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Abstract The theory of branching space-times is designed as a rigorous framework
for modelling indeterminism in a relativistically sound way. In that framework there
is room for “funny business”, i.e., modal correlations such as occur through quantum-
mechanical entanglement. This paper extends previous work by Belnap on notions
of “funny business”. We provide two generalized definitions of “funny business”.
Combinatorial funny business can be characterized as “absence of prima facie consis-
tent scenarios”, while explanatory funny business characterizes situations in which no
localized explanation of inconsistency can be given. These two definitions of funny
business are proved to be equivalent, and we provide an example that shows them to
be strictly more general than the previously available definitions of “funny business”.

Keywords Correlations · Modality · Indeterminism

1 Introduction

We should take indeterminism seriously as an objective feature of our world. This
means that there are events whose outcomes are not determined before they occur.
Given relativity theory, such events must be localized in bounded space-time regions
or, to use an idealization, at space-time points. The theory of branching space-times
(Belnap 1992) was designed to provide a formally rigorous framework for the ana-
lysis of questions pertaining to objective indeterminism. We will denote that theory,
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which will be employed in this paper, as “BST-92” in order to distinguish it from
other approaches to “branching space-times” in the literature (cf. Belnap 2003 for an
overview; BST-92 is outlined in the Appendix).

If indeterminism is bound to localized events, it makes sense to ask in which way
such events may combine. We know from probability theory that in combining proba-
bility spaces, correlations may show up. A probabilistic correlation is signalled by the
fact that the probability of a combined event is not equal to the product of the proba-
bilities of the subevents. We will not be concerned with probabilities here, but with a
question that is conceptually prior: Given that some outcomes of localized events are
individually possible, we wish to understand which combinations of such outcomes
are possible. Thus, our topic may be called “modal correlations”.

If anything, modal correlations cry out for explanation even more than probabilistic
correlations. Consider two coins tossed independently at different locations. It would
certainly be weird if the probabilities for the four possible combined outcomes were
not equal to the respective products of the individual probabilities—e.g., if both coins
were fair (probability of “heads” equal to 0.5), but the probabilities of “heads-heads”
was, say, 0.1 instead of the expected 0.25. Still, that probabilistic weirdness would
be in accord with ordinary expectations about the modal structure of the combined
set-up: given two independent set-ups with two possible outcomes each, there would
still be four possible combined outcomes. It would be much weirder still if not just
the probabilistic, but the underlying modal structure of the combined set-up showed
correlations—e.g., if the “head-head” outcome was impossible, even though for each
coin, the “head” outcome was possible. Yet, nature seems to exhibit exactly such modal
correlations in certain quantum-mechanical set-ups.1 What is going on in these cases?
Certainly this is “funny business”, and we will use this expression to signal intuitively
worrisome modal correlations.

The notion of modal correlations, or funny business, has been analyzed by Belnap
in two successive papers (Belnap 2002, 2003). The upshot of these papers was that
there seems to be a stable notion of funny business in BST-92, which can be character-
ized in four equivalent ways, each of which casts some additional light on notions of
modal correlations, causation, and screening-off. In this paper, we push the analysis
one step further by tackling infinite cases. We will give two new, equivalent definitions
of funny business in BST-92 that properly generalize the existing notions. These two
definitions will be given in the language of transitions, which concept has been used in
a BST-92 based analysis of causation (Belnap 2005). Even though our paper becomes
technical in places, the focus is on understanding the conceptual structure of modal
correlations.

1 Well-known cases are the EPR (Einstein et al. 1935) set-up and, more prominently, the GHZ (Greenberger
et al. 1989) set-up; cf. Bub (1997) for an overview. It may be argued that due to experimental uncertainties,
the perfect (anti-)correlations presupposed in these idealized set-ups can never be achieved, so that what
is at issue is never modal, but always probabilistic correlation. We hold that conclusion to be premature.
Certainly, for conceptual reasons one should understand modal correlations first. Investigations into prob-
abilistic BST-92 (Müller 2005) underline this attitude: It seems that in order to do probability theory at
all, one has to presuppose that no modal correlations are present. If so, then one had better understand the
absence of what one is presupposing.

123



Synthese (2008) 164:141–159 143

The structure of our paper is as follows: We first introduce our notation and some key
definitions of BST-92 as well as the four existing notions of funny business (Sect. 2).
Then we provide three BST-92 models as test cases (Sect. 3). These models will be
used to motivate our new definitions, given in Sect. 4 and 5. Appendix A contains
some formal details of BST-92.

2 Notation and proposed definitions of funny business

The label “BST-92” stands for the theory of branching space-times as laid out in
Belnap (1992). We define some of the key notions of that theory in Appendix A. The
interested reader is referred to Belnap (2002, 2003), where additional motivation is
given.

BST-92 describes alternative courses of events in terms of families of histories
branching at space-time points. These histories are carved from an underlying partial
ordering 〈W,≤〉. In the following, h stands for a history (a maximally detailed possi-
ble course of events, corresponding, e.g., to a single Minkowski space-time), I for an
initial event (occurring in at least one, but commonly in many histories), and O for an
outcome event, starting to occur in at least one history. An outcome event consists of
one or more outcome chains O ∈ O. The set of histories h for which h ∩ O �= ∅ is
denoted H〈O〉. Different histories split off at one or more points, we write “h1 ⊥e h2”
for “history h1 splits off from history h2 at e.” Such splitting introduces a partition
�e of the set H(e) of histories containing e. More generally, �I is the corresponding
partition of the set H[I ] of histories containing the initial I , and �I 〈h〉 is that member
of that partition containing h. Two initials can be space-like related, I1 SLR I2, mean-
ing that none of their members stand in the relation of causal precedence. A basic
transition is a pair 〈e, H〉, written e � H , where H ∈ �e. Basic transitions are the
fundamental indeterministic structures within branching space-times.

