Skip to main content
Log in

On the creative role of axiomatics. The discovery of lattices by Schröder, Dedekind, Birkhoff, and others

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Three different ways in which systems of axioms can contribute to the discovery of new notions are presented and they are illustrated by the various ways in which lattices have been introduced in mathematics by Schröder et al. These historical episodes reveal that the axiomatic method is not only a way of systematizing our knowledge, but that it can also be used as a fruitful tool for discovering and introducing new mathematical notions. Looked at it from this perspective, the creative aspect of axiomatics for mathematical practice is brought to the fore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avigad J. (2006) Methodology and metaphysics in the development of Dedekind’s theory of ideals. In: Ferreirós J., Gray J. (eds) The architecture of modern mathematics. Oxford University Press, Oxford, pp 159–186

    Google Scholar 

  • Bennett A. A. (1930) Semi-serial order. American Mathematical Monthly 37(8): 418–423

    Article  Google Scholar 

  • Birkhoff G. (1933) On the combination of subalgebras. Proceedings of the Cambridge Philosophical Society 29: 441–464

    Article  Google Scholar 

  • Birkhoff G. (1934) Note on the paper “On the combination of subalgebras. Proceedings of the Cambridge Philosophical Society 30: 200

    Article  Google Scholar 

  • Birkhoff G. (1937) Review of Thoralf Skolem, ‘Über gewisse “Verbände” oder “lattices”’ (1936). Journal of Symbolic Logic 2(1): 50–51

    Article  Google Scholar 

  • Birkhoff G. (1938) Lattices and their applications. Bulletin of the American Mathematical Society 44: 793–800

    Article  Google Scholar 

  • Birkhoff, G. (1940). Lattice theory (Vol. 25 of AMS Colloquium Publications). New York: American Mathematical Society. (Second edition 1948).

  • Birkhoff G. (1970) What can lattices do for you?. In: Abbott J. C. (eds) Trends in lattice theory. Van Nostrand Reinhold Co, New York, pp 1–40

    Google Scholar 

  • Burris, S., & Sankappanavar, H. (1981). A course in universal algebra. Springer Verlag: Berlin. (References are to “The Millenium Edition,” available online at http://www.math.uwaterloo.ca/snburris/htdocs/ualg.html).

  • Corry, L. (1996). Modern algebra and the rise of mathematical structures. In: Science networks. Historical studies (Vol. 17). Basel: Birkhäuser.

  • de Jong, W. R., & Betti, A. (2008). The Aristotelian model of science: A millennia-old model of scientific rationality. Synthese. doi:10.1007/s11229-008-9420-9.

  • Dedekind, R. (1857). Abriß einer Theorie der höheren Kongruenzen in bezug auf einen reellen Primzahl-Modulus. Journal für die reine und angewandte Mathematik, 54, 1–26. (Reprinted in Dedekind 1932, Vol. I, Chap. V, pp. 40–67).

  • Dedekind, R. (1872). Stetigkeit und irrationale Zahlen. Braunschweig: Vieweg. (Reprinted in Dedekind 1932, Vol. III, pp. 315–334. English translation Continuity and irrational numbers by W. W. Beman, revised by W. Ewald, in (Ewald 1996), pp. 765–779.)

  • Dedekind, R. (1877). Über die Anzahl der Ideal-Klassen in den verschiedenen Ordnungen eines endlichen Körpers. In Festschrift der Technischen Hochschule Braunschweig zur Säkularfeier des Geburtstages von C.F. Gauss (pp. 1–55). Braunschweig: Vieweg. (Reprinted as Chap. XII in Dedekind 1932, Vol. I, pp. 105–158).

  • Dedekind, R. (1888). Was sind und was sollen die Zahlen? Braunschweig: Vieweg. (Reprinted by R. Dedekind, 1932, Vol. III, pp. 335–391. English translation by W. W. Beman, revised by W. Ewald, 1996, pp. 787–833.

  • Dedekind, R. (1897). Über Zerlegungen von Zahlen durch ihre größten gemeinsamen Teiler. Festschrift der Technischen Hochschule zu Braunschweig bei Gelegenheit der 69. Versammlung Deutscher Naturforscher und Ärzte (pp. 1–40). (Reprinted by Dedekind, 1932, Vol. II, Chap. XXVIII, pp. 103–147).

  • Dedekind, R. (1900). Über die von drei Moduln erzeugte Dualgruppe. Mathematische Annalen, 53 371–403. (Reprinted by Dedekind, 1932, Vol. II, Chap. XXX, pp. 236–271).

