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Abstract

With the growing computing power of high-performance computers, effi-
cient parallel algorithms are becoming increasingly important in the
development of Computational Fluid Dynamics(CFD). This research
presents a novel parallel strategy based on asynchronous and pack-
age communication. This strategy tries to enhance the performance
of large-scale computation for realistic complex geometry. The new
strategy aggregates all communications and only requires communica-
tion once at each iteration step. Convergence of the new strategy is
also proved and validated. Three numerical experiments demonstrates
the exceptional parallel performance of the novel strategy in simulat-
ing complex geometry. When the number of CPU cores approach 26
thousand, strong scale parallel efficiency still remains at 74% based
on 10.5 billion mesh elements. With 179,200 CPU cores and 10 bil-
lion mesh elements, weak scale parallel efficiency maintains at 90%.
This research demonstrates that large-scale parallel computation can
be applied efficiently in numerical simulation of a complex aircraft.
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1 Introduction

Computational fluid dynamics(CFD) is a discipline that adopts numerical
methods and computers to analyze flow questions. When compared to tradi-
tional wind tunnel experiments, CFD technology has numerous advantages,
including low cost and fast prediction speed. Nowadays, CFD has played a
key role in aircraft industry aerodynamic development, combustion research,
turbomachinery simulation and a variety of other applications.

CFD has achieved great success thanks to the rapid development of com-
puters over the past decades. Based on modern clusters, an entire simulation of
a typical case takes only several hours. However, larger-scale calculations are
required with increasing demands on fidelity and the development of numerical
methods. For instance, the simulation of general geometries typically requires
billions of mesh elements when adopting the Direct Numerical simulation
method, and the execution time for an entire simulation usually takes several
months[1]. According to the forecast, supercomputers can’t satisfy the demand
for high precision methods until 2050[2].

On the other hand, current CFD software is incapable of making efficient
use of modern computing power at all[3]. The development of applications
and software is much slower than the hardware of supercomputers. In in the
next two years, Exascale-level supercomputers will be available, which marks
a new level of hardware. However, robust CFD flow solver scalability even on
current multicore platforms is sorely lacking. Few applications can make effi-
cient use of more than O(1000) cores, although the largest machines today
are available with O(1,000,000) cores[4]. In large scale computations, the chal-
lenges mainly contain I/O, memory, storage, scalability and parallel efficiency
et al. Scalability and parallel efficiency are two most crucial aspects of all
issues. Scholars carried out a number of studies to address these challenges
and improve scalability and parallel efficiency.

Mohammed A. Al Farhan[5] reevaluated the hybrid programming paradigm
(MPI+OpenMP) on their fine-tuned version of the flux kernel of PETSc-
FUN3D. Strong scalability studies were performed on the KAUST’s Cray XC40
system, Shaheen II. 98,304 cores of 3072 compute nodes were launched in the
largest case based on 357,900 mesh vertices. The results showed that the flux
kernel still scaled well in the distributed-memory systems with the potential
of running thousands of hardware cores simultaneously.

Dana A. Jacobsen et al.[6] investigated multi-level parallelism on GPU
clusters with MPI-CUDA and hybrid MPI-OpenMP-CUDA parallel imple-
mentations. They studied the efficiency and scalability of incompressible flow
computations using up to 256 GPUs on a problem with approximately 17.2
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billion cells. Their results demonstrated that GPU clusters offered signifi-
cant benefits for large data sets, and a dual-level MPI-CUDA implementation
with maximum overlapping of computation and communication provided
substantial benefits in performance.

Igor Menshov [7] proposed a novel CUDA+MPI computational algorithm
scalable up to hundreds of GPUs and gave an in-depth analysis of its implemen-
tation. This approach could simulate compressible flow problems with complex
geometry, and the strong scaling efficiency could be increased from 81 to 92%.

Ahmet Duran et al.[8] tested the scalability of the existing OpenFOAM
solver icoFoam. Various sizes of penta-diagonal hepta-diagonal matrices were
calculated based on the simulation of blood flow in arteries with a structured
mesh domain. They achieved scaled speed-up for large matrices having sizes
up to 64 million X 64 million and up to 16384 cores.