“Funny business” intuitively means that there is a spatio-temporal/modal structure
that has some special (funny) properties that strike one as odd, weird, or counterin-
tuitive. (Still, for all we know, such structures exist; witness the large literature on
quantum-mechanical correlations and EPR-Bell-type cases; cf. note 1 for some refer-
ences.) Belnap (2002, 2003) proposed four notions of “funny business” and showed
them to be equivalent. We refer the reader to these papers for details. The following
definitions list the four notions.

Definition 1 (Primary SLR modal-correlation funny business) Two initials I1 and
I2 together with two outcome-determining histories h1 and h2 (Ii ⊆ hi for i = 1, 2)
constitute a case of primary SLR modal-correlation funny business iff I1 SLR I2, but
�I1〈h1〉 ∩ �I2〈h2〉 = ∅.

Thus, two intuitively independent (since SLR ) initials and outcomes constitute a
case of funny business if the outcomes do not combine smoothly. This definition will
be generalized to what we call combinatorial funny business below.

Definition 2 (Some-cause-like-locus-not-in-past funny business) An initial I , a scat-
tered outcome event O and a history h constitute a case of some-cause-like-locus-not-
in-past funny business iff I is a cause-like locus for O w.r.t. h, but no member of I
lies in the causal past of any member of O.
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According to this definition, funny business is linked to something like “spooky
action at a distance”: There is a cause-like initial I for O, but that initial does not act
in the causal past of O.

Definition 3 (No-prior-screener-off funny business) A pair of scattered outcome
events O1 and O2 constitute a case of no-prior-screener-off funny business iff

1. Each of O1 and O2 is individually consistent, i.e., H〈O1〉 �= ∅ and H〈O2〉 �= ∅,
2. H〈O1〉 is inconsistent with H〈O2〉, i.e., H〈O1〉 ∩ H〈O2〉 = ∅, but
3. ¬∃e ∃O1 ∈ O1 ∃O2 ∈ O2 [e < O1 and e < O2 and ∀h ∈ H(e) [(�e〈h〉∩H〈O1〉 =

∅) or (�e〈h〉 ∩ H〈O1〉 = ∅)].
In such a case, two outcomes are individually consistent yet inconsistent, and we

are lacking an intuitively satisfactory explanation of the inconsistency, which would
have to be in terms of a prior event e separating off the two inconsistent outcomes.
This notion will be generalized to what we call explanatory funny business below.

Definition 4 (No-prior-common-cause-like-locus funny business) A pair of scattered
outcome events O1 and O2 together with a pair of histories h1 and h2 constitute a case
of no-prior-common-cause-like-locus funny business iff

1. Each of O1 and O2 is individually consistent, as witnessed by h1 and h2 (i.e.,
h1 ∈ H〈O1〉 and h2 ∈ H〈O2〉),

2. H〈O1〉 is inconsistent with H〈O2〉, i.e., H〈O1〉 ∩ H〈O2〉 = ∅, but
3. ¬∃e ∃O1 ∈ O1 ∃O2 ∈ O2 [e < O1 and e < O2 and h1 ⊥e h2].

This definition gives a variant of the idea behind the previous definition.
The main result of Belnap (2003) is to establish the equivalence of these four

notions. Thus, we have the following Theorem:

Theorem 1 In a BST-92 model 〈W,≤〉, there is a case of primary SLR modal-cor-
relation funny business iff there is a case of some-cause-like-locus-not-in-past funny
business iff there is a case of no-prior-screener-off funny business iff there is a case of
no-prior-common-cause-like-locus funny business.

In this paper, we propose to extend the previous analysis of “funny business” in
such a way as to cover certain infinite structures that are intuitively “funny”, but which
are not covered by the existing definitions. Also, in line with the project of explaining
causation in terms of basic transitions, initiated by Belnap (2005), the new definition
will apply to sets of transitions, which may be easier to handle than the spatio-tempo-
ral/modal structures involved in the previous definitions.

3 Test cases

In this section we will construct three BST-92 structures. One is clearly innocent as
regards funny business, while the other two are intuitively “funny”, since they both
exhibit space-like correlations.2 For all structures, we will proceed in two steps: We

2 Space-like correlations are the main feature of quantum-mechanical puzzles such as the famous EPR
argument. Cf. note 1 for some references.
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(1,1)

FLC
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Fig. 1 M, the two-dimensional Minkowski plane. The figure shows the past light cone (P LC) and future
light cone (F LC) for the point (1,1). For all (x, y) ∈ P LC , we have (x, y) <M (1, 1), while for all
(x, y) ∈ F LC, (1, 1) <M (x, y)

will first define the structures and prove that they fulfill the postulates of BST-92. In
a second step, we will give an intuitive assessment of whether the structures exhibit
“funny business”, and check whether the existing definitions of funny business apply
in the appropriate way. For the last structure, M2, this will not be so, and this fact will
then motivate our extended definitions of funny business to be presented below.

Our first two structures will be derived from a 2-dimensional Minkowski space-time
M (cf. Fig. 1). This is the structure

M = 〈M,<M 〉,

where the base set M = R
2 is the set of pairs of real numbers (the Euclidean plane),

and the (causal) partial ordering <M is defined within light cones (taking the speed of
light c = 1), as follows:

(x, y) <M (x ′, y′) iff |x − x ′| ≤ |y − y′| and y < y′.

Furthermore, our structures will exhibit indeterminism in the form of a 2-way splitting,
with the outcomes denoted as “0” and “1”. You may think of these indeterministic
events as coin tosses, or as measurements of the spin projection of a spin-1/2 particle
along some axis, or of some other simple indeterministic event. We will not look at
probabilistic setups (which would require an extension of the basic structure of BST-
92; cf. Weiner and Belnap (2006) and Müller (2005)), so by “correlations” we mean
modal correlations, or perfect correlations.

