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Abstract

Learning an unbiased classifier from imbalanced image datasets is a

challenging task, since the classifier may strongly bias towards major-

ity classes. To address this issue, some deep generative models-based

oversampling methods have been proposed. However, most methods pay

little attention to the decision boundary, which may contribute tiny to

learning an unbiased classifier. In this paper, we focus on the decision

boundary and propose a similar classes latent distribution modelling-

based oversampling method. Specifically, first, we model each class as

different von Mises-Fisher distributions, thereby aligning feature learn-

ing with the class distributions. Furthermore, we develop a distance

minimization loss function, which makes similar classes closer in latent

space. The generator can learn more shared latent features from the

decision region. In addition, we propose a boundary sampling strat-

egy, which uses latent variables between similar classes to generate

boundary samples for data balancing. Experiments on four imbalanced

image datasets show that the proposed method achieves promising

performance in terms of Recall, Precision, F1-score and G-mean.

Keywords: Imbalanced classification, Oversampling, latent distribution,
Similar classes, Boundary samples
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1 Introduction

Image classification has been an attractive research field of computer vision
in recent years [1]. The improvement of image classification performance relies
on large-scale datasets with a relatively balanced class distribution, such as
ILSVRC 2012 [2] and MS COCO [3]. However, in the real world, image datasets
are often imbalanced [4], in which a few classes (majority class) have the
majority of samples while others (minority class) are scarce [5]. When using
imbalanced image datasets to train a classifier, the traditional model may be
skewed toward learning the features of the majority class [6, 7], resulting in
poor classification performance for minority classes.This is called the imbal-
anced learning problem. In practice, imbalanced image datasets are commonly
encountered in anomaly detection [8, 9], medical image classification [10, 11],
and object detection [12]. As a result, it is a significant challenge that both
industry and academia must face [7].

Solving the imbalanced learning problem aims to train an unbiased classifier
that accurately predicts the class labels of data samples [13]. Researchers have
proposed several methods to handle this problem. Among these approaches,
data-level oversampling is regarded as one of the most effective methods
[14, 15]. It balances the dataset by increasing minority class samples, reduc-
ing the impact of the imbalanced distribution on the classifier. The most
common oversampling method is Synthetic Minority Over-sampling Technique
(SMOTE) [16, 17]. Following that, more SMOTE-based oversampling meth-
ods [18–21] have been proposed, which attempt to identify the boundary
between the minority and majority classes to generate more representative
samples. However, traditional oversampling methods use Euclidean distance
as a similarity measure, so they are unsuitable for handling high-dimensional
imbalanced datasets such as images and audio [17].

Recent advances in deep generative models, particularly generative adver-
sarial networks (GAN) [22] and variational autoencoders (VAE) [23], have
brought new opportunities for imbalanced learning. Some GAN-based and
VAE-based models have been proposed to generate synthetic image samples in
the minority class [13, 24–29]. However, most of these works do not consider
concentrating the generated samples in decision regions where features are diffi-
cult to classify, resulting in the generated samples contributing tiny to training
an unbiased classifier [30]. Recent research demonstrates that samples near the
decision boundary (called boundary samples in this paper) are more critical
for training the classifier than those far from the decision boundary [18, 31].
GAMO [30] and DVAAN [32] are proposed to generate boundary minority
class samples. However, GAMO may suffer from mode collapse, resulting in a
lack of diversity in the generated samples, which may not increase the classifier
performance significantly [33]. DVVAN is highly dependent on the selection
of appropriate similar classes. If two inappropriate classes are selected, it will
generate low-quality samples. Besides, DVVAN is a binary framework, which
is not suitable for the multi-class imbalanced image dataset.
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Hence, this article proposes a similar classes latent distribution modelling-
based oversampling method, which generates more boundary minority class
samples to help train an unbiased classifier. Specifically, we design a similar
classes modelling network (SCN), which is an improved network of VAE-GAN
[34] and consists of two steps. In the first step, the von Mises-Fisher (vMF )
distribution is introduced as prior and variational posterior distribution of
SCN, which can prevent the KL divergence from forcing all latent variables
to concentrate on one point. Therefore, the encoder can model each class as
different vMF distributions, which aligns the feature learning with the class
distributions to distinguish the minority class from the majority class, effec-
tively improves the quality of generated samples [32, 35]. In the second step,
a Distance Minimization loss function (DM loss) is proposed to reduce the
inter-class distance of similar classes, making their latent distributions closer.
The generator learns about shared latent features from the decision region of
similar classes. For oversampling, we propose a boundary sampling strategy,
which forms new sampling regions in the middle of two similar classes. After
training convergence, the generator generates boundary samples by using the
latent variables in this region.

Our main contributions can be summarized as follows:

1. We propose a similar class latent distribution modeling network (SCN),
which models each class as a different latent distribution to clearly
distinguish the minority class from the majority class.

2. We design a Distance Minimization loss function (DM loss) for the encoder,
which makes similar classes closer in the latent space. Consequently, the
generator can learn shared latent features from their decision region.

3. A boundary sampling strategy is proposed to generates boundary samples
by using the latent variables in the middle of two similar classes.

4. Extensive experiments on four imbalanced image datasets demonstrate the
superiority of the proposed method.

The rest of this paper is structured as follows: Section 2 briefly discuss related
work. Section 3 describes the proposed method in detail. In Section 4, the pro-
posed method is evaluated by comparison and ablation experiments. Section
5 concludes this article.

2 Related Work

Over the last few decades, experts and scholars have proposed various solu-
tions to the imbalanced learning problem. These approaches are divided into
two categories: data-level and algorithm-level. First, some algorithm-level and
dataset-level methods are introduced, and then recent research on boundary
samples-based oversampling methods is presented. Moreover, some concepts
used in this paper are also introduced.
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2.1 Algorithm-level approach

The algorithm-level approach aims to modify existing learning algorithms to
reduce bias toward the majority class. Cost-sensitive learning [6], which consid-
ers the relationship between class-wise costs and misclassified samples, thereby
increasing the sensitivity of the classifier to the minority class [36]. When
misclassifying minority samples, a higher cost can be set by the cost matrix
[7]. Cost-sensitive learning representative works are as follows. Khan et al.
[5] jointly optimized the misclassification cost and network weight parame-
ters. The focal loss proposed by Lin et al. [12] makes the network pay more
attention to misclassified samples by weighing the classification loss of differ-
ent classes. Reference [37] propose a class rectification loss in conjunction with
hard sample mining, aiming to identify the sampling boundaries of the minor-
ity class, thereby reducing the dominant effect of the majority class. Although
cost-sensitive learning can readily be applied to deep learning, determining the
value of the cost matrix is difficult [7].