Xiazhen Liu et al.[9] introduced a parallel CFD framework software(CCFD)
and some parallel technology based on the Sunway TaihuLight heterogeneous
architecture. They performed a super-large computational scale test based on
the Onera M6 wing model with 1 billion cells. The test achieved a parallel
efficiency of 60% with a maximum of 505000 cores across the core group based
on 13000 cores.

Thomas D. Economon [10] presented multi-node optimizations of SU2,
a widely used open-source CFD application. Based on the results with the
well-known ONERA M6 geometry, the hybrid OpenMP+MPI multigrid imple-
mentation in multi-node achieved 2X higher parallel efficiency on 256 nodes
over conventional Kry-based(GMRES) methods.

Haoqiang Jin studied the MPI+OpenMP hybrid parallel strategy with two
full CFD applications used by NASA engineers, OVERFLOW and AKIE. They
measured the performance of various hybrid configurations of these codes on
several platforms and presented a new approach which can extend the OpenMP
model with new data locality extensions to better match the more complex
memory subsystems available on modern HPC systems.

Feng He et al[11] designed a coarse-grained MPI/OpenMP hybrid paral-
lelism CFD solver framework. This solver framework overlapped nonblocking
MPI communication with OpenMP shared memory communication. A perfor-
mance of ”superlinear speedup” was gained with an increasing number of cores
and mesh sizes, which showed that the solver framework has both strong and
weak scalability.

Due to a lack of space, it is impossible to list all of the related research
projects [12–16]. Many well-known CFD softwares such as OpenFOAM,
FUN3D, SU2 have made significant efforts to enhance parallel computa-
tion performance. Meanwhile, different computer hardware and programming
approaches were also investigated in order to enhance computational efficiency.
Significant advances in high performance computing in CFD have been made
as a result of these initiatives. Nevertheless, there are still a number of chal-
lenges with large scale computing in CFD. The number of computational cores
is still remaining on the order of thousands of cores which is significantly fewer
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than the total numbers of cores in modern supercomputers. The mesh scale
utilized is limited up to hundreds of million of elements and simulation with
billions of elements is still rarely seen. Furthermore, the geometry adopted is
quite simple, which is almost useless in real-world aircraft simulation. Over-
all, efficient large-scale simulation based on complex geometry is still a critical
topic for CFD technology development.

In this paper, we propose and design a novel CFD parallel strategy that is
well suitable for modern supercomputers. This parallel strategy is implemented
based on an open-source CFD sofware - PHengLEI. The design concept of
the parallel strategy is to use asynchronous and package communication mode
during distributed computing. The novel parallel strategy has also been proven
true in theory. Several simulation cases are performed to verify the effect of
the new parallel strategy. The results indicate that the performance of the new
parallel strategy significantly outperforms existing traditional methods.

The remainder of the paper is set out as follows. Section 2 describes the key
technologies and implementation of the proposed parallel strategy in detail. In
section 3, three numerical experiments are conducted and the performance of
the results is discussed. The summary is carried out in section 4.

2 A novel parallel strategy

2.1 Introduction to PHengLEI

PHengLEI[17] is a hybrid, open-source CFD platform developed by China
Aerodynamics Research and Development Center(CARDC). PHengLEI
opened the source code in China in 2020. PHengLEI has been cloned over 1000
times by users from colleges, institutes and companies. PHengLEI is playing
a key role in the China’s CFD industry.

Based on the C++ programming language, PHengLEI designs a powerful
and flexible architecture and data structure.

Full-speed flow problems, including the subsonic, transonic, supersonic, and
hypersonic flow problems, can be accurately simulated via PHengLEI. A vari-
ety of computational models and numerical methodologies are incorporated
in PHengLEI software. The most attractive feature of PHengLEI is that it
includes a structured grid solver as well as an unstructured grid solver, allowing
it to support both the structured grids and unstructured grids simultane-
ously. The two solvers can work independently to simulate distinct questions,
meanwhile, they can work together to mimic the same problem. This research
focuses on an unstructured solver with a laminar model.