As a warm-up, and in order to introduce some techniques that we will use in the
“funny” models, we first present a straightforward BST-92 structure without funny
business, which you may think of as modelling two coins tossed independently at
different locations.
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3.1 M0: no funny business

We start with the set

C =d f {(−1, 0), (1, 0)},

which will be our two choice points (the space-time locations at which the coin tosses
happen; at these points, the outcomes are not yet fixed). We will use p, p′, etc., to
range over M , and we employ the notation

J−(p) =d f {p′ ∈ M | p′ <M p}

to denote the causal past (the past light cone) of p (excluding the point p itself).
Our BST-92 structure M0 is based on the set W , defined as

W =d f {〈p, G〉 | p ∈ M, G ⊆ C ∩ J−(p)}.

On W we define a partial ordering < via

〈p1, G1〉 < 〈p2, G2〉 iff p1 <M p2 and G1 = G2 ∩ J−(p1).

The interpretation of the set and its ordering is as follows: A point e = 〈p, G〉 ∈ W
stands for the space-time location p ∈ M , considered in a history in which exactly
the initials from G, which lie in the past of p, show outcome “0”, while all other
initials that are in the past of p show outcome “1”. (Thus, the elements of W contain
no information about the outcomes of choice points that are space-like related to, or
in the causal future of, p.) The ordering then says that two elements of W stand in
the ordering relation exactly if their spatio-temporal locations are ordered appropri-
ately and the information on “0” and “1” outcomes from the lower point is consistent
with that from the higher point. (If you wish, you may read this as some kind of
“no backward branching” requirement.)

We now show that M0 = 〈W,<〉 fulfills the postulates of BST-92.

Lemma 1 (Histories in M0)
The histories in M0 are exactly the sets

hi = {〈p, G〉 | p ∈ M, G = Ci ∩ J−(p)}, i = 1, . . . , 4,

where the Ci are the four subsets of C: ∅, {(−1, 0)}, {(1, 0)}, and C itself.

Proof “⇐”: Let hi be one of the mentioned sets. We need to show that that set
is a history in M0, i.e., that it is a maximally directed set. For directedness, take
e1 = 〈p1, Ci ∩ J−(p1)〉, e2 = 〈p2, Ci ∩ J−(p2)〉 ∈ W . As p1 and p2 have an upper
bound, p, in M , the point 〈p, Ci ∩ J−(p)〉 ∈ W is an upper bound for e1 and e2 in W .
For maximality, assume that e = 〈p, G〉 �∈ hi and note that e′ = 〈p, Ci ∩ J−(p)〉 ∈ hi .
If hi ∪ {e} were a subset of some directed set h∗, then h∗ would have to contain an
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upper bound e∗ = 〈p∗, G∗〉 above both e and e′. But then by the definition of the
ordering, we would have to have G = G∗ ∩ J−(p) = Ci ∩ J−(p), contradicting
e �∈ hi .

“⇒”: Let h be a maximally directed subset of W . We need to show that h = hi for
one of the hi defined above.

Assume for reductio that h does not contain a point e1 = 〈p1, G1〉 such that
(−1, 0) <M p1. Let e = 〈p, G〉 ∈ h. Since (−1, 0) /∈ J−(p) by assumption, and so
is not in G ⊆ C ∩ J−(p), either G = ∅ or G = {(1, 0)}. Hence either G = C1∩ J−(p)

or G = C3 ∩ J−(p), so that e ∈ (h1 ∪ h3), and accordingly h ⊆ (h1 ∪ h3). Therefore
either h = h1 or h = h3 (as proven in Belnap (1992)); but then the definition of the
hi contradicts the assumption, so that h must after all contain a point e1 = 〈p1, G1〉
such that (−1, 0) <M p1. An exactly similar argument establishes that h contains a
point e2 = 〈p2, G2〉 such that (1, 0) <M p2.

Given that h contains both such an e1 and such an e2, since h is directed, it must
contain an upper bound e = 〈p, G〉 for e1 and e2, so (−1, 0) <M p, (1, 0) <M p. By
the definition of W , we have G ⊆ C , so G = Ci for one of i = 1, . . . , 4. We can now
show that h ⊆ hi . Otherwise, let e′ ∈ h−hi , i.e, e′ = 〈p′, G ′〉 with G ′ �= Ci ∩ J−(p′).
By directedness of h, there must be e∗ = 〈p∗, G∗〉 ∈ h above both e and e′. Now
from e < e∗ we have G = Ci = G∗ ∩ J−(p) = G∗, but then by e′ < e∗ we also have
G ′ = G∗ ∩ J−(p′) = Ci ∩ J−(p′), showing that e′ ∈ hi , contrary to assumption.
Finally, in virtue of the maximality of h, h ⊆ hi implies that h = hi . �

In order to establish the other postulates of BST-92, note that density and the exis-
tence of suprema and infima carry over from M. It remains to establish the prior
choice postulate.

Lemma 2 (M0 satisfies the prior choice postulate) M0 satisfies the prior choice pos-
tulate, i.e., if O is a lower bounded chain in hi − h j , there is a point e ∈ hi ∩ h j such
that e is a lower bound for O and e is maximal in hi ∩ h j .

Proof Let O ⊂ hi − h j be a lower bounded chain. Set

�i j = (Ci − C j ) ∪ (C j − Ci ),

the set of indeterministic initials whose outcomes distinguish hi from h j .

(1) If pk ∈ �i j , then 〈pk,∅〉 is maximal in hi ∩ h j : Take pk ∈ �i j . By Lemma 1,
〈pk,∅〉 ∈ hi ∩ h j . For maximality, let e = 〈p, G〉 ∈ hi s.t. 〈pk,∅〉 < e. Then
G = Ci ∩ J−(p) (as e ∈ hi ), but as pk <M p and pk ∈ �i j , it must be that
G �= C j ∩ J−(p), so that e �∈ h j .