2.2 Data-level approach

The data-level approach rebalances the dataset distribution by increasing
minority class instances or decreasing majority class instances. Deep genera-
tive models have been used successfully to augment datasets in recent years
[38]. Douzas et al. [25] propose using CGAN to generate samples with specified
labels, whereas Odena et al. [39] propose using auxiliary classifiers to improve
the quality of generated samples. However, these methods may generate the
wrong class samples in extreme cases (high imbalance rate). Ali-Gombe et al.
[28] propose MFC-GAN, which modifies the training objectives of ACGAN
[39] by adding real and fake class labels, forcing the generator to generate the
correct class samples. However, the classifier and discriminator in MFC-GAN
share the same network. Suh et al. [17] believe that the shared network will
cause instability in GAN training and reduce the quality of generated samples.
As a result, they treat the classifier as an independent network structure in
their proposed CEGAN and train the backbone network with WGAN-GP. [40].
Furthermore, the researchers propose combining GAN with VAE to reduce the
difficulty of mapping from simple random distribution to complex data distri-
bution. This strategy was used to generate samples by Balance Gan (Bagan)
[41] and Data Augmentation Generative Adversarial Networks (DA-GAN) [26].

2.3 Boundary samples-based oversampling approach

According to research, samples located near the decision boundary are more
likely to be misclassified, so learning a robust classification model requires
boundary samples [31]. For this reason, this paper focuses on the study of gen-
erating boundary samples. Some traditional methods of synthesizing boundary
samples have been proposed previously, these methods include Borderline-
smote [18], Safe-level-smote [19] , and ADASYN [21]. In deep learning, Mullick
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et al. [30] and Guo et al. [32] proposed GAMO and DVVAN to generate bound-
ary samples, respectively. GAMO consists of a generator, discriminator and
classifier. The generator and classifier play an adversarial game such that the
generator generates samples that lie near the decision boundary. These sam-
ples help the classifier learn boundary information. Although their proposed
models perform well on imbalanced image datasets, recent studies suggest that
GAMO may suffer from the mode collapse [33].

Compared with GAMO, the DVVAN provides a different idea.First, arti-
ficially select two similar classes and use the encoder to model the two classes
as latent distributions with opposite means, then generate boundary samples
using boundary latent variables. Although this method can avoid mode col-
lapse to a certain extent, they do not consider the subjective bias caused
by the artificial selection of similar classes, which makes the model gener-
ate low-quality samples. In addition, DVVAN is a binary framework, which is
unsuitable for multi-class imbalanced datasets.

2.4 VAE-GAN

Our proposed network is an improved VAE-GAN [34] , it is necessary to
introduce related concepts before delving into the proposed method.

VAE-GAN combines variational autoencoders and generative adversarial
networks. It uses GAN to generate high-quality samples, and VAE models
the data into a latent space. Therefore, the objective function of VAE-GAN
consists of the adversarial loss of GAN and the negative evidence lower bound
(ELBO) of VAE.

LELBO = Ez∼qφ(z|x)

[

∥FD(x)− FD(G(x))∥22

]

+KL [qφ(z | x)∥p(z)] (1)

LGAN = Ex∼pr(x) logD(x) + Ez∼qφ(z|x) log(1−D(G(z)))

+ Ez∼p(z) log(1−D(G(z)))
(2)

The first term of Eq. (1) is the feature-wise reconstruction loss, which recon-
structs z into data samples by using the features extracted from the ℓth layer
of discriminator. FD(·) denotes the features extracted from the ℓth layer of
discriminator.The second term is the KL divergence, which forces the approx-
imate posterior distribution qφ(z | x) to match p(z), p(z) is usually assumed
to be N (0, I). Furthermore, as shown in Eq. (2), VAE-GAN needs to sample
from the data distribution pr(x), the posterior distribution qφ(z | x), and the
prior distribution p(z), respectively, during adversarial training.

3 Proposed method

In this section, we propose a similar classes latent distribution modeling-based
oversampling method. The innovation of our method is to generate boundary
samples by using the latent variables, which draw from the decision region
of similar classes. To this end, subsection 3.1 introduce SCN how to model
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a latent space of similar classes. Subsection 3.2 explain how to sample latent
variables from decision regions. Subsection 3.3 gives an example to illustrate
the proposed method better.

3.1 Overall network

As shown in Fig.1, SCN is an improved VAE-GN network, including five parts:
1) the encoder network E; 2) the generator network G; 3) the discriminator
network D; 4) Classifier network C; 5) the similar classes selector Csim.

We feed image samples, class labels, and similar classes labels into the
encoder network E, which models samples of different classes as different latent
distributions. The generator network G learns to generate class-specific sam-
ples from different latent distributions. The discriminator network D helps G
improve the quality of the generated samples through adversarial training. The
Classifier C ensures that G generates samples of the correct class. Furthermore,
for the generator G to learn about shared latent features of similar classes,
the encoder E gradually guides the latent distribution of similar classes closer
during the training process. By exploiting the latent variables of the decision
region, the generator can generate boundary sample.

Fig. 1 The overall network architecture of SCN.

Overall, as shown in Fig.2, training an SCN can be viewed as two processes:
1) modelling each class as a different latent distribution (details in subsec-
tion 3.1.1); 2) guiding the latent distributions of similar classes closer (details
in subsection 3.1.2); The training details and objective function of SCN are
introduced in subsection 3.1.3.
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Fig. 2 (a) KL divergence concentrates all latent variables at one point. (b) After using the
vMF distribution, each class is represented as a different distribution in the hypersphere
space. (c) DM loss guides the latent distribution of similar classes closer.

