rt

ie
s.

2 A
qu

er
ie

ri
n

PO
IS

O
N

D
O

N
ca

n
be

on
e

of
th

e
N

pa
rt

ie
so

ra
n

ex
te

rn
al

en
tit

y
–

qu
er

ie
st

he
m

od
el

an
d

ob
ta

in
sp

re
di

ct
io

n
re

su
lts

on
its

ev
al

ua
tio

n
da

ta
.

Springer Nature 2021 LATEX template

22 DHSA

HMA protocol as µ = 512, p = 224, q = 254, and the LWE evaluator esti-
mates a hardness of over 2233 [34]. Also, q/p > µ, which ensures the LWR
problem appears to be exponentially hard for any p=poly(λ) where λ is
the security parameter [50].

• Masking Seed Aggregation Protocol Implementation. We set the parame-
ters of the MK-BFV as n = 212, log2 q = 109, log2 t = 64 which is with
192-bit security [51]. The 64-bit t (packing-compatible) can cover the com-
putation domain of the masking seed agreement process. For the running
time examination, we set the number of the masking seed pairs agreed dur-
ing per execution of MSA τ as 100. Note that we can select larger τ to gain
higher efficiency.

All experiments are run in a Lenovo server with the configuration of
Ubuntu 20.04, Intel(R) Core i7-10700K@3.80GHz CPU×16 and NVIDIA
GeForce RTX2080 SUPER. We implement DHSA in Go, which builds on
top of Lattigo [52], an open-source Go library for lattice-based cryptogra-
phy.

5.4 Efficiency of DHSA
We evaluate the efficiency from the aspect of communication and computa-
tion overheads, and compare the results with two state of the art methods,
BatchCrypt [13] and POISONDON [17]. BatchCrypt optimizes the efficiency
of HE-based secure aggregation solution for cross-silo FL, and POISONDON
utilizes multi-key CKKS which provides the same security guarantee with our
method. We set the parameters of BatchCrypt the same as that in their paper,
and set the the parameter of POSEIDON as n = 212, log2 q = 109, σ = 3.2,
which ensures 128 bits security without too much redundancy in computa-
tion and communication. All calculations below assume a single server and N
clients, where each client holds a model whose size is M .

5.4.1 Computation Efficiency
We first state the analysis of the asymptotic computation efficiency of each
protocol, and then conduct it with the running time of practical execution
experimentally. We measure the running time of two protocols separately and
the total running time of computation for one single epoch. We execute the
tests 100 times and take the average.

In the HMA protocol, the computation cost is mainly derived from com-
puting SHPRGs to generate masks for each entry in the model update vector.
The computation costs for each client and the server are O(M). We then test
the running time for different model sizes. Since the selection of parameters
influences the security, the number of clients the system can handle, and also
the efficiency, we test the running time under different setting of parameters
of SHPRG. Synthesized vectors are used for locally trained models whose ele-
ments are encoded to 16-bit unsigned integers, and the local training time is
not included in the total running time. The selected parameter settings and

Springer Nature 2021 LATEX template

DHSA 23

the corresponding running time of each client are shown in Tables 2. The
computation overhead here is linear related to the model size, independent of
the number of clients. The running time of the server of HMA is negligible
and almost the same as plain FedAvg, for simple aggregation is performed on
masked model data whose size stay similar to the raw model data.

The involved parameters of the HMA protocol include µ, p, q. We can see
from Tables 2 that when we increase µ, the security level will be enhanced.
However, the computation overhead becomes larger. In addition, larger p
makes the system able to handle more clients while resulting in higher com-
munication overhead. Given µ, either increasing p or decreasing q will lower
the security level. In this paper, we select the most moderate set of param-
eters to conduct the following efficiency evaluation. We set the parameter to
ensure sufficient security guarantee and avoid overflowing when the number
of clients is below the threshold.