  • Dedekind, R. (1930–1932). In R. Fricke, E. Noether & O. Ore (Eds.), Gesammelte mathematische Werke (Vol. 3). Braunschweig: Vieweg.

  • Dedekind, R. (1964). Über die Theorie der ganzen algebraischen Zahlen. Braunschweig: Vieweg. (Reprints of Chaps. XLVI (1894), XLVII (1871), XLVIII (1877), and XLIX (1879) from Dedekind, 1932, Vol. III. With an introduction by B. L. van der Waerden).

  • Dedekind, R. (1996). Theory of algebraic integers. Cambridge UK: Cambridge University Press. (English translation of Sur la Théorie des Nombres entiers algébriques (J. Stillwell, Trans.). (Original work published 1877))

  • Dirichlet, L. (1871). Vorlesungen über Zahlentheorie. Braunschweig: Vieweg. (Second edition, edited and with additions by R. Dedekind. Third edition 1877, fourth edition 1894).

  • Dyck W. (1882) Gruppentheoretische Studien. Mathematische Annalen 20(1): 1–44

    Article  Google Scholar 

  • Ewald W. (1996) From Kant to Hilbert: A source book in mathematics. Clarendon Press, Oxford

    Google Scholar 

  • Ferreirós, J. (1999). Labyrinth of thought—A history of set theory and its role in modern mathematics. In Science Networks. Historical Studies (Vol. 23). Basel, Boston, Berlin: Birkhäuser Verlag

  • Hasper P. S. (2006) Sources of delusion in Analytica Posteriora 1.5. Phronesis 51(3): 252–284

    Article  Google Scholar 

  • Hausdorff, F. (1914). Grundzüge der Mengenlehre. Leipzig: Veit. (Reprinted by Chelsea, New York, 1949).

  • Hilbert, D. (1897). Die Theorie der algebraischen Zahlenkörper. Jahresbericht der Deutschen Mathematiker Vereinigung, 4, 175–546. (Reprinted in Gesammelte Abhandlungen, Vol. 1, 1932, pp. 63–363).

  • Hilbert, D. (1918). Axiomatisches Denken. Mathematische Annalen, 78, 405–415. [(Reprinted in Gesammelte Abhandlungen, Vol. 3, 1935, pp. 146–156). (English translation: Axiomatic thought Ewald 1996, pp. 1105–1115)].

  • Huntington E. V. (1904) Sets of independent postulates for the algebra of logic. Transactions of the American Mathematical Society 5(3): 288–309

    Article  Google Scholar 

  • Huntington, E. V. (1917). The continuum and other types of serial order (2nd ed.). Cambridge, MA: Harvard University Press. (Reprinted by Dover, 1955).

  • Klein, F. (1926). Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert (Vol. 1). Berlin: Springer Verlag.

  • Klein F. (1929) Einige distributive Systeme in Mathematik und Logik. Jahresbericht der Deutschen Mathematiker-Vereinigung 38: 35–42

    Google Scholar 

  • Klein F. (1931) Zur Theorie abstrakter Verknüpfungen. Mathematische Annalen 105: 308–323

    Article  Google Scholar 

  • Klein F. (1932) Über einen Zerlegungssatz in der Theorie der abstrakten Verknüpfungen. Mathematische Annalen 106: 114–130

    Article  Google Scholar 

  • Klein F. (1935) Beiträge zur Theorie der Verbände. Mathematische Zeitschrift 39: 227–239

    Article  Google Scholar 

  • Korselt, A. R. (1894). Bemerkungen zur Algebra der Logik. Mathematische Annalen, 44(1), 156–157. (Excerpt from a letter to the editors).

    Google Scholar 

  • Lüroth J. (1891) Dr. Ernst Schröder, Vorlesungen über die Algebra der Logik. Zeitschrift für Mathematik und Physik 36: 161–169

    Google Scholar 

  • Mehrtens H. (1979) Die Entstehung der Verbandstheorie. Gerstenberg Verlag, Hildesheim

    Google Scholar 

  • Menger K. (1928) Bemerkungen zu Grundlagenfragen. IV: Axiomatik der endlichen Mengen und der elementargeometrischen Verknüpfungsbeziehungen. Jahresbericht der Deutschen Mathematiker-Vereinigung 37: 309–325

    Google Scholar 

  • Menger K. (1936) New foundations of projective and affine geometry. Annals of Mathematics 37(2): 456–482