3.1.1 vMF distribution-based latent variable modelling

Our goal is to model each class as a latent distribution with clear boundaries,
thereby aligning feature learning with the class distribution. Specifically, con-
sider a dataset D =

{
(xi, yi) | xi ∈ Rd, yi ∈ {1, 2, ..., C}, i = 1, . . . n

}
, xi is a

training sample and yi is the corresponding class label. For any (xi, yi = c),
we force, {

zci = Enc(xi | yi = c) ∼ qφ(z | xi, yi = c)
x̃c
i = Dec(zci ) ∼ pθ(x | z

c
i )

(3)

where Enc(·) and Dec(·) represent the encoder and decoder(also the generator
of GAN), respectively. qφ(·) and pθ(·) are parameterized by the encoder and
decoder, respectively.

However, the original VAE-GAN does not meet the above requirements. Eq.
(4) describes the value range of each part of ELBO, where the reconstruction
loss and KL divergence are both non-negative.

minEz∼qφ(z|x)

[

∥FD(x)− FD(G(x))∥22

]

︸ ︷︷ ︸

non-negative

+ KL [qφ(z | x) | p(z)]
︸ ︷︷ ︸











KL [qφ(z | x)p(z)] > 0, qφ(z | x) ̸= p(z)

KL [qφ(z | x)p(z)] = 0, qφ(z | x) = p(z)

(4)
When training VAE-GAN, the KL divergence is continuously forces qφ(z |
x) to match p(z). The prior distribution usually uses N (0, I), which causes
the encoder to concentrate the latent distribution of all classes on one point,
forming a cluster that cannot distinguish the class boundary (see Fig.2(a)). To
address this issue, it is necessary to introduce a prior distribution that should
not affect the mean of the posterior when optimizing the KL divergence.

The von Mises-Fisher (vMF ) distribution is also known as the standard
Gaussian distribution defined on a d−1 dimensional hypersphere with a sample
space of Sd−1 =

{
z | z ∈ Rd, ∥z∥ = 1

}
. The probability density is defined as

follows:

q(z | µ, k) = Cd(k) exp
(
kµT z

)
, Cd(k) =

kd/2−1

(2π)d/2Id/2−1(k)
(5)
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here µ denotes the mean direction and k ∈ R≥0 denotes the concentration of
the latent variable near µ. Id is a modified Bessel function of the first kind of
order d, and Cd(k) is a normalizing constant. When k = 0, it represents the
uniform distribution on the hypersphere.

SCN introduces vMF (·, k = 0) as prior distribution, and vMF (µ, k) as pos-
terior distribution to depict the latent representation. By using the derivation
method of [42] to obtain the following KL divergence.

KL[vMF (µ, k)∥vMF (·, 0)] = k
Id/2(k)

Id/2−1(k)
+logCd(k)−log

(

2
(
πd/2

)

τ(d/2)

)−1

(6)

Crucially, the KL divergence term in Eq. (6) only depends on k. µ is only
optimized in reconstruction loss. The encoder can effectively learn to model
different latent distributions for each class based on class information without
being affected by KL divergence (see Fig.2(b)).

3.1.2 The distance minimization loss function

If the class distributions are far apart, it is difficult for generator to learn
the shared latent features of similar classes, making it difficult to generate
boundary samples. In this section, a Distance Minimization loss function (DM
loss) is proposed to guide the latent distribution of similar classes closer.

Specifically, first, SCN uses the similar classes selector Csim to obtain the
similar classes labels of the training samples. Csim is a classification model
pretrained with imbalanced dataset. When a sample (x, y = c) inputs to Csim,
it outputs the similar classes label ysim of x based on the highest misclassifi-
cation probability. This method of selecting similar classes can reflect that the
classifier has extracted some shared features and the skewed direction of the
decision boundary. Furthermore, according to the conclusions provided by [23]
and [31] on the relationship between latent variables and generated samples,
it is easy to infer the following corollaries:
Corollary 1.The distance between two latent variables is proportional to the
distance between the corresponding samples

distance(z1, z2) ∝ distance(x1, x2) (7)

This proportional relationship is described in Fig.3.
Corollary 2. When the generated sample x̃y is distributed near its similar
class in the feature space, the classification probability of x̃y satisfies:

py =
exp

(
wT

y x̃y

)

∑c
1 w

T
i x̃y

≈ psim =
exp

(
wT

simx̃y

)

∑c
1 w

T
i x̃y

(8)

Where wy and wsim represent the classification weight vector of the cur-
rent class y and its similar class ysim respectively. According to [43], the
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weight vector w is normalized to 1, and the posterior classification probability
becomes:

py = ∥x̃y∥ cos (Ay) ≈ psim = ∥x̃sim∥ cos (Asim) (9)

Where Ay represents the angle between x̃y and wy,Asim represents the angle
between x̃y and wsim. The classification result only depends on Ay and Asim.
If Ay ≈ Asim, it means that the generated sample x̃y is close to the decision
boundary. In addition, the angle Ay,sim between wy and wsim can be used to
approximate the distance between class y and class ysim in the feature space
(see Fig.3). Therefore, if the angle Ay,sim is smaller, the similar classes are
closer in the feature space.

Fig. 3 When the generated sample and its similar class are far from the decision boundary,
their latent distributions are also far from it. Conversely, when both the generated sample
and its similar class are concentrated near the decision boundary, their latent distributions
are also concentrated near it.

Based on the above two corollaries, the encoder is trained to minimize
Ay,sim. The encoder makes the latent distributions of similar classes closer,
allowing the generator to learn more simlar feature from latent variables in the
decision region, This means that the generator can map the latent boundary
variables to boundary samples by adversarial training. Furthermore, If the
angleAy,sim is too small, the latent distributions of similar classes may overlap.
In this case, it is difficult for the discriminator to separate the different class
features from the overlapping parts, which causes the generator to generate
some samples of the wrong class Therefore, we prevent the latent distributions
from being too close by restricting Ay ≤ Asim, thus making sure that the
generator generates samples of the correct class. The DM loss can be described
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as follows:
minAy,sim

s.t cos(Ay)− cos(Asim) ≥ δ
(10)

The margin parameter δ is used to ensure that the generated samples x̃y can
be correctly classified by the classifier. In experiments, δ is set to 0.2 can
effectively ensure that the class boundary is distinguishable. The Eq. (10) can
be converted into the following form:

LDM = Ay,sim +max(0, cos(Ay)− cos(Asim)− δ) (11)

The DM loss is added to the objective function of the encoder, when the latent
distributions overlap, making the generator generate samples of the wrong
class, the second term of LDM acts like a penalty term. It forces the encoder
to pay more attention to the class boundary and then gradually separates the
overlapping parts of the latent distributions. The role of DM loss is shown in
Fig.2(c).