2.2 governing equation and numerical solution

The feature of flow problems is dominated by Navier-Stokes equations. The
Navier-Stokes equations are solved numerically using numerous approaches in
CFD numerical simulation. First, we give a brief overview of the governing
equations and discretization schemes used in this paper. The compressible,
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laminar flows based on the perfect gas model are focused on. The Navier-Stokes
equations can be expressed in integral form as

∂

∂t

∫

Ω

QdV +

∮

∂Ω

FidS =

∮

∂Ω

FvdS (1)

where Q represents the conservative variables, Fi and Fv are the convective
fluxes and viscous fluxes respectively. Ω is the control volume, ∂Ω is the outer
boundary of the control volume Ω.

This work focuses on transonic laminar flow problems with unstructured
grid are focused on. The discretization strategy adopts a finite volume method
(FVM) with a typical cell-based data structure. This data structure is built
with the control volumes constructed using a cell-centered technique. The
numerical solution of Navier-Stokes equations mainly involves spatial dis-
cretization and time discretization. The spatial discretization includes three
parts: convective flux computing, viscous flux computing ,and source terms
computing. Source terms are not taken into account in this study. Time dis-
cretization is solving the systems of linear equations obtained from spatial
discretization.

The first step of the numerical solution is space discretization of the gov-
erning equations. The space term is discrete on the outer boundary of a control
volume i and the time term adopts the full implicit method, then one can get
the discrete forms of NS equations as:

Vi

∆t

(

Qn+1
i −Qn

i

)

=
∑

j∈N(i)

(

−Fn+1
c,ij + Fn+1

v,ij

)

dSij (2)

where Vi is the volume of control volume i, ∆t represents the time step,Qn+1
i is

the conservative variables in element i at time step n+1,Qn
i is the conservative

variables in element i at time n, N(i) means the set of neighbor elements of the
cell i, j is one element of the neighbor cells set of element i, Fn+1

c,ij represents the

convective flux on the common face of element i and j at time step n+1,Fn+1
v,ij

is the viscous flux on the common face at time step n+ 1, dSij is the area of
the common face.

It should be noted that the terms labeled n means that they are calculated
by the conservative variables at time n, and n+1 is similar. Variables at time
step n are known at present and variables at time step n + 1 are required
solved. Lower Upper Symmetric Gauss Seidel(LUSGS) method[18] is applied
to solve this equation. Formula 2 can be translated into the form using LUSGS
as follows:

Mn
i ∆Qn

i +
∑

j∈N(i)

Mn
ij∆Qn

j =
∑

j∈N(i)

(

−Fn
c,ij + Fn

v,ij

)

dSij (3)
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where ∆Qn
i is the variation of the conservative variables in cell i at time step n,

∆Qn
j is the same meaning as ∆Qn

i in cell j, Mn
i is one coefficient of the formed

Matrix at the position of ith row and ith column, Mn
ij is one coefficient of the

formed Matrix at the position of ith row and jth column, Fn
c,ij represents the

convective flux on the common face of element i and j at time step n, Fn
v,ij

is the viscous flux on the common face at time step n, dSij is the area of the
common face.

We can see that in formula 3, ∆Qn is the only variable to be solved, and
other terms are derived by the known variables.

The convective flux and the viscous flux are the most complicated terms in
the iterative solution, therefore we’ll highlight the evaluation of the two terms
first. Fn

c,ij is calculated in convective flux computation. Fn
v,ij is evaluated in

viscous flux computation. M is accessed in time term computation. Three
terms are introduced in detail in the following text.

Fig. 1 reconstruction of physical quantity

For estimating the convective flux, the popular Roe approximate Riemann
solver[19] is adopted. Evaluation of the convective term involves three steps
as indicated in fig 1. The first step is constructing the second-order accuracy
face value by the gradient reconstruction method. The gradient calculation
utilizes the Green-Gauss method in this study. The second step is to limit
the reconstruction value by a limiter coefficient for preserving monotonicity
in the solution. This work employs the well known Venkatakrishnan limiter
computing approach. Roe flux scheme is adopted to evaluate the convective
fluxes in the third step. The details of the Roe scheme can refer to [19]. some
variables from the neighbor cells are required to be exchanged if faces for
flux calculation are located at the interface between different zones. These
flow variables consist of the density(ρ), velocities in three directions (u, v, w),
pressure(p) and the limiter coefficient(φ).

