
Synthese (2010) 177:51–76
Knowledge, Rationality & Action 291–316
DOI 10.1007/s11229-010-9765-8

To know or not to know: epistemic approaches
to security protocol verification

Francien Dechesne · Yanjing Wang

Received: 8 September 2009 / Accepted: 21 July 2010 / Published online: 24 August 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Security properties naturally combine temporal aspects of protocols with
aspects of knowledge of the agents. Since BAN-logic, there have been several initia-
tives and attempts to incorporate epistemics into the analysis of security protocols.
In this paper, we give an overview of work in the field and present it in a unified
perspective, with comparisons on technical subtleties that have been employed in dif-
ferent approaches. Also, we study to which degree the use of epistemics is essential
for the analysis of security protocols. We look for formal conditions under which
knowledge modalities can bring extra expressive power to pure temporal languages.
On the other hand, we discuss the cost of the epistemic operators in terms of model
checking complexity.

Keywords Security protocols · Dynamic epistemic logic ·
Epistemic temporal logic · Interpreted systems · Verification

The work presented in this paper is part of the project Verification and Epistemics of Multi-Party Protocol
Security funded by the Netherlands Organisation for Scientific Research (NWO project VEMPS
612.000.528, 2006–2010). Affiliation of F. Dechesne during the VEMPS-project: Formal Methods Group,
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven. Affiliation of Y.
Wang during the VEMPS-project: Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The
Netherlands.

F. Dechesne (B)
Philosophy section, Department of Technology, Policy and Management,
Delft University of Technology, Delft, The Netherlands
e-mail: f.dechesne@tudelft.nl

Y. Wang
Department of Philosophy, Peking University, Beijing, China
e-mail: wangyanjing@gmail.com

123

52 Synthese (2010) 177:51–76

1 Knowledge in security protocols

Security protocols are rules (often based on cryptography) that govern communica-
tions in hostile environments in order to guarantee certain security goals. Many such
goals are naturally expressed in terms of knowledge: (only) the right agents should
get to know the right things. This has to do with the fact that many security properties
are about hiding information from the bad guys or making sure the good guys get their
information. For example, here are some intuitive epistemic readings of the security
properties mentioned in Ryan and Schneider (2001):

– Sender authentication: ‘the receiver knows the sender of a message’;
– Mutual authentication: ‘both parties (commonly) know they are talking to each

other’;
– Anonymity: ‘the sender is unknown (to an eavesdropper)’;
– Secrecy: ‘an intruder does not know certain information’.

More specifically, in the area of voting protocols, which recently drew much attention,
more involved properties are considered, for example (cf. Delaune et al. 2009):

– Vote-privacy: nobody other than the voter herself knows that a particular voter
voted in a particular way;

– Receipt-freeness: No voter has any means to let another know for sure that she
voted in a certain way.

The above list is only indicative, and by no means exhaustive to cover the security
properties that have epistemic readings. Although the precise formal meaning of the
security properties as above is debatable, the relevance of epistemics in such settings is
undeniable (cf. also Kramer 2007 (Slogan 8): “The purpose of a cryptographic proto-
col is to interactively compute, via message passing, knowledge of the truth of desired
and, dually, knowledge of the falsehood of undesired cryptographic states of affairs”).

However, security protocols are deceptively simple-looking objects with very sub-
tle behaviours, which require extremely precise formal analysis. Designing a cor-
rect protocol can be thought as programming Satan’s computer as Anderson and
Needham (1995) put it. Consider the 3-line Needham-Schroeder authentication pro-
tocol Needham and Schroeder (1978):1

1. A → B : {nA,A}PKB
2. B → A : {nA,nB}PKA
3. A → B : {nB}PKB

which prescribes a set of action patterns with roles of agents to authenticate two agents
with each other. BAN logic provided a correctness proof of the above protocol, which
was later proven flawed due to a man-in-the-middle attack Lowe (1996):

1 A generates a random number (a nonce), and then sends it to B in a “locked box” that only B can open
with his private key. B then sends A’s number back with a random number of his own, in a box that only A
can open. A then confirms by sending B his number back. The intended goal is that both A and B know that
they are talking to each other.

123 [292]

Synthese (2010) 177:51–76 53

1 A → I : {n A, A}P K I

1′ I (A) → B : {n A, A}P K B

2′ B → I (A) : {n A, nB}P K A

2 I → A : {n A, nB}P K A

3 A → I : {nB}P K I

3′ I (A) → B : {nB}P K B

where A, B, I are concrete agents playing different roles according to the specifica-
tion of the protocol. After A contacts I , the intruder I can pretend to be A towards
B by forwarding A’s special number to B. After B’s reply, I can use A to obtain B’s
number and confirm B according to the protocol. Thus, B may believe he is talking
to A while in fact he is talking to I .

The lack of a proper semantics for its epistemic language and its high level reasoning
weaken the value of correctness proofs in BAN-logic. This proves the need for a closer
look at the meaning of knowledge and the cryptographic operations used in security
protocols.

1.1 Different aspects of knowledge

As an appetiser, consider the property of Secrecy:

“an intruder does not know certain information”.

If the information concerned is a bit string s (a piece of information), then to know it
amounts to possessing this piece of bit string, while s itself does not have any truth
value. On the other hand, if the information concerned has the form “it was B who
sent the message” (call it φ), then to know φ means knowing the fact that it was B who
sent the message, or in other words knowing that the proposition φ is true. Clearly, the
same word knowledge can be used for different aspects of what there is to learn. We
will, following Ramanujam and Suresh (2005b), refer to the first type of knowledge
(in the sense of possession of bit strings) as knowledge of explicit data,2 and to the
second type of knowledge as propositional knowledge.