(2) For e = 〈p, G〉 ∈ O , from e ∈ hi −h j we get G = Ci ∩ J−(p) �= C j ∩ J−(p), so
there is a pk ∈ �i j s.t. pk <M p. It remains to prove that there is pk ∈ �i j s.t. for
all e = 〈p, G〉 ∈ O we have pk <M p, since then 〈pk,∅〉 < O , and maximality
was established above. So assume for reductio that there is no such pk , i.e., for
all pk ∈ �i j there is ek ∈ O s.t. 〈pk,∅〉 �< ek . Let E contain such a witness ek

for each pk ∈ �i j : we set E =d f {ek | pk ∈ �i j }. Now E ⊆ O , so E is a chain
in hi − h j , and as �i j is finite, E contains a least element, e0 = 〈p0, G0〉. Now
we cannot have pk < p0 for any pk ∈ �i j , for else by transitivity (noting that E
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is a chain) we would have 〈pk,∅〉 < e0 ≤ ek , contrary to the construction of E .
That is, �i j ∩ J−(p0) = ∅. But then G0 = Ci ∩ J−(p0) = C j ∩ J−(p0), so that
e0 ∈ h j , contradicting e0 ∈ O . �

The structure M0 does not exhibit any strange correlations—to each combination
of outcomes of the indeterministic events in M0 there corresponds a history. As we
would expect, M0 is not a case of funny business in the technical sense either.

Fact 1 The structure M0 does not exhibit primary space-like related modal-correla-
tion funny business.

Proof The only candidate for primary space-like related modal-correlation funny busi-
ness are the initials I1 = {〈(−1, 0),∅〉} and I2 = {〈(1, 0),∅〉}. However, any combi-
nation of outcomes is consistent, as witnessed by the four histories h1, . . . , h4. �

3.2 M1: EPR-like funny business

For the model M1 we start with the set C as above. However, there will be a new inter-
mediate step: We select a proper subset C of the powerset of C to mark the possible
combinations of outcomes, rather than selecting the full powerset as above. Thus, we
set C = {∅, {(−1, 0)}, {(1, 0)}}. The definition of W is almost as above:

W =d f {〈p, Gi 〉 | p ∈ M, Gi = Ci ∩ J−(p), Ci ∈ C, i = 1, . . . , 3}.

The partial ordering is defined exactly as above. In order to show that M1 = 〈W,<〉
fulfills the postulates of BST-92, we follow the proof for M0 almost to the letter. The
history lemma reads:

Lemma 3 (Histories in M1) The histories in M1 are exactly the sets

hi = {〈p, Gi 〉 | p ∈ M, Gi = Ci ∩ J−(p)}, i = 1, . . . , 3,

where the Ci are the elements of C.

The proof of the Lemma is as above, and the prior choice principle is also estab-
lished exactly as already shown. (It helps to note that M1 is a substructure of M0, with
exactly the points 〈p, {(−1, 0), (1, 0)}〉 missing from W .)

The structure M1 is weird: While the two choice points are space-like related, and
each could have outcome “0” (as witnessed by h2 and h3), there is no history in which
they both have the outcome “0”. This is exactly the type of set-up for which the term
“funny business” was coined, and accordingly, the definition applies:

Fact 2 The structure M1 exhibits primary SLR modal-correlation funny business.

Proof Consider the initials I1 = {〈(−1, 0),∅〉} and I2 = {〈(1, 0),∅〉}. They are space-
like related, and histories h2 and h3 witness that each can have outcome “0”. However,
there is no history in M1 that witnesses the combined outcome. �
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3.3 M2: infinite funny business

In order to show that there can be funny business that is not a case of the existing def-
initions, we use the following combinatorics: Let there be denumerably many SLR
choice points (labelled by n ∈ N), each with binary splitting (outcomes 0 and 1). We
will construct a model in which the histories correspond to exactly those combina-
tions of outcomes in which only finitely many 0’s occur. This will result in intuitively
“funny combinatorics”, as each choice point can have outcome 0, but the combination
“all outcomes are 0” cannot occur. However, there will be no case of primary SLR
modal-correlation funny business (Def. 1). To see this, let I1 and I2 be subsets of N s.t.
I1 ∩ I2 = ∅; this exhausts all possible choices of SLR initials. Now let histories h1
and h2 witness some outcome of I1 and of I2, respectively. As histories correspond to
exactly those combinations of outcomes with finitely many 0’s, the designated com-
bined outcome for the initial I1 ∪ I2 involves only finitely many 0’s as well, and thus
there is a history h∗ witnessing the combined outcome. Thus there is no case of primary
SLR modal-correlation funny business—but there is obviously funny business going
on!

An attempt to construct a model with these combinatorics along the lines of the
construction of M1 results in an instructive failure. Using Minkowski space-time as
the background, we specify the points (0, n), n ∈ N, as designated choice points:

C = {(n, 0) | n ∈ N}.

The set of allowed combinations, C, is the set of finite subsets of C :

C = {Ci ⊂ C | Ci is finite}.

The construction of W and of the ordering then follows the lines of the construction
of M1 exactly. As in the proof of Lemma 1, one sees that for each Ci ∈ C, the set

hi = {〈p, G〉 | p ∈ M, G = Ci ∩ J−(p)}

is indeed a history. However, there are histories that are not of this form. To see
this, consider the “vertical” chain 〈pn, Gn〉 of points with pn = (0, n) and Gn =
C ∩ J−(pn), n ∈ N. Each Gn is finite, so the points 〈pn, Gn〉 do belong to the envis-
aged structure, and by the construction of the ordering,

〈pn, Gn〉 ≤ 〈pn+1, Gn+1〉.