The central difference method[20] is employed to approximate the viscous
fluxes,which is easier than convective flux calculation. The evaluation of vis-
cous flux mainly consists of two steps. The first step is to evaluate primitive
values and their gradient values at the face. The weighted average method is
adopted in this calculation progress. In the second stage, the viscous flux is
then estimated directly using the viscous flux formula. If faces are on the inter-
face of different zones after the domain decomposition, the primitive variables
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and their gradients of the neighbor cells are also required to be transferred.
These flow variables consist of the density(ρ), velocities (u, v, w), pressure(p)
temperature(T ) and the viscosity coefficient(µ).

The treatment of time terms plays a role part in the convergence and
robustness of the numerical solutions. The widely used LUSGS[18] method is
adopted in this paper due to its numerical stability and robustness. LUSGS
method a matrix-free which is also easy to code. LUSGS is divided into two
parts: forward sweep and backward sweep, with formulas as follows:

L∆Q
n
= b, U∆Qn = ∆Q

n
(4)

where L and U are respectively lower and upper triangular matrix of
the coefficient matrix Mn, ∆Qn is the variable to be solved, ∆Q

n
is the

intermediate variable for solving ∆Qn.
∆Qn in the whole flow field can be solved by formula 4. ∆Qn at the

interface between different zones is required communicated in LUSGS method.
After solving formula 4, primitive and conservative variables need to be

updated via ∆Qn. No communication is required in the procedure of updating
results. Above all, the iterative solution for the entire laminar flow can be
summarized in six steps as follows:

1. Perform Pre-processing such as the mesh I/O and partitioning.
2. Calculate the conservative flux.
3. Calculate the viscous flux.
4. Time marching process.
5. Update results of primitive variables.
6. Output the results.
Where the steps 2 to step 5 are major parts of the iterative computation.

There is a lot of communication in these steps which are mainly optimized in
this paper.

2.3 CFD basic communication

Efficient communication is a significant and hard challenge in large-scale
parallel computing. This section introduces the general communication proce-
dure in CFD parallel simulation. Message Passing Interface(MPI) which is a
de-facto standard for parallel programming, is the commonly used communi-
cation mode. Despite many other parallel models have been developed, such
as OpenMP and OpenAcc, MPI is still the most important parallel model in
current high performance computing.

In CFD simulations, tens of millions of mesh elements are typically required
for practical engineering geometry. The domain decomposition strategy is a
major mean for tackling large-scale challenges. Decomposing the mesh into
several sub-zones via partitioning tools such as METIS[21] is the initial stage
in Domain decomposition. Second, each sub-zone is allocated to a processor,
which builds the connection relationship containing information about neigh-
boring cells. Finally, the CFD application begins an iterative computation and
communicates values among processors based on the connection relationship.
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In the following text, we will provide an exhaustive explanation via a basic
scenario depicted in Fig. 2.

Fig. 2 Domain Decomposition in PHengLEI application

An initial grid with 16 elements is separated into four zones. The four
zones are labeled with numerals 1-4, and each zone is arranged to a CPU
processor respectively. It is easy to see that each zone owns 4 elements and
the load on each processor is balanced. The principle of ensuring load balance
is the similar in large-scale problems. Afterward, connection relationship and
communication data structure between the four zones are established.

The connection relationships include the information of neighbored zones
and neighbored cells. Take zone 1 as an example, zone 1 has two neighbored
zones, namely zone 2 and 3. Cell 1 in zone 0 is neighbored by cell 0 of zone 2
and cell 2 is neighbored by cell 0 of zone 3. Cell 3 is both neighbored by cell 2
of zone2 and cell 1 of zone 3. Similar connection relationships for other zones
are also required to be established. Data structure primarily refer to ghost cells
used to store the values received from neighbor zones as labeled by the blue
arrow in Fig. 3(a).
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(a) Connection relationship. (b) Values passing.