3.1.3 Training of SCN

According to the conclusion of Suh et al. [17], the discriminator and the classi-
fier are designed as two independent networks to stabilize the network training.
In addition, a features-wise reconstruction loss is used, which enables the recon-
structed samples have more details.The objective function of SCN is defined
as follows:

LD = Ex∼pr(x)[logD(x | y)] + Ez∼qφ(z|x)[log(1−D(G(z | y)))]

+ Ez∼p(z)[log(1−D(G(z | y)))]
(12)

LG = Ez∼qφ(z|x)[logD(G(z))] + Ez∼qφ(z|x)

[

∥FD(X)− FD(G(z))∥22

]

(13)

LE = Ez∼qφ(z|x,y=c)

[

∥FD(x | y)− FD(G(z) | y)∥22

]

+KL[vMF (µ, k)∥vMF (·, 0)]
(14)

LC = Ex∼pr(x)[logC(y | x)] + Ez∼qφ(z|x)[logC(y | G(z))] (15)

Note that LD,LG,LE ,Lc are the loss functions of discriminator, generator,
encoder, and classifier, respectively. Since there is a lack of minority classes
in the real samples, only training the classifier with these samples will easily
overfit the majority class. Therefore, our classifier is trained with real samples
and generated samples. The training details of SCN are summarized in Alg 1.
To stably model different distributions for each class on the hypersphere, DM
loss should be added to the encoder every 5 epochs to gradually make similar
classes closer.
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Algorithm 1 training of SCN. default values nGD = 5

Input: X: a set of training samples, m: the batch size
Output: x̃: generated samples
1: Initializing θD,θE ,θG,θC
2: for t = 1 to n do

3: if t mod nGD == 0 then

4: Sample
{
xi
}m

i=1
∼ pr a batch from X,and labels

{
yi
}m

i=1
.

5: z̃ ← E(x | y)
6: x̃← G(z)
7: ysim ← Csim

(
x̃i
)

8: θG ← Adam (∇θGLG) update the decoder
9: θE ← Adam (∇θE (LE + LDM )) update the encoder

10: else

11: Smaple
{
xi
}m

i=1
∼ pr a batch from X and labels

{
yi
}m

i=1
.

12: Sample
{
zi
}m

i=1
∼ pz a generated batch.

13: z̃ ← E(x | y)
14: x̃← G(z̃)
15: x̄← G(z)
16: θD ← Adam (∇θDLD) update the discriminator
17: θC ← Adam (∇θCLC) update the classifier
18: θG ← Adam (∇θG(LG + LC)) update the generator
19: θE ← Adam (∇θELE) update the encoder
20: end if

21: end for

3.2 Boundary sampling strategy

When the proposed network is trained to converge, the maximum likelihood
estimation was applied to obtain the distribution center for each class. The
maximum likelihood optimization problem can be written as follow:

max
µ
L(µ) = N ikµT z̄i +N i logCd(k) (16)

Where z̄i = 1
N

∑Ni

j=1 z
i
j , z

i represents the latent variable of the i-th class,and

N i represents the number of zi. By derivation of Eq. (16), the distribution

center is µ∗ = zi

∥zi∥
.

Since the latent distribution is modeled on the unit hypersphere, the con-
sine distance can be used as a distance measure. Each time choose a minority
class center µnear as the “anchor” to find µnear, which is the center with
the shortest cosine distance from µnear, then the new sampling center is
µnew = αµmin −µnear

2 . The sampling distribution formed by µnew is located in
the decision region of two similar classes, so the generator can generate bound-
ary minority class samples by using the latent variables from this region. These
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samples are closer to decision boundary in feature space. The detailed process
of boundary sampling strategy is summarized in Alg 2.

Algorithm 2 boundary sampling strategy.

Input:
{
µi
}n

i=1
: latent distribution centres, m: number of minority classes

Output: boundary latent variables z
1: for j = 1 to m do

2: distance = 2
3: for i = 1 to n do

4: temp = 1− cos(µj
min, µ

i,i ̸=j)
5: if temp < distance then

6: distance = temp
7: µnear = µi,i ̸=j

8: else

9: continue
10: end if

11: end for

12: µnew = αµmin −µnear

2
13: sample zj from vMF (µnew, k)
14: end for

In addition, the parameter α ∈ (0, 1] can be used to adjust the position
of the sampling center, thereby controlling the style of the generated image.
As shown in Fig.4, the digital “9” and the digital “4” are two similar classes.
When the SCN generates digital “9”, α can control how similar the digital
“9” is to the digtal “4”. Incorporating these boundary samples with similar
features into the training set can help the classifier learn a more robust decision
boundary. In experiments, the value of α is to 0.6 can achieve better results.

Fig. 4 An example of the MNIST dataset: digital “9” and digital “4” are similar classes, in
which the digital “9” is the generated sample. When the value of α is larger, the sampling
region is closer to digital “4”, so the generated sample is more like the digital “4”.
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3.3 An example of the proposed method

This section assumes a simple example to illustrate the proposed method bet-
ter. As shown in Fig.5, given an imbalanced image dataset, where the digital
“6” and “7” are the majority class, the digital “5” is the minority class. The
digital “5” and “6” are similar classes.The circles represent latent variables,
and the blue dotted line represents the decision boundary of imbalanced data.

Fig. 5 An example of the proposed method.

In the early stages of training, each class forms a different vMF distribution
(as shown in Fig. 5(a)) by using the method in subsection 3.1.1. Then, under
the guidance of DM loss in subsection 3.1.2, the similar classes gradually get
closer (as shown in Fig. 5(b), the yellow circle gradually moves to the blue
circle). The generator can learn shared latent features from latent variables
between similar classes. After the training converges, the sampling method in
subsection 3.2 is adopted, which forms a sampling region between the red and
the blue circle (as shown in Fig 5(c), the orange circle), and the parameter
α can be used to adjust the position of the sampling region. Finally, latent
variables are sampled from this region to generate boundary samples, thereby
repairing the skewed decision boundary (as shown in Fig.5(d), the blue dotted
line is moved to the red dotted line).