Thus, we have a chain (thus, also a directed set), and by Zorn’s Lemma, there is a his-
tory h∗ (a maximal directed set) containing the chain. Now in h∗, all choice points have
the 0 outcome, thus thwarting the attempt to implement the “funny” combinatorics in
analogy with M1.3

3 More elaborate attempts, such as choosing C to be the full real line and C the set of null sets, may give
the right histories, but usually lead to a failure of the prior choice principle.
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The following construction, which is much sparser, does provide a means for imple-
menting the sought-for combinatorics. Roughly, one takes denumerably many copies
of the real line, binds them together at some point “far back”, and only combines
those lines by the ordering that reflect the sought-for combinatorics. You may think
of the position along the real line as an analogue of temporal location, while the other
aspects of the construction give rise to space-like separation. Thus, let F be the set of
all functions f : N → {0, 1} such that for only finitely many n ∈ N, f (n) = 0.

Now set W = W0 ∪ W1 ∪ W2 ∪ W3 to be the union of the following four Cartesian
products:

W0 = (−∞, 0],
W1 = (0, 1] × N,

W2 = (1, 2) × N × {0, 1},
W3 = [2,∞) × F.

For each tuple e ∈ Wi , its first coordinate pictures “temporal location” along the real
line, while the other coordinates picture the “space-like position” in the bundle W .
Our ordering, <, is the transitive closure of the following relations (a) within the Wi

and (b) between elements of Wi and Wi+1:

(a) For e, e′ from the same Wi : e < e′ iff the first coordinate of e is smaller than
that of e′ and the other coordinates are the same. E.g., for x, y ∈ W0, let x < y
in W iff x < y as reals; and for (x, n), (y, m) ∈ W1, let (x, n) < (y, m) iff
x < y and n = m.

(b.0) x < (y, n) for every x ∈ W0 and (y, n) ∈ W1.
(b.1) For (x, n) ∈ W1 and (y, m, i) ∈ W2: (x, n) < (y, m, i) iff n = m.
(b.2) For (x, n, i) ∈ W2 and (y, f ) ∈ W3: (x, n, i) < (y, f ) iff f (n) = i .

It is clear that (x, a) < (y, b) only if x < y, and hence < is a (strict) partial ordering.
Figure 2 illustrates this ordering and indicates where the boundary points belong.

In order to prove that this structure fulfills the postulates of BST-92, we first note
that the histories are in one-to-one correspondence with the members of F.

Lemma 4 The histories in M2 are exactly the sets

h f =d f W0 ∪ W1 ∪ {(x, n, i) ∈ W2 | f (n) = i} ∪ {(x, g) ∈ W3 | g = f }

with f ∈ F.

Proof “⇐”: For f ∈ F, h f is maximally directed. Directedness is established easily
(use some (y, f )with y large enough). Maximality also follows straightforwardly from
the definition of the ordering, noting that as W0 ∪ W1 ⊂ h f , an element e ∈ W − h f

must be of the form (x, n, i ′) with f (n) �= i ′, or (x, f ′) with f �= f ′.
“⇒”: In the other direction, let D be a nonempty directed subset of W . We will

show that there is f ∈ F for which D ⊆ h f . By maximality of the h f , we will thereby
have established our claim. We distinguish three cases:
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00 0

1 3

Fig. 2 The ordering relations in the model M2

(i) If D ⊂ W0 ∪ W1, we have D ⊂ h f for any f ∈ F, as remarked above.
(ii) Assume that D ⊂ W0 ∪ W1 ∪ W2. Let e = (x, n, i) ∈ D ∩ W2. Now any

e′ = (x ′, n′, i ′) ∈ D ∩ W2 must fulfill n = n′ and i = i ′, as upper bounds for
other elements of W2 lie in W3, and by assumption, D ∩ W3 = ∅. Accordingly,
D ⊂ h f for any f ∈ F for which f (n) = i .

(iii) Finally, assume that D ∩ W3 �= ∅, so D contains an element e = (x, f ) ∈ W3.
As (x, f ) and (y, g) with f �= g do not have an upper bound in W , we have
D ∩ W3 ⊂ h f . To establish D ∩ W2 ⊂ h f , let e′ = (y, n, i) ∈ D ∩ W2. Any
upper bound for e and e′ must be of the form (x ′, f ), and thus by the definition of
the ordering, e′ < e, which means f (n) = i , implying f ∈ h f . Thus D ⊆ h f .

�

Next we note that M2 has the right topology:

Lemma 5 M2 fulfills the topological requirements of BST-92, i.e.,

1. Every lower bounded chain c ⊆ W has an infimum (greatest lower bound), inf c.
2. If c ⊆ W is an upper bounded chain and c ⊆ h for a history h, then there exists a

(history-relative) supremum (least upper bound) of c in h, suph c ∈ h.
3. W has no minimal or maximal elements.
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Proof (3) is straightforward in virtue of the ordering. For (1) and (2), one only needs
to consider the cases in which the supremum or infimum corresponds to x = 0, 1, or
2. In each of these cases, the definition of W secures the right topology. E.g., points
(2, f ) act both as infima of chains such as (2 + 1/n, f )n∈N, and as suprema of chains
such as (2 − 1/n, n, i)n∈N in histories h f for which f (n) = i . �

It remains to prove the prior choice principle.

Lemma 6 M2 satisfies the prior choice principle: Let f, f ′ ∈ F, let I be some index
set, and let (ci )i∈I be a lower bounded chain in h f −h f ′ . Then there is a lower bound
e for (ci )i∈I that is maximal in h f ∩ h f ′ .

Proof We first show that any point en = (1, n) with f (n) �= f ′(n) is maximal in
h f ∩ h f ′ . As the en are elements of any history, they clearly belong to the intersec-
tion. For maximality, let e ∈ h f with (1, n) < e. Then either e = (x, n, i) with
f (n) = i �= f ′(n), whence e �∈ h f ′ , or e = (x, f ), which again is not an element
of h f ′ .