    Article  Google Scholar 

  • Menger K. (1940) On algebra of geometry and recent progress in non-Euclidean geometry. The Rice Institute Pamphlet 27: 41–79

    Google Scholar 

  • Ore O. (1935) On the foundations of abstract algebra I. Annals of Mathematics 36(2): 406–437

    Article  Google Scholar 

  • Ore O. (1937) Structures and group theory I. Duke Mathematical Journal 3: 149–174

    Article  Google Scholar 

  • Ore O. (1938) On the application of structure theory to groups. Bulletin of the American Mathematical Society 44: 801–806

    Article  Google Scholar 

  • Peirce, C. S. (1880). On the algebra of logic. American Journal of Mathematics, 3, 15–57. (Reprinted by Peirce, 1966, Vol. III, pp. 104–157).

  • Peirce, C. S. (1885). On the algebra of logic: A contribution to the philosophy of notation. American Journal of Mathematics, 7(2), 180–196. (Reprinted by Peirce, 1966, Vol. III, pp. 210–249).

    Google Scholar 

  • Peirce, C. S. (1960–1966). Collected papers (Vol. 4). Cambridge, MA: Harvard University Press. (Reprint of 1931–1958, Vol. 8, by C. Hartshorne & P. Weiss Eds.).

  • Remak R. (1932) Über die Untergruppen direkter Produkte von drei Faktoren. Journal für die reine und angewandte Mathematik 166: 65–100

    Article  Google Scholar 

  • Schlimm D. (2006). Axiomatics and progress in the light of 20th century philosophy of science and mathematics. In B. Löwe, V. Peckhaus & T. Räsch (Eds.), Foundations of the formal sciences IV, Studies in logic series (pp. 233–253). London: College Publications.

  • Schlimm D. (2008a) On abstraction and the importance of asking the right research questions: Could Jordan have proved the Jordan-Hölder Theorem?. Erkenntnis 68(3): 409–420

    Article  Google Scholar 

  • Schlimm D. (2008b) Two ways of analogy: Extending the study of analogies to mathematical domains. Philosophy of Science 75(2): 178–200

    Article  Google Scholar 

  • Schröder, E. (1873). Lehrbuch der Arithmetik und Algebra für Lehrer und Studierende: Die sieben algebraischen Operationen (Vol. 1). Leipzig: B.G. Teubner.

  • Schröder, E. (1877). Der Operationskreis des Logikkalküls. Leipzig: B.G. Teubner. (Reprint by Darmstadt, 1966).

  • Schröder, E. (1890–1905). Vorlesungen über die Algebra der Logik. Leipzig: B.G. Teubner. (3 volumes: vol. 1 (1890); vol. 2.1 (pp. 1–400, 1891), 2.2 (pp. 401–605, 1905); vol. 3 (1896). Reprint New York, 1966).

  • Serfati, M. (2007). Du psychologisme booléen au théoreme de Stone. Epistémologie et histoire des algèbres de Boole. In J.-C. Pont, L. Freland, F. Padovani & L.Slavinskaia (Eds.), Pour comprendre le XIXe. Histoire et philosophie des sciences à la fin du siècle (pp. 145–169). Florence: Leo S. Olschki.

  • Sieg W., Schlimm D. (2005) Dedekind’s analysis of number: Systems and axioms. Synthese 147(1): 121–170

    Article  Google Scholar 

  • Skolem, T. (1936). Über gewisse “Verbände” oder “lattices”. Avhandlinger utgitt av Det Norske Videnskaps-Akademi i Oslo, I. Mat.-naturv. klasse, 7.

  • van der Waerden B.L. (1930) Moderne algebra. Springer, Berlin

    Google Scholar 

  • Voigt A. (1892) Was ist Logik?. Vierteljahresschrift für Philosophie 16: 189–332

    Google Scholar 

  • Weber, H. (1895–1896). Lehrbuch der Algebra (Vol. 2). Braunschweig: Vieweg.

  • Wussing, H. (1984). The genesis of the abstract group concept. Cambridge, MA: MIT Press. (Translation of Die Genesis des abstrakten Gruppenbegriffes, VEB Deutscher Verlag der Wissenschaften, Berlin, 1969).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Schlimm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlimm, D. On the creative role of axiomatics. The discovery of lattices by Schröder, Dedekind, Birkhoff, and others. Synthese 183, 47–68 (2011). https://doi.org/10.1007/s11229-009-9667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-009-9667-9

Keywords

Navigation