4 Experimental study

4.1 Datasets

The proposed method is evaluated on four publicly benchmark datasets,
including MNIST [44], FASHION-MNIST [45], CIFAR-10 [46], CINICI-10 [47].
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MNIST is a dataset used for digital image classification, consisting of
grayscale handwritten digital images of 28x28 pixel size. MNIST has 10 cate-
gories corresponding to the numbers 0-9, including 50,000 training and 10,000
test data.

FASHION-MNIST is an alternative dataset to MNIST, containing 60,000
training samples and 10,000 test samples. Each sample is a 28x28 grayscale
image associated with a label from 10 classes. These labels include T-shirts,
pants, jumpers, dresses, coats, sandals, shirts, sneakers, bags, ankle boots.

CIFAR-10 is made up of 60,000 32x32 pixel colour images. This dataset has
50,000 training samples and 10,000 testing samples, divided into 10 classes:
airplanes, cars, birds, cats, deer, dogs, frogs, horses, boats, and trucks.

CINIC-10 is constructed from CIFAR-10 and ImageNet. This dataset also
consists of 32x32 colour images in 10 classes. Both training samples and test
samples are 90,000. It fills the gap from CIFAR-10 to ImageNet.

The step imbalance and long-tailed imbalance datasets are created based on
the experimental settings of Buda et al. [15] and Mullick et al. [30], respectively.
These two versions of imbalanced data are achieved by subsampling the original
dataset. An example of step imbalance and long-tailed imbalance is shown in
Fig.6.

Fig. 6 Example distributions for imbalanced datasets (a) step imbalance, (b) long-tailed
imbalance

There are two influencing factors to consider before creating an imbalanced
dataset. The first factor is the Imbalance Ratio (IR) between the majority and
the minority classes, which determines the learning difficulty of imbalanced
problems. Therefore, it is necessary to set several sets of IR for each dataset
to verify our method’s performance comprehensively. The expression of IR is
shown in Eq.(17). The second factor is the choice of the majority class. The
classifier can easily learn discriminative features if there is a clear boundary
between the majority and minority classes. However, if the boundary is not
clear, it is another case. As a result, a different class should be chosen as the
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majority class in the experiment.

IR =
The number of the majority class samples

The number of the minority class samples
(17)

Based on the first factor, IR is set to 10, 30, and 50 for all datasets. Based
on the second factor, different classes should be choosen as majority class and
head class until every class is chosen. All possible combinations are tested using
the original test set and then reporting the average test metric. Table 1 and
Table 2 summarize the different versions of the imbalanced dataset.

Table 1 Overview of the step imbalance dataset used in our experiments

Dataset IR Majority Minority Dimension

MNIST 10,30,50 4000 400,133,80 28 x 28
FASHION-MNIST 10,30,50 4000 400,133,80 28 x 28
CIFAR-10 10,30,50 4500 450,150,90 32 x 32
CINIC-10 10,30,50 4500 450,150,90 32 x 32

Table 2 Overview of the long-tailed imbalance dataset used in our experiments

Dataset IR Training samples Dimension

MNIST 100 4000,2000,1000,750,500,350,200,100,60,40 28 x 28
FASHION-MNIST 100 4000,2000,1000,750,500,350,200,100,60,40 28 x 28
CIFAR-10 100 4500,2000,1000,800,600,500,400,250,150,45 32 x 32
CINIC-10 100 4500,2000,1000,800,600,500,400,250,150,45 32 x 32

4.2 Compared methods

The performance of the proposed method is evaluated by comparison with
the following five state-of-the-art methods. (1)B-SMOTE [18] synthesizes new
minority class samples near the decision boundary. (2)ADASYN [21], an adap-
tive synthesis method of minority class samples. It assigns different weights to
samples with different learning difficulties, and this method aims to generate
more samples that are difficult to learn. (3)DVVAN [32], a network based on
VAE-GAN. It generates boundary samples by modelling latent variables of the
opposite mean for similar classes. (4)GAMO [30] designed a convex generator
structure and then generated boundary samples through an adversarial game
between the classifier and the convex generator. (5)ACGAN [39], a network
based on GAN. It improves the quality of generated samples by embedding
classifiers at the last layer of the discriminator.
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4.3 Evaluation metrics

The most commonly used metric for evaluating classifier performance is overall
accuracy. However, if the data is imbalanced, certain representative classes will
lead to a highly misleading assessment. For example, there are 99 majority
class samples and 1 minority class sample in a binary classification problem.
When the classifier predicts that all samples are majority class, the classifier
can achieve an accuracy of 99%, but the error rate of minority class is 100%. As
a result, Precision, Recall, G-mean, and F1-score are used as evaluation metrics
to evaluate the performance of the classifier. They are listed in Table 3, where
TP stands for true positive, TN stands for true negative, FP stands for false
positive, and FN stands for false negative, respectively. Precision represents

Table 3 The evaluation metrics used in experiment

metrics Calculation

Precision TP

TP+FP

Recall TP

TP+FN

F1-score 2TP

2TP+FP+FN

G-mean
√

Recall ∗ TN

TN+FP

how many of the predicted true positive samples are actually positive samples.
Recall reflects the proportion of samples predicted to be true positives and
samples that are actually positive. F1-score is the weighted average of Precision
and Recall. G-mean (geometric mean score) tries to maximize the accuracy on
each of the classes while keeping these accuracies balanced.

4.4 Experimental setup

For a fair comparison, all models use the same number of network layers on
the same dataset. Appendix A provides the detailed network architectures. B-
SMOTE and ADASYN are implemented using the imbalanced learning library
[48]. LeNet-5 [44] is used as the classification model on all datasets. The opti-
mizer uses the stochastic gradient descent (SGD) with momentum value of
µ = 0.9, and the learning rate is 0.01.

When training the models, different datasets set different parameters. For
MNIST and FASHION-MNIST datasets, DVVAN, GAMO, ACGAN and SCN
are trained for 100 epochs, each batch size is 128. The optimizer uses Adam
with the parameters β1 = 0, β1 = 0.999 and the learning rate is 0.0001. For
CIFAR-10 and CINIC-10 datasets, the epoch and the batch are increased to
300 and 256, respectively. The learning rate is 0.0002.
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4.5 Comparative Experiment

First train a classifier on the original imbalanced dataset, forming a Baseline for
comparing model performance. Then using the above method and SCN to aug-
ment the imbalanced dataset, training the classifier again with the augmented
dataset. lastly, comparing the classifier performance on the four datasets.