Concerning the chain (ci )i∈I , we consider two cases. (1) If (2, f ) is a lower bound
for the chain, then any (1, n) with n s.t. f (n) �= f ′(n) will serve as a witness of the
prior choice principle. (2) If there are ci for which ci < (2, f ), then by the fact that
all these elements belong to h f − h f ′ and by linearity, they must all be of the form
(x, n, i) for fixed n and i—elements of the form (x) or (x, n) belong to h f ∩ h f ′ , and
elements (x, n, i) and (x ′, n′, i ′) for n �= n′ or i �= i ′ are incomparable. Thus, (1, n)

is a lower bound for the chain (ci )i∈I . �

M2 is certainly a funny model: It witnesses the strange combinatorics outlined at
the beginning of this section; all of the denumerably many points (1, n), n ∈ N, are
binary splitting points, and yet there is no history in which infinitely many “0” out-
comes occur. As intended, the funniness of M2 is not covered by the existing notions
of funny business:

Fact 3 M2 does not contain a case of primary SLR modal-correlation funny business
(nor, in view of Theorem 1, any of the three other cases of definitions 2, 3, or 4).

The proof has already been given above, in motivating the combinatorics used
in M2. �

4 Combinatorial funny business

The key idea behind primary SLR modal-correlation funny business (Def. 1) is that
there are two well-behaved set-ups (initials Ii and outcomes �i , i = 1, 2) that one
would expect to combine smoothly (since I1 SLR I2), but the histories that would wit-
ness smooth combination are missing (�1〈h1〉∩�2〈h2〉 = ∅). This is an intrinsically
binary concept that, as shown, does not cover some troublesome infinite structures.
However, one can generalize by spelling out “well-behaved set-up” in terms of primary
transitions (irreducible indeterministic transitions ti = ei � Hi ), as follows:
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Definition 5 (Combinatorial consistency) A set T of basic transitions is combinato-
rially consistent iff for any ti , t j ∈ T :

1. if ei = e j , then Hi = Hj (i.e., ti = t j );
2. if ei < e j , then H(e j ) ⊆ Hi (i.e., ti < t j );
3. if e j < ei , then H(ei ) ⊆ Hj (i.e., t j < ti );
4. if ei and e j are incomparable, then ei SLR e j .

As one would expect, sets of transitions that are in fact consistent are also
well-behaved according to the definition:

Lemma 7 If T is consistent, then it is also combinatorially consistent.

Proof Assume T is combinatorially inconsistent. Thus, there are ti , t j ∈ T violating
one of the four clauses from the definition. In each of these cases, clearly Hi ∩Hj = ∅.

�

The other direction does not hold in general, but if it fails, something at least mildly
counterintuitive is going on: The set T is well-behaved, but the combinatorics do not
work out as expected. Thus we define:

Definition 6 (Combinatorial funny business) T constitutes a case of combinatorial
funny business iff T is combinatorially consistent, but HT = ∅.

Fact 4 Both M1 and M2 are cases of combinatorial funny business.

Proof The initials of indeterministic transitions in both these structures are pairwise
space-like related, so the corresponding sets of transitions with outcomes “all 0” ful-
fill clause (4) of Definition 5—but as noted, there is no history in these structures
witnessing the combination of these outcomes. �

As we showed at the end of the previous section, the notion of primary SLR
modal-correlation funny business does not cover M2 (nor, by the light of Theorem
1, does any of the other existing notions). However, the previous notions smoothly
embed into the new one:

Lemma 8 The new notion of combinatorial funny business (CFB) relates to the old
notion of primary SLR modal-correlation funny business (PSLRMCFB) in the fol-
lowing ways:

1. CFB is an extension of the notion of PSLRMCFB: Every case of PSLRMCFB is a
case of CFB.

2. CFB is a proper extension of PSLRMCFB: There are cases of CFB that are not
cases of PSLRMCFB.

3. For finite T , CFB is equivalent to PSLRMCFB.4

4 However, it is not the case that every case of PSLRMCFB is a case of CFB with finite T —the sets may
be infinite in PSLRMCFB too, only the setup is “intrinsically binary”.
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Proof sketch (1) Given a case of PMCFB (Ii , hi , i = 1, 2), the two initials I1 and I2
consist of pairwise SLR initials and are themselves consistent, so

T = {e � �e〈h1〉 | e ∈ I1} ∪ {e � �e〈h2〉 | e ∈ I2}

is combinatorially consistent, but T is inconsistent by assumption. Thus, T is a case
of CFB. (2) follows from Facts 3 and 4. For (3), cf. Lemma 2 of Müller (2005). �

5 Explanatory funny business

Through the new notion of “combinatorial funny business” we have reached our aim
of providing for an extended notion of “funny business” that would apply to trouble-
some infinite cases. Specifically, Lemma 8 shows that the new definition extends the
previous “modal correlation” reading of “funny business”, PSLRMCFB. By Theorem
1, the new definition also extends the other three existing notions, some-cause-like-
locus-not-in-past funny business (SCLLNIPFB), no-prior-screener-off funny business
(NPSOFB), and no-prior-common-cause-like-locus funny business (NPCCLLFB). It
would still be nice to see in a more direct way how the new definition extends these three
notions, since their motivation is somewhat different from PSLRMCFB. In the latter
case, the guiding idea was “wrong kind of combinatorics” (there is a case of inconsis-
tency where one would not expect it). In the former three cases, the guiding idea may
be seen to be “warped explanatory account”: Each of the three definitions states that
there is a case of inconsistency that one cannot make intelligible. SCLLNIPFB states
that an explanation (a cause-like locus) is available, but that it does not bear the right
kind of spatio-temporal relation to the outcome O. NPSOFB and NPCCLLFB both
state that an explanatory account of the right sort cannot be found at all.

By moving from general spatio-temporal/modal structures to sets of basic transi-
tions, we can give a simpler analysis of this kind of “failure of an attempted explanatory
account”. The guiding idea is the following: If a set of transitions T is inconsistent
(the transitions have no joint outcome), then we can make this inconsistency intelligi-
ble by showing that T in some way conflates causal alternatives. Alternatives cannot
occur together, so if one is presented with a set T in which alternatives are mixed, one
readily understands why T should be inconsistent. This may all be well, but what does
“causal alternatives” mean? For sets of transitions, there is at least one clear answer,
captured by the following definition:

Definition 7 (Blatant inconsistency) A set T = {ei � Hi | i ∈ I } of transitions is
blatantly inconsistent iff there are ti , t j ∈ T s.t. ei = e j , but Hi �= Hj .