Table 2 Running time of the HMA protocol with different model sizes under different
settings of SHPRG parameters.

parameters of SHPRG security the maximum
number of clients

running time for
different model sizes (ms)

µ p q 10K 100K 1M

Setting A 512 224 254 2233 256 6 62 624

Setting B 512 232 264 2128 65536 6 62 624

Setting C 256 224 272 2132 256 3 33 328

Setting D 1024 232 248 2244 65536 13 129 1291

In the MSA protocol, MK-BFV is utilized to encrypt τ masking seeds,
where the length of each one is µ, and the computation cost of each client
is composed of four components: generating encryption keys, encrypting the
messages, computing the partial re-encryption share and decryption. For
the server, the computation cost can be broken down into evaluating the
ciphertexts (addition operation in our protocol) and merging the partial re-
encryption shares. The running time of the MSA protocol for each phase is
evaluated, and the results of each step are listed in Tables 3. Note that the
computation overhead of clients here does not depend on the amount of the
model parameters and the number of clients. Due to the small data size needed
to be exchanged, the overhead is relatively small. What’s more, the MSA pro-
tocol runs once per τ epochs during the overall training process, whose average
overhead is negligible. It reduces the number of communication rounds, and
can make full use of BFV’s packing technology to improve efficiency.

To evaluate the total computation overhead resulting from DHSA, we com-
pare the running time of computation for an integral iteration with plain
FedAvg, BatchCrypt and POSEIDON. In the plain FedAvg, the learning

Springer Nature 2021 LATEX template

24 DHSA

Table 3 Running time of the MSA protocol (ms).

KeyGen Enc&Agg PubKeySwi Final Dec Total

client 0.27 10.79 11.96 3.64 26.66

server 0.07 0.8 1.7 – 2.57

process without secure aggregation, clients train the model for tlocal epochs
before the plain model updates are aggregated by the server party. The run-
ning time here includes the time of both local training and aggregation.
For other secure aggregation methods, an integral iteration includes tlocal
epochs of training, encryption of the model update, aggregation of cipher-
texts, and decryption of the result. The total running time is evaluated.
We set N = 10, τ = 100, tlocal = 10 for the FL setting applied for 2-layer
CNN, ResNet18 and LSTM. As the results visualized in Figure 5 show, our
DHSA reduces the computation overhead significantly. The extra running
time over the original FedAvg owing to DHSA is insignificant. Compared with
BatchCrypt, DHSA provides up to 20× speedup for aggregation. Specifically,
when the size of the machine learning model increases, the computation over-
head of DHSA increases more gently. DHSA gains a greater speedup over the
baseline when the model size gets larger.

5.4.2 Communication Overhead
The communication traffic mainly comes from the HMA protocol, where the
masked models of sizeM log2 p are uploaded. The communication cost isO(M)
for each client and O(MN) for the server, equal to the plain learning of FL.

For the MSA protocol, the inputs are the masking seeds whose length
is parameterized, resulting in a constant communication overhead depending
on the selected parameters of MK-BFV. Based on parameters n and q we
select for MK-BFV, the public key and ciphertext size is about 2n log2 q. The
overhead includes three rounds of communication. The common public key is
agreed in the first round, where each client uploads the individual public key
whose size is about 2n log2 q, and the server broadcasts the common public
key of the same size. The information exchanged in the second round is the
uploaded ciphertexts and the sum of the ciphertexts broadcast. For each client,
the message that needs to be encrypted is the masking seed, a private vector
of dimension µ. For τ pairs of masking seeds, the number of total messages is
µτ . With the packing encryption method, the messages can be encoded into
dµτ/ne plaintexts, and the size of corresponding ciphertexts for each client is
2n dµτ/ne log2 q. In the third round, clients upload the partial re-encryption
share, and the re-encryption ciphertexts are returned, both with the size of
2n dµτ/ne log2 q approximately.

Figure 6 depicts the communication comparison in terms of traffic vol-
ume. We see that our scheme reduces the amount of communication traffic
compared with BatchCrypt and POSEIDON, and the traffic inflation factor

Springer Nature 2021 LATEX template

DHSA 25

is reduced to approximately 1.5. We define the traffic inflation factor as the
ratio of communication traffic (between each client and the server) of secure
aggregation and plain FedAvg. Although POSEIDON inproves the computa-
tion overhead compared with BatchCrypt, the communication overhead is the
bottleneck. In addition, we stress that we can further cut down the commu-
nication traffic by adjusting the parameters of SHPRG, e.g. smaller p which
tolerates fewer participating clients. For FL system with 10 clients, if we set
p = 220, the inflation factor can be reduced to 1.25.