4.5.1 Results on step imbalance datasets

Table 4-5 reports the classification performance of representative methods on
the step imbalance MNIST and FASHION-MNIST datasets with IR of 10,
30, 50, respectively. The comparison results show that when the IR is 10, the
performance of all methods has only a small difference and outperform the
Baseline. As the IR increases to 30, the different methods start to show a gap.
Since ACGAN lacks mechanisms to handle imbalanced datasets, it slips below
the Baseline, while other methods still outperform the Baseline. When the IR is
further increased to 50, ACGAN and Baseline already lag behind other meth-
ods significantly. While our proposed method is able to generate samples near
the decision boundary by using a boundary latent variable sampling strategy,
and DM loss can ensure that the SCN generates samples of the correct class
under extreme imbalance, which makes SCN outperform all other methods.

Table 4 Results of classification performance on the step imbalance MNIST

IR=10 IR=30 IR=50

Methods Prec. Rec. F1. GM. Prec. Rec. F1. GM. Prec. Rec. F1. GM.

Baseline 0.9640 0.9629 0.9630 0.9732 0.9388 0.9329 0.9333 0.9523 0.9220 0.9110 0.9214 0.9304
B-SMOTE 0.9675 0.9663 0.9636 0.9712 0.9451 0.9409 0.9413 0.9568 0.9234 0.9220 0.9355 0.9355
ADASYN 0.9668 0.9657 0.9659 0.9704 0.9436 0.9417 0.9404 0.9518 09272 0.9206 0.9222 0.9353
ACGAN 0.9661 0.9649 0.9650 0.9721 0.9221 0.9172 0.9161 0.9533 0.8879 0.8677 0.8632 0.9247
GAMO 0.9732 0.9682 0.9667 0.9783 0.9529 0.9473 0.9479 0.9691 0.9361 0.9343 0.9334 0.9460
DVVAN 0.9653 0.9637 0.9641 0.9779 0.9452 0.9403 0.9410 0.9565 0.9243 0.9081 0.9103 0.9382
SCN 0.9711 0.9700 0.9703 0.9833 0.9536 0.9497 0.9504 0.9718 0.9387 0.9396 0.9222 0.9553

Table 5 Results of classification performance on the step imbalance FASHION-MNIST

IR=10 IR=30 IR=50

Methods Prec. Rec. F1. GM. Prec. Rec. F1. GM. Prec. Rec. F1. GM.

Baseline 0.8495 0.8047 0.7810 0.8872 0.7701 0.7355 0.6789 0.8449 0.7099 0.7238 0.6641 0.7876
B-SMOTE 0.8557 0.8441 0.8404 0.9016 0.8189 0.7907 0.7643 0.8687 0.7742 0.7506 0.7351 0.8465
ADASYN 0.8555 0.8371 0.8318 0.9066 0.8267 0.8005 0.7878 0.8747 0.7783 0.7694 0.7376 0.8372
ACGAN 0.8496 0.8170 0.8088 0.8943 0.8011 0.7647 0.7303 0.8444 0.7474 0.7318 0.6963 0.8210
GAMO 0.8668 0.8534 0.8517 0.9144 0.8413 0.8254 0.8115 0.8996 0.8107 0.7860 0.7711 0.8759
DVVAN 0.8454 0.8144 0.8296 0.8930 0.8356 0.8193 0.7960 0.8610 0.7869 0.7551 0.7373 0.8425
SCN 0.8708 0.8577 0.8581 0.9156 0.8531 0.8345 0.8192 0.9033 0.8324 0.8027 0.7921 0.8902

Table 6-7 show the experimental results of the comparative methods on
CIFAR-10 and CINIC-10. Compared with the traditional methods B-SMOTE
and ADASYN, our method consistently outperforms them, while their per-
formance drops sharply and falls below the Baseline. Because they generate
samples that lack diversity and have more artifacts, which can be seen
in B. Among the deep learning-based methods, ACGAN may suffer from
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the problem of mode collapse, so its performance is poor. Compared with
DVVAN, which is also modelling latent distributions, our method can gener-
ate high-quality samples through end-to-end learning, so the performance of
the proposed method is superior to it. Furthermore, compared to GAMO, our
method still achieves the highest score and make a large improvement on G-
mean. Furthermore, comparative experiments were conducted under a variety

Table 6 Results of classification performance on the step imbalance CIFAR-10

IR=10 IR=30 IR=50

Methods Prec. Rec. F1. GM. Prec. Rec. F1. GM. Prec. Rec. F1. GM.

Baseline 0.5464 0.4562 0.4346 0.6547 0.5094 0.3800 0.3154 0.5848 0.4869 0.3535 0.2721 0.5227
B-SMOTE 0.4911 0.4041 0.3752 0.6142 0.4485 0.3348 0.2674 0.5568 0.4765 0.3187 0.2362 0.5227
ADASYN 0.5156 0.4349 0.4154 0.6384 0.4737 0.3472 0.2894 0.5674 0.47619 0.3279 0.2473 0.5208
ACGAN 0.5369 0.4293 0.4112 0.6152 0.4256 0.3719 0.3467 0.5520 0.3858 0.3531 0.3217 0.4645
GAMO 0.5671 0.5102 0.4561 0.6745 0.5193 0.4210 0.4016 0.6103 0.4922 0.3807 0.3469 0.5580
DVVAN 0.5506 0.5122 0.4537 0.6658 0.4804 0.3787 0.3051 0.5687 0.4877 0.3622 0.3176 0.5358
SCN 0.5759 0.5215 0.4691 0.6932 0.5316 0.4910 0.4108 0.6378 0.5134 0.4244 0.3687 0.6077

Table 7 Results of classification performance on the step imbalance CINIC-10

IR=10 IR=30 IR=50

Methods Prec. Rec. F1. GM. Prec. Rec. F1. GM. Prec. Rec. F1. GM.