Thus, blatant inconsistency means that in T , two local causal alternatives, ti and
t j , both with the same initial but with different outcomes, are thrown together.

If a given inconsistent set T is blatantly inconsistent, then an account of why it is
inconsistent is already available. More generally, one may hope that for inconsistent
T , one could make the inconsistency intelligible by showing how T could be viewed in
such a way as to reveal some blatant inconsistency. In order to get rid of this metaphor,
we propose the following notion of “explanation seeking” downward extension:
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Definition 8 (Downward extension) The set T ∗ is a downward extension of T iff
(1) T ⊆ T ∗ and (2) for any (new) t∗ ∈ (T ∗ − T ), there are (already) ti , t j ∈ T s.t.
(a) e∗ ≤ ei , e∗ < e j and (b) t∗ �≤ ti , t∗ < t j .

That is, in downward extending one may add new transitions t∗ = e∗ � H∗ that
serve to split off old inconsistencies from one another: the new t∗ rules out ti , but it
is compatible with t j . These new transitions may help to make the inconsistency of a
set T more intelligible by giving more detail.

The definition of “downward extension” is deliberately not meant to single out one
(“exhaustive”) extension; a given T may have many downward extensions that may
be more or less helpful in making T more intelligible. In some cases, however, the
extension is unique:

Lemma 9 If T is combinatorially consistent, then T itself is its only downward
extension.

Proof Let T be combinatorially consistent, and let ti , t j ∈ T . Let e∗ fulfill the required
clause (2.a) for “downward extension”, i.e., e∗ ≤ ei , e∗ < e j . We show that in none
of the four cases allowed by Definition 5 can we select H∗ ∈ �e∗ such as to fulfill
the second clause (2.b) for “downward extension”. (i) ti = t j : (2.b) is contradictory.
(ii) ti < t j : if e∗ < ei , then (2.b) fails since t∗ < t j requires H∗ = �e∗〈e j 〉, and by
transitivity we get H∗ = �e∗〈ei 〉. If, on the other hand, e∗ = ei , then t∗ < t j requires
t∗ = ti . (iii) is symmetrical to case (ii). (iv) ei SLR e j : with e∗ < ei , e∗ < e j , there
is a history through e∗ (witnessing the SLR aspect) containing both ei and e j , which
thus cannot be split at e∗. �

If a given set T is inconsistent, one can hope that it will be possible to arrive at a
downward extension of T that is blatantly inconsistent. This would make the incon-
sistency plainly intelligible. If that hope is frustrated, something funny is going on.
Thus we define:

Definition 9 (Explanatory funny business) A set T of transitions is a case of explan-
atory funny business iff (1) T is inconsistent and (2) there is no downward extension
of T that is blatantly inconsistent.

It turns out that the notion of explanatory funny business is equivalent to the previ-
ous notion of combinatorial funny business; thus it also applies to troublesome infinite
cases.

Theorem 2 In a model of branching space-times, there is a case of explanatory funny
business (EFB) iff there is a case of combinatorial funny business (CFB).

Proof “⇒”: Assume that there is no CFB, and let T be inconsistent. Since there is no
CFB, T must be combinatorially inconsistent, i.e., there must be ti , t j ∈ T violating
one of the clauses (1–4) of Definition 5. In each case we can construct a downward
extension of T that is blatently inconsistent.
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1. ei = e j , Hi �= Hj : T is already blatantly inconsistent.
2. ei < e j , H(e j ) �⊆ Hi : One may add the transition ei � �ei 〈e j 〉, creating blatant

inconsistency.
3. e j < ei , H(ei ) �⊆ Hj : as in the previous case
4. ei and e j are incompatible (i.e., do not belong to any one history). By the prior

choice principle one can find a prior splitting point e∗ for ei and e j and add t∗1 =
e∗ � �e∗〈ei 〉, t∗2 = e∗ � �e∗〈e j 〉, creating blatant inconsistency.

Thus, T is not a case of EFB.
“⇐”: Let T be a case of CFB, i.e., combinatorially consistent, but inconsistent. By

clause (1) of Definition 5, T is not blatantly inconsistent, and by Lemma 9, T is its
own unique downward extension. Thus T is a case of EFB. �

From Theorems 1 and 2 it is already clear that the notion of EFB is a proper exten-
sion of the three previous “explanatory” notions of funny business, SCLLNIPFB,
NPSOFB, and NPCCLLFB. Luckily, there is a more perspicuous interdependence:
An alternative, direct proof that EFB extends these three notions is readily available.
We show the link between EFB and NPCCLLFB explicitly:

Lemma 10 The new notion of explanatory funny business (EFB) relates to the old
notion of no prior common cause-like locus funny business (NCCLLFB) in the follow-
ing ways:

1. EFB is an extension of the notion of NCCLLFB: Every case of NCCLLFB is a case
of EFB.

2. EFB is a proper extension of NCCLLFB: There are cases of EFB that are not cases
of NCCLLFB.

Proof sketch (1) Given a case of NCCLLFB (Oi , hi , i = 1, 2), set

Ti := {e � �e〈O〉 | O ∈ Oi , e = in f (O)}, i = 1, 2; T := T1 ∪ T2.