5.5 Quality of Trained Model
For our scheme, the model updates have two sources of error: (1) the model
parameters are quantized into 16-bit integers before masking, and correspond-
ing dequantization is done after aggregation; (2) SHPRG induces an error
term to aggregated model parameters. To measure the model quality, we track
the test accuracy for CNN and ResNet18. Training loss is used for LSTM
as the dataset is unlabelled and has no test set. As Figure 7 shows, for one
thing, compared with plain FedAvg, the convergence achieves after training
for the same epochs, which means the speed of convergence is not affected.
For another thing, the trained models obtained by our scheme reach the same
peak accuracy or bottom loss as the plain FedAvg.

(a) CNN (b) ResNet (c) LSTM
Fig. 7 The quality of trained model.

6 Conclusion
This paper presents a doubly homomorphic secure aggregation scheme for
cross-silo FL settings. We present the application of MKHE which can achieve
the stringent security goal of cross-silo FL against colluding parties at a
maximum degree. To overcome the bottleneck of high overhead, we utilize
SHPRG to reduce the volume of data that needs to be computed securely via
MKHE. Overall, we construct a practical privacy-preserving aggregation solu-
tion combining the SHPRG-based Homomorphic Model Aggregation protocol

Springer Nature 2021 LATEX template

26 DHSA

and MK-BFV-based Masking Seed Agreement protocol, which is demonstrated
to achieve the requirements of a practical and secure cross-silo FL system from
security, efficiency and accuracy aspects.

The privacy security provided by our scheme is robust to the server col-
luding with up to N − 2 clients, which can be reached without the need for
TTP. Our solution improves the computation efficiency up to 20× over base-
line experimentally, and the communication overhead is reduced significantly
meanwhile. Additionally, the security and efficiency are provided at no cost
of the accuracy of the global model, enabling the practicality for industry
deployment.

Acknowledgments. This paper is supported in part by the National
Key Research and Development Program of China under grant
No.2020YFB1600201, National Natural Science Founda- tion of China
(NSFC) under grant No.(U20A20202, 62090024, 61876173), and Youth
Innovation Promotion Association CAS.

Data Availability Statement. The datasets generated during and/or anal-
ysed during the current study are available from the corresponding author on
reasonable request.

Declaration of competing interest. The authors declare that they have
no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this article.

Appendix A Ring Learning With Errors
For a power-of-two integer n and R = Z[X]/(Xn + 1), define Rq = R/(q ·
R) as the residue ring of R modulo an integer q. The Ring Learning with
Errors(RLWE) distribution consists of tuples (ai, bi = s · ai + ei) ∈ R2

q , where
s is a fixed secret chosen from the key distribution χ over R, ai is uniformly
random in Rq, and ei is an error term drawn from the error distribution ψ
over Rq. The search RLWE problem states that, given many samples of the
form (ai, bi = s · ai + ei) ∈ R2

q , it is computationally infeasible to compute the
secret s.

Appendix B BFV
Here, we detail the common instantiation of the basic Brakerski-Fan-
Vercauteren (BFV) scheme where the ciphertext space is Rq, and the plaintext
space is the ring Rt for t < q with ∆ = bq/tc. The implemention consists of a
tuple of algorithms(KeyGen, Enc, Dec, Eval) as below:

• Setup: pp← Setup(1λ): For a given security parameter λ, set the RLWE
dimension n, ciphertext modulus q, key distribution χ and error distri-
bution ψ. Generate a random vector a ← U(Rq). Setup(1λ) returns the
public parameter pp = (n, q, χ, ψ, a).

Springer Nature 2021 LATEX template

DHSA 27

• Key Generation: {sk, pk} ← KeyGen(pp): Given the public parameter pp,
KeyGen(pp) outputs the secret key sk and the public key pk. The secret
key is sampled randomly, which is sk = s ← χ. The public key is set as
pk = (b, a), where for the sampled error vector e ← ψ, b = −s · a + e(
mod q) ∈ Rq.

• Encryption: ct ← BFV.Enc(pk,m): For massage m ∈ Rt, BFV.Enc
encrypts it as ct = (∆m+ub+ e0, ua+ e1), where u is randomly sampled
from χ and e0, e1 are sampled from ψ.

• Decryption: m ← BFV.Dec(sk,ct): Taking the secret key sk=s
and a ciphertext ct=(c0, c1) as input, BFV.Dec computes m =[⌊

t
q [c0 + c1s]q

⌉]
t

which is the plaintext corresponding to ct.
• Evaluation: ct′ ←BFV.Eval(pk, ct1, ct2, f): Given the ciphertexts ct1,

ct2 corresponding to public key pk, as well as the funtion f , BFV.Val
outputs the ciphertext ct′ such that BFV.Dec(sk, ct′)=f(m1,m2), where
cti=BFV.Enc(pk, mi).