Baseline 0.4134 0.3520 0.3139 0.5715 0.3626 0.3088 0.2269 0.5340 0.3493 0.2843 0.1787 0.4415
B-SMOTE 0.3803 0.3257 0.2855 0.5489 0.3406 0.2870 0.2090 0.5141 0.3256 0.2758 0.1814 0.4236
ADASYN 0.3806 0.3247 0.2843 0.5481 0.3425 0.2878 0.2090 0.5148 0.3219 0.2783 0.1863 0.4359
ACGAN 0.3876 0.2946 0.2712 0.5211 0.3368 0.2736 0.2387 0.5015 0.2943 0.2712 0.2450 0.4492
GAMO 0.4551 0.3873 0.3555 0.6060 0.3919 0.3472 0.3385 0.5675 0.3607 0.3111 0.3036 0.5022
DVVAN 0.4174 0.3413 0.3140 0.5824 0.3813 0.3009 0.3226 0.5467 0.3621 0.3054 0.2986 0.4896
SCN 0.4638 0.3945 0.3670 0.6078 0.4344 0.3681 0.3512 0.5851 0.3812 0.3323 0.3208 0.5612

of IR, thereby studying the trend of performance change with IR variation. To
avoid performance degradation due to complex data overriding the role of IR,
FASHION-MNIST is chosen for this study.

As shown in Fig.7 the proposed method consistently outperforms other
methods. B-SMOTE and ADASYN have strong competitiveness until IR
reaches 40. ACGAN is most severely affected by IR, and its performance lags
behind other methods when IR comes 30. Both our method and DVVAN model
the latent variables of similar classes. Our method chooses different similar
classes by using a pre-training classification model. However, DVVAN relies on
subjective judgment to choose similar classes, so it may not be able to reshape
the correct class boundary if it chooses inappropriate classes, which is the rea-
son for its significant performance fluctuations. In addition, our method and
GAMO can effectively alleviate the imbalanced problem.
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Fig. 7 The performance of representative methods varies with IR.

4.5.2 Results on long-tailed imbalance datasets

Table 8 shows the experimental results of representative methods on long-
tailed imbalance datasets. Each class has a different IR from other classes in
long-tail datasets, so the decision boundary is more complex. Therefore, it
can be observed that the performance of ACGAN on low-dimensional datasets
has fallen behind the Baseline. Compared with other methods, our method
achieves better performance because SCN model similar classes based on mis-
classification probability, that the generated samples tend to near the decision
boundary of two easily misclassified classes, so that the classifier is able to
learn a more robust class Boundary. Experimental results demonstrate that
our method is effective in long-tailed datasets with more complex classification
boundaries.

Table 8 Results of classification performance on long-tailed imbalance datasets

MNIST Fashion-MNIST CIFAR-10 CINIC-10

Methods Prec. Rec. F1. GM. Prec. Rec. F1. GM. Prec. Rec. F1. GM. Prec. Rec. F1. GM.

Baseline 0.9297 0.9258 0.9245 0.9582 0.8078 0.7802 0.7518 0.8724 0.5175 0.4034 0.3657 0.6137 0.4215 0.2821 0.2005 0.5095
B-SMOTE 0.9361 0.9342 0.9329 0.9630 0.8241 0.8108 0.8060 0.8909 0.4735 0.3988 0.3689 0.6100 0.3119 0.2986 0.2566 0.5247
ADASYN 0.9365 0.9346 0.9334 0.9632 0.8268 0.7896 0.7808 0.8781 0.4628 0.3913 0.3627 0.6040 0.3158 0.2973 0.2555 0.5235
ACGAN 0.9095 0.8998 0.8975 0.9434 0.8079 0.7687 0.7425 0.8521 0.3381 0.3551 0.3345 0.5741 0.2638 0.2774 0.2595 0.5051
GAMO 0.9497 0.9490 0.94899 0.9671 0.8422 0.8334 0.8273 0.9044 0.5292 0.4788 0.4680 0.6716 0.4484 0.3548 0.3430 0.5739
DVVAN 0.9409 0.9395 0.9280 0.9603 0.8226 0.8083 0.7916 0.8934 0.5035 0.4098 0.3822 0.6281 0.4266 0.3370 0.3107 0.5241
SCN 0.9541 0.9521 0.9512 0.9675 0.8533 0.8471 0.8351 0.9347 0.5573 0.5156 0.4907 0.7048 0.4707 0.4410 0.4256 0.6326

Furthermore, Fig.8 shows the visualization of SCN modeling results on
long-tailed datasets. In the latent space, each class has a clear boundary, and
similar classes are close to each other. The encoder shows good modelling
performance, except for some outlier latent variables.
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(a) MNIST (b) FMNIST (c) CIFAR-10 (d) CINIC-10

Fig. 8 Modelling results of different datasets in latent space.

4.6 Ablation study

This section conducts ablation experiments on DM loss and boundary sampling
strategy.

4.6.1 Ablation study for DM loss

In order to verify the role of DM loss, we created three ablation entities. 1)SCN-
A removes DM loss from the encoder and classification loss from the generator.
2)SCN-B removes DM loss from the encoder. 3)SCN-C removes classification
loss from the generator. The experimental results are shown in Table 9, SCN
outperforms all other ablation variants.

The modelling results are visualised to illustrate the role of DM loss better.
As shown in Fig.9, SCN-A only models the latent distribution in terms of
reconstruction loss, thus forming many overlapping clusters under the influence
of imbalanced data. Since the lack of DM loss in SCN-B, it can only model
each class as a different latent distribution. Compared with SCN-B, SCN-C is
the complete opposite, it models similar classes closer, but it causes the overlap
between class distributions. In the modelling results of SCN, similar classes
are closer to each other, and the class boundary is distinguishable. Therefore,
the classification loss and DM loss are complementary relationships.

(a) SCN-A (b) SCN-B (c) SCN-C (d) SCN

Fig. 9 modelling results of three variants and SCN.
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Table 9 Results of Ablation study for DM loss on MNIST dataset

Long-tailed imbalance Step imbalance (IR=30) Step imbalance (IR=50)

Methods Prec. Rec. F1. G-mean Prec. Rec. F1. G-mean Prec. Rec. F1. G-mean

Baseline 0.9266 0.9222 0.9206 0.9470 0.9370 0.9340 0.9295 0.9558 0.9206 0.9079 0.9095 0.9380
SCN-A 0.8684 0.8752 0.8848 0.9213 0.8784 0.8553 0.8629 0.8677 0.8307 0.8492 0.8398 0.8492
SCN-B 0.9252 0.9234 0.9341 0.9481 0.9143 0.92064 0.9303 0.9481 0.9223 0.9254 0.9292 0.9401
SCN-C 0.8712 0.8852 0.8812 0.9331 0.8712 0.8664 0.8692 0.8840 0.8432 0.8588 0.8419 0.8531
SCN 0.9598 0.9541 0.9588 0.9616 0.9548 0.9525 0.9221 0.9707 0.9350 0.9268 0.9272 0.9588

4.6.2 Ablation study for sampling strategy

Many existing deep generative model-based methods generate samples by
sampling distribution centers. As a result, to demonstrate that our sam-
pling strategy contributes more to training a classifier, an experiment was
designed to compare different sampling centers. We create an ablation variant
(SCN-Center) that takes the distribution center of each class as the sampling
center.