Fig. 3 Communication between different zones

In parallel simulation, the Ghost cell approach makes each zone solve the
equations independently like solving a serial problem. The entire communica-
tion procedure for the four zones is displayed in Fig. 3(b). CPU 1 sends and
receives variables from CPU 2 and 3, respectively. Other processors have a
similar communication process with CPU 1. Each zone will set variables in
ghost cells by received values following communication.

Communication exists in the entire calculation processes such as pre-
processing, iterative computing, and post-processing. Communication in iter-
ative computing is the most important factor for performance. Fig. 4 depicts
the detailed communication process in a single iteration step. Limiter coef-
ficients (φ) and gradient values of primitive variables (dqdx, dqdy, dqdz) are
communicated in the convective flux computation. The temperature T and
its gradient values (dTdx, dTdy, dTdz) are communicated in the computation
of viscous flux. The variables of variation of conservative variables (dQ) are
communicated in time term discretization. The primitive variables(q) are com-
municated after updating the results. An iteration step is finished and a new
step will follow the same pattern.
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Fig. 4 part of communication process in CFD

2.4 Asynchronous communication

The communication is performed immediately when required in CFD basic
parallel mode, therefore a large amount of communication is required in
each iteration step. Frequent communication raises the probability of calcula-
tion failure and reduces parallel efficiency in large-scale computation. In this
section, we propose an asynchronous parallel mode to address the inadequa-
cies of the basic parallel mode. All values are transferred after an iteration
step finished, and processers nearly never have to wait for each other. The
illustration of asynchronous communication is shown in Fig. 5.

Fig. 5 asynchronous communication

Comparing Fig. 4 and 5 shows that basic method communicates values
in respective functions, however asynchronous mode communicates all values
after an iteration step finished. It should be noted that the primitive variables
q in basic mode and asynchronous mode are all passed after an iteration step.
Due to delayed communication, the asynchronous mode has different iterative
results from the basic mode at the beginning of the iterative computation.
However, the final convergence results of the two approaches are identical. The
proof of convergence of asynchronous mode is given in the following text.
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The expanded formula for discretization of second order accuracy using cell
values is expressed as:

M (Qn
i )∆Qn

i +
∑

j∈Ni

M
(

Qn
i ,Q

n
j

)

∆Qn
j

= −
∑
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Fc

(

Qn
i +

(

∂Q
∂x

)n

i
dxij ,Q

n
j +

(

∂Q
∂x

)n

j
dxji

)

Sij

+
∑

j∈Ni

Fv

(

Qn
i +

(

∂Q
∂x

)n

i
dxij ,Q

n
j +

(

∂Q
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)n

j
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)

Sij

(5)

Where Qn
i stands for conservative variables of cell i at n time step,

(

∂Q
∂x

)n

i
represents the gradient of cell i at n time step, ∆Qn

i is the value to be solve of
cell i at n time step, dxij is the vector from the center of cell i to the interface

ij, and Qn
j ,

(

∂Q
∂x

)n

j
, dxji is corresponding term in cell j.

Assume that neighbor cells numbered from 1 to N(i) − 1 of cell i are in
the same zone as cell i, and the Nth cell is in a different zone. Adopting
asynchronous communication, the discretization formula5 of left hand term
expresses as:

LHSa = M (Qn
i )∆Qn

i +
∑

j∈Ni−1

M
(

Qn
i ,Q

n
j

)

∆Qn
j +M (Qn

i ,Q
n
N )∆Qn−1

N (6)

The difference of left hand term between basic and asynchronous communica-
tion mode is

LHSb − LHSa = M (Qn
i ,Q

n
N )

(

∆Qn
N −∆Qn−1

N

)

= Mn
iN

∂2Q

∂t2
(∆t)

2
(7)

where LHSb and LHSa are left hand term of basic and asynchronous
communication mode respectively.