Appendix C Multi-key BFV Based On
Ciphertexts Extension

A Multi-key BFV based on ciphertexts extension is another method to
handle homomorphic computations on ciphertexts under independently gen-
erated secret keys. Different from the compact MKBFV, ciphertexts of this
scheme are associated to k different parties. The ciphertext is of the form
ct = (c0, c1, ..., ck) ∈ Rk+1

q for a modulus q, which is decryptable by the
concatenated secret key sk = (1, s1, ..., sk). To achieve the purpose, a key
step is the common pre-processing when performing a homomorphic opera-
tion between ciphertexts. For given ciphertexts cti = (c0,i, c1,i) ∈ R2

q of client
i, the extended ciphertexts corresponding to the tuple of parties (1, 2, ...N)
are cti = (c∗0,i, c∗1,i, ..., c∗N,i) ∈ RN+1

q , where c∗0,i = c0,i, c
∗
j,i = δijc1,i, and

δij =
{

1, if j = i
0, otherwise . Thus, cti can be decrypted with the joint secret key

sk = (1, s1, ...sN). For a set of N parties P, this version of MKBFV consists
of five PPT algorithms (Setup, KeyGen, Enc, Dec, Eval).

• Setup: pp ← MKBFV.Setup(λ, κ). Taking the security and homomor-
phic capacity parameters as inputs, MKBFV.Setup outputs the public
parameter pp = {n, q, χ, ψ, a}.

• Key Generation: {ski,pki} ← MKBFV.KeyGen(pp). Each party Pi ∈ P
generates secret and public keys {sk, pk} following BFV.KeyGen(pp).

• Encryption: cti ←MKBFV.Enc(pki, xi). The usual encryption calcu-
lation of BFV is used to encrypt message under ski to return cti =
BFV.Enc(pki, xi) ∈ R2

q .
• Evaluation: ct′ ← MKBFV.Eval(F, (ct1, ct2, ..., ctN), {pki}i∈P). Given a

funcion F , a tuple of ciphertexts cti = BFV.Enc(pki, xi) = (c0,i, c1,i) ∈
R2
q and the corresponding set of public keys {pki}i∈P , MKBFV.Eval first

Springer Nature 2021 LATEX template

28 DHSA

extends each ciphertexts cti to cti ∈ RN+1
q on the joint secret key of set

P. Then the arithmetic F is performed on the extended ciphertexts to
return ct′ ∈ RN+1

q .
• Decryption: x ← MKBFV.Dec(ct, {ski}i∈P). Given a ciphertext ct

encrypting x and the corresponding sequence of secret key, MKBFV.Dec
outputs the plaintext x by calculating

〈
ct, (1, s1, ..., sN)

〉
, where we

denote 〈u, v〉 as the usual dot product of two vectors u, v.

References
[1] Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays, F., Augen-

stein, S., Eichner, H., Kiddon, C., Ramage, D.J.a.p.a..: Federated learning
for mobile keyboard prediction (2018)

[2] Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: Con-
cept and applications. ACM Transactions on Intelligent Systems and
Technology 10(2), 1–19 (2019)

[3] Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis
of deep learning: Stand-alone and federated learning under passive and
active white-box inference attacks. ArXiv abs/1812.00910 (2018)

[4] Nasr, M., Shokri, R., Houmansadr, A.: Comprehensive privacy analysis
of deep learning: Passive and active white-box inference attacks against
centralized and federated learning. In: 2019 IEEE Symposium on Security
and Privacy (SP), pp. 739–753 (2019)

[5] Zhang, J., Zhang, J., Chen, J., Yu, S.: Gan enhanced membership
inference: A passive local attack in federated learning. In: ICC 2020 -
2020 IEEE International Conference on Communications (ICC), pp. 1–6
(2020)

[6] Zhang, W., Tople, S., Ohrimenko, O.: Leakage of dataset properties in
Multi-Party machine learning. In: 30th USENIX Security Symposium
(USENIX Security 21), pp. 2687–2704 (2021)

[7] Zhu, L., Han, S.: Deep Leakage from Gradients. Federated learning, pp.
17–31 (2020)

[8] Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B.,
Patel, S., Ramage, D., Segal, A., Seth, K.: Practical secure aggregation
for privacy-preserving machine learning. In: CCS, pp. 1175–1191. ACM