The Ti are consistent, whereas T is inconsistent. If there was a proper extension T ∗ of
T that was blatantly inconsistent, there would have to be (new) t∗ and t1, t2 ∈ T1 ∪ T2
fulfilling the clause for “downward extension” above. As the Ti are consistent and
thus, combinatorially consistent, Lemma 9 shows that we must have t1 ∈ T1, t2 ∈ T2
(modulo relabelling). But then e∗ would serve to split off T1 from T2, acting as a com-
mon cause, thus violating clause (3) of the definition of NCCLLFB (Def. 4), which
requires:

¬∃e ∃O1 ∈ O1 ∃O2 ∈ O2 (e < O1 ∧ e < O2 ∧ h1 ⊥e h2)

for histories hi ∈ H〈Oi 〉, i = 1, 2.
(2) follows from Facts 3 and 4 via Theorem 2. �
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6 Conclusion

The concept of “modal correlation” seems innocent at first—after all, “modal cor-
relation” just means that some local possibilities do not combine to become global
possibilities.

However, formal analysis of the concept of modal correlation reveals some surpris-
ing complexities. Getting clear about modal correlations means getting clear about the
concept of local and global possibilities first. That in turn presupposes a formal theory
of possibility in space and time. Such a theory is provided by BST-92, and preceeding
analyses of modal correlations (Belnap 2002, 2003) have accordingly employed that
framework.

The present paper has shown that despite the stability of the preceeding analyses,
witnessed by the equivalence result of Theorem 1, there are further cases of “funny
business” that call for an extension of the previous definitions. We have provided
two equivalent, new definitions of “funny business” that spell out what we claim are
two main intuitions behind the concept of modal correlations, or “funny business”.
(1) Local possibilities do not give rise to expected global possibilities. That intuition
had found expression in the notion of “primary space-like-related modal-correlation
funny business”. That notion was based on combining two local possibilities. Our no-
tion of “combinatorial funny business” extends that notion in such a way that infinite
sets of local possibilities can be handled smoothly. The extension is natural in that the
previous notion appears as a special case (Lemma 8). (2) Global impossibilities do not
have the right kind of local explanation. That concept can be made out as a guiding
intuition behind the three other proposed definitions of “some cause-like-locus-not-
in-past funny business”, “no-prior-screener-off funny business”, and “no-prior-
common-cause-like-locus funny business”. Our notion of “explanatory funny
business” provides the extension of these concepts that is needed to account for infinite
cases. The link is most obvious with respect to “no-prior-common-cause-like-locus
funny business”, as witnessed by Lemma 10.

It is our hope that the generality achieved through the present definitions gives,
relative to the austere framework of branching space-times, the definite analysis of
the notion of “modal correlation”.

Acknowledgements Thomas Müller acknowledges support by the Deutsche Forschungsgemeinschaft.

Appendix A

Some details of branching space-times

BST-92 starts with two primitive notions: “Our world”, W , whose members are defined
as point events, and ≤, the “causal order” on W . It is assumed that ≤ is a dense partial
order on W with no maximal elements. A history h is a maximal directed set, where
a set is directed if it contains an upper bound for each pair of its members. A set of
histories, also called a proposition, is usually denoted by H .

O is an outcome chain (nonempty and lower bounded chain, where a set is a chain
if each two of its members are comparable by ≤); provably O ⊆ h for some h. It
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is assumed that O has always a unique infimum inf O , and it is provable that given
e ∈ h, there is an O such that O ∩ h �= ∅ and e < O and e = inf O . It is also assumed
that every upper bounded chain has a supremum in every history to which it belongs.
An initial event I is a set of point events all of which are members of some one history,
and a scattered outcome event O is a set of outcome chains all of which overlap some
one history. By the prior choice postulate, for every O ⊆ h1 − h2 there is a point
e ≤ O that is maximal in the intersection h1 ∩ h2.

H(e) = {h | e ∈ h} is the proposition saying that e occurs. More generally,
H[I ] = {h | I ⊆ h} is the proposition saying that I occurs. H〈O〉 = {h | h ∩ O �= ∅} is
the proposition saying that O occurs, and for a scattered outcome event O, the occur-
rence proposition is H〈O〉 = ∩O∈O H〈O〉. A proposition H is consistent iff H �= ∅,
and an event of some type (e, O, O, I ) is consistent iff its occurrence proposition is.

Two histories are undivided at e, h1 ≡e h2, iff e belongs to their intersection, but
is not maximal therein. More generally, h1 ≡I h2 iff h1 ≡e h2 for every e ∈ I .
By the prior choice postulate, undividedness-at-e (and thus, undividedness-at-I ) is an
equivalence relation, and the corresponding partition of H(e) (of H[I ]) is denoted �e

(�I ). Given e ∈ h,�e〈h〉 is that member of �e to which h belongs; similarly for
�I 〈h〉.

Point events are space-like-related iff they are distinct, not causally ordered and
share a history. I1 SLR I2 means that every point event in I1 is space-like related to
every point event in I2.

h1 is separated from h2 at e, written h1 ⊥e h2, iff e is maximal in h1 ∩ h2. More
generally, h1 is separated from H at I , written h1 ⊥I H , iff for every h2 ∈ H there is
some e ∈ I for which h1 ⊥e h2. Similarly for H1 ⊥I H2. h1 is relevantly separated
from H at I , written h1⊥I H , iff h1 is separated from H at I , and each e ∈ I plays a
role, i.e., for every e ∈ I there is some h2 ∈ H s.t. h1 ⊥e h2. I is a cause-like locus
for O w.r.t. h iff h⊥I H〈O〉.

A transition is a pair 〈I, O〉 of an initial and an outcome, written I � O . Basic
transitions ti = ei � Hi are from a point ei to one of the elements Hi ∈ �e of the
partition of H(ei ). T = {ti | i ∈ I } is a set of basic transitions, I some index set. We
use

HT := ∩ti ∈T Hi

to stand for the common outcome of T . T is consistent iff HT �= ∅. On the set of basic
transitions, a partial ordering is defined via

ti < t j iff ei < e j and H(e j ) ∩ Hi �= ∅.5

We also set

ti ≤ t j iff ti < t j or ti = t j .

5 By transitivity of undividedness this is equivalent to H(e j ) ⊆ Hi .
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