The difference between two means of communication is a second-order
quantity that can be ignored. Meanwhile, the difference in convective flux
between basic and asynchronous communication modes is a second order
quantity and the proof progress can be expressed as:
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(8)
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The difference in viscous flux between two approaches is also second order
as follows:

Fv,b − Fv,a = Fv
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(9)

The proof of convergence indicates that the asynchronous communication
mode can ensure second-order accuracy. Therefore, the asynchronous com-
munication mode can obtain the same numerical solution as the basic mode.
Algorithm 2 provides a concrete introduction to asynchronous communication
in PHengLEI. The ’RegisterInterField’ function is used to register interface
fields used for storing variables before iterative calculation. ’InviscidFlux’,
’ViscousFlux’, ’LUSGS’ and ’Update’ are four parts in an iterative step respec-
tively. The function ’UploadInterfaceValue’ is used to update variables of
interface fields in this part. The function ’DownloadInterfaceValue’ is adopted
to modify variables in ghost cells. ’CommunicateInterfaceValue’ is utilized to
transfer all variables via MPI.

Algorithm 1 Asynchronous Communication Strategy

1: RegisterInterField(q, double, size ); · · ·
2: for iter = 0 to nMaxIterStep do

3: InviscidFlux(){
4: UploadInterfaceValue(dqdx); · · ·
5: DownloadInterfaceValue(dqdx); · · ·
6: }
7: ViscousFlux(){
8: UploadInterfaceValue(dtdx); · · ·
9: DownloadInterfaceValue(dtdx); · · ·

10: }
11: LUSGS(){
12: UploadInterfaceValue(dQ);
13: DownloadInterfaceValue(dQ);
14: }
15: Update(){
16: UploadInterfaceValue(q);
17: DownloadInterfaceValue(q);
18: }
19: CommunicateInterfaceValue(q); · · ·
20: end for
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2.5 Package communication

Asynchronous communication transfers all variables together after one iter-
ation step finished. However, total communication times don’t decrease,
implying that each iteration step still contains 24 MPI ’send-receive’ processes.
We design a data container named ’DataContainer’ to communicate all vari-
ables at once in an iteration step. This communication mode is called ’package
communication’ and the communication concept is displayed in Fig. 6.

Three steps are required in package communication mode. First, all vari-
ables that need to be transferred are compressed into DataContainer in each
zone. Second, each zone communicates its own DataContainer with others,
which means that each zone sends DataContainer to other zones and receives
DataContainer from other zones. Third, every zone decompresses the data
from the received DataContainer and set the data to ghost cells. Total com-
munication times are reduced to one time in an iteration step using package
communication mode.

Fig. 6 data exchange using the data container

The purpose of package communication is agglomerating all communi-
cations and its implementation depends on the design of DataContainer.
DataContainer is claimed to be compatible with all types of data, such as
int,bool, double, float and so on. The concrete work principle of DataContainer
is displayed in Fig. 7.

Fig. 7 work principle of DataContainer
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The class DataContainer owns a vector type ’data’ that is responsible
for storing the communication variables. The four basic attributes of Dat-
aContainer are ’write’, ’read’, ’send’, and ’receive’, respectively. The four
functions are used to compress, decompress, MPI sends and MPI receives in
communication.

The ’write’ function is applied to compress all variables into DataContainer.
Before writing the data, DataContainer first checks whether the remaining
memory space is sufficient or not. DataContainer resizes a defined length of
memory and copies the data into DataContainer if the remaining space is
insufficient. If the data is sufficient, DataContainer copies it directly into Dat-
aContainer. The copy operation is performed at the memory level, thus any
type of data can be compressed into DataContainer.

The ’read’ is a correspondingly function employed to decompress val-
ues from ’data’. It copies data from DataContainer to an array prepared in
advance. After the copying operation, the size of the remaining data in Dat-
aContainer will decrease until all data has been read. It should be noted
that all data must be decompressed in the same order as compressed into
DataContainer.

The ’send’ function is used to send ’data’ to other processors through MPI.
The length of all data is initially sent to other processors that are utilized

to open memory space in the opponent’s processors. The DataContainer then
transfers all of the data to the other processors, and the opponent’s processors
will read data from the received DataContainer.

The ’receive’ function is correspondingly used to receive ’data’ from other
processors. Each processor will receive a data length and open memory space
used for storing the received DataContainer.