[9] So, J., Guler, B., Avestimehr, A.S.: Turbo-aggregate: Breaking the
quadratic aggregation barrier in secure federated learning. IEEE JSAIT
(2020)

Springer Nature 2021 LATEX template

DHSA 29

[10] Kadhe, S., Rajaraman, N., Koyluoglu, O.O., Ramchandran, K.: Fast-
secagg: Scalable secure aggregation for privacy-preserving federated
learning. arXiv preprint arXiv:2009.11248 (2020)

[11] Bell, J.H., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure
single-server aggregation with (poly)logarithmic overhead. CCS ’20, pp.
1253–1269 (2020)

[12] Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.:
Practical covertly secure mpc for dishonest majority–or: breaking the spdz
limits. In: ESORICS, pp. 1–18. Springer

[13] Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., Liu, Y.: Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learning. In:
USENIX ATC, pp. 493–506

[14] Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Privacy-preserving deep
learning via additively homomorphic encryption. IEEE Transactions on
Information Forensics Security 13(5), 1333–1345 (2017)

[15] Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H., Zhang, R.,
Zhou, Y.: A hybrid approach to privacy-preserving federated learning. In:
AISec, pp. 1–11 (2019)

[16] Xu, R., Baracaldo, N., Zhou, Y., Anwar, A., Ludwig, H.: Hybridalpha: An
efficient approach for privacy-preserving federated learning. In: Proceed-
ings of the 12th ACM Workshop on Artificial Intelligence and Security,
pp. 13–23

[17] Sav, S., Pyrgelis, A., Troncoso-Pastoriza, J.R., Froelicher, D., Bossuat, J.,
Sousa, J.S., Hubaux, J.: POSEIDON: privacy-preserving federated neu-
ral network learning. In: 28th Annual Network and Distributed System
Security Symposium, NDSS 2021, Virtually, February 21-25, 2021 (2021)

[18] Geyer, R.C., Klein, T., Nabi, M.: Differentially private federated learning:
A client level perspective. arXiv preprint arXiv:.07557 (2017)

[19] Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar,
K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 308–318

[20] Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji,
A.N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al.:
Advances and open problems in federated learning. Foundations and
Trends® in Machine Learning 14(1–2), 1–210 (2021)

Springer Nature 2021 LATEX template

30 DHSA

[21] Sheller, M.J., Edwards, B., Reina, G.A., Martin, J., Pati, S., Kotrotsou,
A., Milchenko, M., Xu, W., Marcus, D., Colen, R.R.J.S.r.: Feder-
ated learning in medicine: facilitating multi-institutional collaborations
without sharing patient data 10(1), 1–12 (2020)

[22] Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H.: Beyond
inferring class representatives: User-level privacy leakage from federated
learning. In: IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, pp. 2512–2520 (2019)

[23] Zhao, B., Mopuri, K.R., Bilen, H.: idlg: Improved deep leakage from
gradients. arXiv preprint arXiv:2001.02610 (2020)

[24] Yao, A.C.: Protocols for secure computations. In: 23rd Annual Sym-
posium on Foundations of Computer Science (sfcs 1982), pp. 160–164
(1982)

[25] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613
(1979)

[26] Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context
of voting or lotteries. In: Frankel, Y. (ed.) Financial Cryptography, pp.
90–104. Springer, Berlin, Heidelberg (2001)

[27] Hardy, S., Henecka, W., Ivey-Law, H., Nock, R., Patrini, G., Smith, G.,
Thorne, B.J.a.p.a..: Private federated learning on vertically partitioned
data via entity resolution and additively homomorphic encryption (2017)

[28] Paillier, P.: Public-key cryptosystems based on composite degree residu-
osity classes. In: Eurocrypt, pp. 223–238. Springer

[29] Froelicher, D., Troncoso-Pastoriza, J.R., Pyrgelis, A., Sav, S., Sousa, J.S.,
Bossuat, J.-P., Hubaux, J.-P.: Scalable privacy-preserving distributed
learning. Proceedings on Privacy Enhancing Technologies 2021(2), 323–
347 (2021)

[30] Wei, K., Li, J., Ding, M., Ma, C., Yang, H.H., Farokhi, F., Jin, S., Quek,
T.Q., Poor, H.V.: Federated learning with differential privacy: Algorithms
and performance analysis. IEEE Transactions on Information Forensics
and Security 15, 3454–3469 (2020)