The experimental results are listed in Table 10, SCN-Center outperforms
Baseline in terms of generating samples of the correct class to augment the
imbalanced dataset. However, the samples generated by SCN-Center are far
away from the classification boundary, which has limited contribution to the
classifier learning a robust classification boundary, so its performance lags
behind that of SCN

Table 10 Results of Ablation study for sampling strategy on MNIST dataset

Long-tailed imbalance Step imbalance (IR=30) Step imbalance (IR=50)

Method Prec. Rec. F1. G-mean Prec. Rec. F1. G-mean Prec. Rec. F1. G-mean

Baseline 0.9256 0.9241 0.9233 0.9310 0.9310 0.9292 0.9203 0.9401 0.9196 0.9094 0.9103 0.9389
SCN-Center 0.9332 0.9342 0.9412 0.9441 0.9382 0.9323 0.9357 0.9462 0.9186 0.9183 0.9154 0.9377
SCN 0.9541 0.9522 0.9574 0.9676 0.9589 0.9563 0.9556 0.9755 0.9447 0.9393 0.9399 0.9559

5 Conclusion and future work

This paper proposes a similar classes latent distribution modelling-based over-
sampling method to alleviate the difficulty of learning from imbalanced image
datasets. First, we model each class as a different vMF distribution to reduce
the difficulty of learning from a unimodal distribution. Second, a distance
minimization loss function is introduced in the encoder, which makes similar
classes closer, so that the generator can learn shared latent features in the
decision region of similar classes. In addition, similar classes are selected using
a pre-trained classifier, which can effectively avoid the bias caused by human
selection. The classification model is trained with imbalanced datasets, which
can further reflect the skewed direction of the decision boundary. Therefore,
our method can fix skewed class boundaries more targeted. Finally, we design a
boundary sampling strategy, which can sample latent variables in the decision
region to generate boundary samples. By adding these samples to the train-
ing set, the classifier can learn more difficult-to-classify (similar) features and
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further improve the robustness of the classifier to imbalanced image datasets.
In extensive experiments, it has been demonstrated that the proposed method
can effectively handle the imbalance problem. On CIFAR-10 and CINIC-10
with step imbalance (IR=50), G-mean improves by about 5% and 6%, respec-
tively. Furthermore, G-mean is enhanced by about 3% and 5% on CIFAR-10
and CINIC-10 with long-tailed imbalance, respectively.

In future work, we consider combining some manifold learning methods to
obtain the manifold structure of the training data, thereby selecting similar
classes more accurately. Besides, we plan to apply our method to real-world
scenarios instead of benchmark datasets.
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Table A1 The network structure of the classification model LeNet-5

Layer Activation Kernel size Dimension

Input - - 32x32x1
Convolution ReLu 5 28x28x1
Max pooling - 2 14x14x1
Convolution ReLu 5 10x10x1
Max pooling - 2 5x5x1
Fully connected ReLu - 120
Fully connected ReLu - 84
Fully connected - 10
SoftMax - - 10

Table A2 The network architecture of Generator for MNIST, FASHION-MNIST

Layer Activation Kernel size Channel

Input - - 20
Fully connected ReLu - 1024
Fully connected ReLu - 128
Convolution ReLu 4 64
ConvTranspose ReLu 4 3

Table A3 The network architecture of Discriminator for MNIST, FASHION-MNIST

Layer Activation Kernel size Channel

Input - - 20
Fully connected ReLu - 1024
Fully connected ReLu - 128
Convolution ReLu 4 64
ConvTranspose ReLu 4 1

Table A4 The network architecture of Encoder for MNIST, FASHION-MNIST

Layer Activation Kernel size Channel

Input - - 1
Fully connected ReLu - 400
Fully connected - - 3

Table A5 The network architecture of Generator for CIFAR-10, CINIC-10

Layer Activation Kernel size Channel

Input - - 40
ConvTranspose ReLu 4 512
ConvTranspose ReLu 4 256
ConvTranspose ReLu 4 128
ConvTranspose ReLu 4 64
ConvTranspose ReLu 1 3
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Table A6 The network architecture of Discriminator for CIFAR-10, CINIC-10

Layer Activation Kernel size Channel

Input - - 3
Convolution lReLu 4 64
ConvTranspose lReLu 4 128
ConvTranspose lReLu 4 256
ConvTranspose lReLu 4 512
ConvTranspose Sigmoid 1 1

Table A7 The network architecture of Encoder for CIFAR-10, CINIC-10

Layer Activation Kernel size Channel

Input image - - 3
Convolution ReLu 4 64
Convolution ReLu 4 128
Convolution ReLu 4 256
Fully connected ReLu - 2048
Fully connected - - 3
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Appendix B Examples of generated images

(a) B-SMOTE (b) ADASYN (c) GAMO (d) ACGAN

(e) SCN (f) DVVAN

Fig. B1 The generated images of different oversampling approaches on MNIST dataset.

(a) B-SMOTE (b) ADASYN (c) GAMO (d) ACGAN

(e) SCN (f) DVVAN

Fig. B2 The generated images of different oversampling approaches on FASHION-MNIST
dataset.
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(a) B-SMOTE (b) ADASYN (c) GAMO (d) ACGAN

(e) SCN (f) DVVAN

Fig. B3 The generated images of different oversampling approaches on CIFAR-10 dataset.

(a) B-SMOTE (b) ADASYN (c) GAMO (d) ACGAN

(e) SCN (f) DVVAN

Fig. B4 The generated images of different oversampling approaches on CINIC-10 dataset.
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