Concrete illustration for package communication in PHengLEI is listed in
algorithm 2. Zone 1 compresses and sends DataContainer to Zone 2, which
receives the DataContainer and decompresses the data from DataContainer.
Communication in complex simulation with more zones is similar to that of
this case as algorithm 2.
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Algorithm 2 Package Communication Strategy

progress in zone 1:

1: DataContainer cdata:
2: for iV ar = 0 to nTotalV ars do

3: cdata → write(iV ar)
4: end for

5: cdata → send(zone 2);

progress in zone 2:

1: DataContainer cdata;
2: cdata → receive(zone 1);
3: for iV ar = 0 to nTotalV ars do

4: cdata → read(iV ar)
5: end for

3 Results and Discussion

In this section, we perform three numerical experiments to verify the effect
of the novel communication strategy. ShanHe, a supercomputer constructed
by JiNan’s national supercomputer facility, serves as the computing platform.
ShanHe cluster holds 5400 computing nodes connected by InfiniBand SDR
network. Each computing node is equipped with two Intel Xeon Gold 6285R
processors and each processor holds 28 cores. There is a total of 192GB of
memory on each computing node. The MPI library version is mpich-3.3.2, and
the compiler is gcc 7.5.0.

The first experiment simulates a typical airfoil flow problem in order to
compare the performance of the new parallel strategy to the basic method. The
second experiment performs a strong scale parallel efficiency test via realistic
geometry with 10.5 billion elements. The third experiment conducts a weak
scale efficiency test based on the same problem as the second experiment.

3.1 3D transonic flow past an ONERA M6 wing.

In this experiment, ONERA M6 wing[22] widely used validation case for
numerical solution, is adopted. The experiment includes the verification of
correctness and efficiency. Correctness verification is utilized for revealing the
precision of asynchronous communication. Efficiency verification is used to
indicate that the new strategy can increase parallel performance. The flow
condition is that Mach number equals 0.8395, the reference temperature is
255K, reference pressure is equal to 315,979Pa, and the angel of attack is 3.06
degrees. The mesh utilized holds 2.4 million elements as detailed in Fig. 8. Ten
thousand iteration steps are performed to ensure the algorithm converges.
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Fig. 8 Mesh of ONERA M6 wing

The first step is to verify the correctness of the code using four CPU cores.
Results of several different methods can be observed in Fig. 9. The curve
represents the distribution of wall pressure along a line cutting at a constant z
position. The pressure distributions at the position of z/b = 0.2 and z/b = 0.65
are shown below. The new strategy could gain exactly the same results as the
basic method, and results of both methods agree well with experiments which
illustrates that the novel strategy enables accuracy simulation.

Fig. 9 comparison of pressure distribution at position of 20%

Another point to consider is the time for the two approaches to simulate.
The execution time of the novel and basic methods is 9.5 hours and 9.7 hours
respectively. The novel strategy is slightly faster than the basic method based
on four CPU cores. This case is used as the baseline of the next experiment for
parallel performance. The performance compare experiment focuses on strong
scale parallel efficiency. The parallel efficiency of strong scale is calculated as:

ep =
tbnb

tpnp
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where nb is the number of cores in the base case, tb is the baseline computa-
tional time, np is the number of cores in parallel cases, tp is the computational
time of the base case, and ep is the strong scale parallel efficiency.

There are six cases in this experiment, each case with 4, 8, 16, 32, 64, and
128 cores respectively. The grid and flow conditions in this test are identical
to those in the previous test. The performance comparison is illustrated in
Fig. 10. When a basic communication method is adopted, the efficiency drops
sharply with the increasing number of cores. When the core number goes up to
128 cores, parallel efficiency is only 50%. However, the parallel efficiency curve
with the new strategy can remains almost flat as the number of cores increases.
The results show that the asynchronous parallel strategy significantly enhances
parallel performance as compared to the basic methods.