[31] Goryczka, S., Xiong, L.: A comprehensive comparison of multiparty
secure additions with differential privacy. IEEE Transactions on Depend-
able and Secure Computing 14(5), 463–477 (2017)

[32] Yu, H., Yang, S., Zhu, S.: Parallel restarted sgd with faster conver-
gence and less communication: Demystifying why model averaging works

Springer Nature 2021 LATEX template

DHSA 31

for deep learning. Proceedings of the AAAI Conference on Artificial
Intelligence 33, 5693–5700 (2019)

[33] Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomor-
phic prfs and their applications. In: CRYPTO, pp. 410–428. Springer

[34] Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning
with errors. JMC 9(3), 169–203 (2015)

[35] Ernst, J., Koch, A.: Private stream aggregation with labels in the
standard model. PETs 2021(4), 117–138 (2021)

[36] Valovich, F.: Aggregation of time-series data under differential privacy.
In: INSCRYPT, pp. 249–270. Springer

[37] Fan, J., Vercauteren, F.: Somewhat Practical Fully Homomorphic
Encryption. Cryptology ePrint Archive, Report 2012/144 (2012)

[38] Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for
arithmetic of approximate numbers. In: International Conference on the
Theory and Application of Cryptology and Information Security, pp. 409–
437 (2017). Springer

[39] Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations.
Designs,codes and crytography (2014)

[40] Peikert, C., Shiehian, S.: Multi-key fhe from lwe, revisited. In: Hirt, M.,
Smith, A. (eds.) Theory of Cryptography, pp. 217–238. Springer, Berlin,
Heidelberg (2016)

[41] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM 56(6) (2009)

[42] Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic
encryption with packed ciphertexts with application to oblivious neural
network inference. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pp. 395–412

[43] Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.-P., Hubaux, J.-
P.J.P.o.P.E.T.: Multiparty homomorphic encryption from ring-learning-
with-errors 4, 291–311 (2021)

[44] Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017)

[45] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. CoRR: abs/1512.03385 (2015) 1512.03385

https://arxiv.org/abs/1512.03385

Springer Nature 2021 LATEX template

32 DHSA

[46] Krizhevsky, A.: Learning multiple layers of features from tiny images
(2012)

[47] Caldas, S., Duddu, S.M.K., Wu, P., Li, T., Konen, J., Mcmahan, H.B.,
Smith, V., Talwalkar, A.: Leaf: A benchmark for federated settings (2018)

[48] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural com-
putation 9(8), 1735–1780 (1997)

[49] McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized
data. In: Artificial Intelligence and Statistics, pp. 1273–1282 (2017).
PMLR

[50] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and
lattices. In: Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, pp. 719–737 (2012)

[51] Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov,
S., Halevi, S., Hoffstein, J., Laine, K., Lauter, K., et al.: Homomor-
phic encryption standard. In: Protecting Privacy Through Homomorphic
Encryption, pp. 31–62 (2021)

[52] Lattigo v3. Online: https://github.com/tuneinsight/lattigo. EPFL-LDS,
Tune Insight SA (2022)

https://github.com/tuneinsight/lattigo

Springer Nature 2021 LATEX template

DHSA 33

Fig. 4 The Masking Seed Aggregation Protocol.

Springer Nature 2021 LATEX template

34 DHSA

Fig. 5 Total running time of computation for one epoch.

Fig. 6 The Communication Overhead.

	Introduction
	Background and Problem Statement
	Privacy Threats in Federated Learning
	Privacy Solution in Federated Learning
	Problem statement

	Cryptographic Tools
	Seed Homomorphic PRG
	Multi-key Homomorphic Encryption

	Doubly Homomorphic Secure Aggregation Scheme
	Observation
	Why utilize Compact MK-BFV?
	Why propose SHPRG-based Homomorphic Model Aggregation protocol?

	Overview of Doubly Homomorphic Secure Aggregation Scheme
	The Homomorphic Model Aggregation Protocol
	The Masking Seed Aggregation Protocol

	Correctness and Security
	Correctness
	Security
	Experimental Settings
	Efficiency of DHSA
	Computation Efficiency
	Communication Overhead

	Quality of Trained Model

	Conclusion
	Acknowledgments
	Data Availability Statement
	Declaration of competing interest

	Ring Learning With Errors
	BFV
	Multi-key BFV Based On Ciphertexts Extension