Fig. 10 performance comparison of two communication methods

3.2 strong scale parallel efficiency

CHN-T(CHiNa-Transport) model[23] is a standard single-channel trans-
porter designed by China Aerodynamics Research and Development Cen-
ter(CARDC). The CHN-T model is primarily used to validate and verify CFD
software and methodologies. The CHN-T model consists of airfoils, body, flat
tail, vertical tail, pylon, nacelle, and other components. The simplified CHN-T
model without nacelle and pylon is adopted in this test shown in 11.

Fig. 11 CHN-T transporter model
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The flow condition in this experiment is that the Mach number equals
0.2, the Reynold number per meter is 6.5e6, and the reference temperature is
288.15K. The computational grid contains 10.5 billion elements which requires
11 Terabytes of hard disk space. The grid is created by refining a coarse mesh
with 20 million elements three times, each time gaining an 8X increase in the
number of elements.

The number of cores used for the strong scale performance test ranges
from 11200 cores, to 257600 cores. Each case runs three times for the average
execution time. Each case performs 100 iteration steps and the execution time
is measured by average time between 10 and 100 steps. The execution time
using 11200 cores is serves as the benchmark for all other cases.

Fig. 12 strong parallel efficiency

Fig. 12 illustrates the performance of parallel efficiency along with the num-
ber of cores based on the novel strategy. Parallel efficiency decreases slowly
along with increasing numbers of cores. The parallel efficiency remains at 74%
when using 257600 cores. Cluster stability is another factor that affects par-
allel performance. Parallel performance significantly suffers from the cluster
stability when the number of cores exceeds 100 thousand in ShanHe cluster.
Performance of parallel efficiency should have notable improvements on a more
stable cluster. When the number of elements reaches 10.5 billion, the simula-
tion with basic communication mode always fails. As a result, results based
on the basic communication mode are not shown here.

3.3 weak scale parallel efficiency

Weak scale parallel efficiency is another common notion of scalability. Weak
scale is defined as how the computation time varies with the number of com-
putational cores based on a fixed problem size per computational core. The
same computational model and flow conditions as the strong scale test are
adopted in this weak scale test. The number of computational cores employed
in this test is 350 cores, 2800 cores, 22400 cores, and 179200 cores, respectively.
The mesh size ranges from 20 million to 10.5 billion elements, with a load of
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58,746 elements on each core. The case with 350 cores and 20 million elements
is employed as the baseline of the weak scale efficiency test.

Fig. 13 weak parallel efficiency

As we can see from Fig. 13, the performance of weak scale parallel efficiency
decreases slightly along with the increasing number of cores. The last case with
17920 cores and 10.5 billion elements can still maintain an 89.8% efficiency.
The performance loss might be overlooked when considering the instability of
the cluster. The advantage of the novel strategy are further validated by the
perfect performance of weak scale parallel efficiency.

4 Conclusion

Large-scale parallel computation is a crucial issue in CFD simulation for com-
plex geometry. This paper proposes a new parallel strategy that includes asyn-
chronous and package communication. Asynchronous communication transfers
all variables after an iteration step is completed and decreases the delay of wait-
ing. Furthermore, the convergence of asynchronous communication is proven
to guarantee computational accuracy. In Package communication, all variables
are compressed into a DataContainer, and then the DataContainer is trans-
ferred between processors. Package communication achieves communicating
once in a single iteration step, considerably reducing the transfer times.

Three tests are performed to verify the performance of the new paral-
lel strategy. Based on the simulation case of the M6 wing model, the novel
parallel strategy enables getting the same accurate results as the basic commu-
nication mode. Meanwhile, it enhances the performance of parallel efficiency
compared to the basic communication mode. Both the strong and weak scale
tests indicate that the new strategy exceeds the scale limits of mesh sizes
and processing cores. Moreover, it enables a perfect performance of parallel
efficiency on large-scale problems.

This research provides a strategy for high fidelity simulation of complex
geometry using high accuracy methods. The achievement is significant in terms
of the rapid and accurate design of aircraft. However, this research only consid-
ers the performance of parallel efficiency, and an entire simulation of large-scale
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complex geometry remains a significant task. The entire simulation involves a
slew of other issues, such as visualization of computational results, long time
stable running and so on, which will be further researched.
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