More subtleties regarding knowledge in a security context, are related to the cryp-
tographic operations used in the security protocols. First of all, based on the bit strings
that agents possess and the cryptographic operations available, they can know more
bit strings by constructing complex message terms from what they possess, or decom-
posing a composed one into simpler ones. Such knowledge, in terms of possession
of bit strings obtained by cryptographic operations, can be classified as algorithmic
knowledge, as Halpern and Pucella (2003a) put it. More intricately, if an agent A does
not possess the symmetric key k, then the encrypted message of m by k ({m}k) should
mean no more than a random bit string to A, even though she possesses it. Thus, we
need a notion of knowledge to denote that an agent can see the inherent structure of
bit strings. We call the last type “certain knowledge’’ following Baskar et al. (2007).

2 Kramer (2007) uses the term “individual knowledge” for this.

[293] 123

54 Synthese (2010) 177:51–76

These different ways of using the term “knowledge” (and the verb ‘to know’) sug-
gest different structures and treatments in the formal models, which we will discuss
in Sect. 2.2.

1.2 Tension between epistemic and temporal structure

Despite the epistemic flavour in expressing security goals, the interchange of messages,
which constitutes protocols, occurs over time. Thus, a rigourous epistemic approach to
security protocol verification needs to harmonise the epistemic and temporal aspects.
However, the intuition about the expressivity of epistemic logics does not quite coin-
cide with the practice of security protocol verification so far: most of the successful
approaches usually model the protocols formally with purely temporal structures, and
try to capture the properties in a temporal formalism (cf. e.g., Ryan and Schneider
2001; Abadi and Fournet 2001; Focardi et al. 2004). The tension between the natural
temporal essence of the formal model of protocols, and the natural epistemic for-
malisation of the security requirements has proven to be a challenge. This raises two
natural questions: (1) Does introducing epistemics into the language indeed empower
the expressivity in formalising security properties? (2) What is the computational cost
of combining epistemic and temporal aspects in security protocol verifications?

Fortunately, recent years have seen a growing interest in epistemic approaches
connected to the study of certain security properties that are not easily expressed in
terms of events which did or did not happen along a single run of the protocol. A
list of such properties includes, for example, anonymity (Syverson and Stubblebine
1999; Halpern and O’Neill 2005), receipt-freeness (Jonker and de Vink 2006; Jonker
and Pieters 2006; Baskar et al. 2007), and coercion-resistance (Delaune et al. 2006;
Delaune et al. 2009). The verification of such properties depends on whether agents
are able to distinguish between different courses of events, which is exactly the idea
behind the standard Kripke semantics of knowledge. Formally, this involves the addi-
tion of equivalence relations into the temporal model, where it is useful, natural or
even necessary as we will argue in Sect. 4.

Moreover, despite the apparent disguises of the formalisations, the epistemic logical
approaches proposed by different research communities do have some important com-
mon features, where careful comparisons are needed to pinpoint the differences. This
motivates the writing of this paper. Our goal is two-fold: first, we give a brief overview
of several epistemic proposals in Sect. 2 and compare the essential techniques they
employ in Sect. 3. The survey in these sections is intended to be an introduction to
this developing field of epistemic verification. Second, in Sect. 4, we try to give partial
answers to the questions we proposed above. Although the survey will be presented
mostly in a high level fashion and will only get to some technical details in Sects. 3
and 4 when truly necessary, some basic knowledge of epistemic logics and security
protocols will definitely help the reader to absorb the compactly presented material
more easily.

While we intend this paper to give a brief overview of approaches to modelling
knowledge in the analysis of security protocols, we cannot cover all different aspects.
The focus in our paper will be on model checking approaches to verification, based

123 [294]

Synthese (2010) 177:51–76 55

on modal logics of knowledge rather than belief, that are possibilistic rather than
probabilistic. For those interested in the other aspects, our introductory text in Sect. 2.1
contains pointers to some work in the areas outside of our focus.

2 Epistemic approaches: a brief survey

2.1 BAN logic

The starting point of formal verification of security protocols is often attributed to
the development of BAN-logic Burrows et al. (1989), named after its inventors Bur-
rows, Abadi and Needham. The syntax of this logic includes predicates of belief 3 and
actions thus it is able to express message passing actions and security goals. In fact,
BAN-logic presents a calculus (proof system) by giving a number of inference rules
to derive statements. For example, here is a rule for “if A believes he shares key k with
B, and A has received a message X encrypted with k, then A believes that it was B
who sent the message”:

A believes (A
k↔ B), A sees {X}k

A believes (B said X)
.

To handle protocols in this framework, the protocol first needs to be idealised, then
the initial assumptions are spelled out in the BAN-language, after which each step in
the protocol is annotated with a BAN-formula asserting the state of affairs after that
step. The statement after the final step describes the outcome of the protocol. The goal
of the analysis is to derive a final assertion that implies the protocol is correct.

However, the soundness of the inference rules in BAN-approach was based on the
argument of stability of the formulas (once a formula becomes true, it remains true),
rather than a formal semantics.4 The lack of a clear semantics also led BAN-logic to
an abstraction level too high to capture the consequences of all the possible intruder
behaviours. These drawbacks made the BAN-logic analysis of the Needham-Schroe-
der authentication protocol overlook the possibility of the man-in-the-middle attack
exposed by Lowe (1996), who used a process theoretic analysis in the process algebra
CSP (Brookes et al. 1984). At the same time, model checking approaches (Clarke et al.
1999) began to flourish and later became prominent (Halpern and Vardi 1991). To do
model checking on security protocols with epistemic logic, it is necessary to have a
suitable formal semantics for knowledge in the security setting.

Despite the efforts made in the literature Gong et al. (1990), Bieber (1990), Syverson
(1992), the main hurdle to a reasonable semantics of BAN-like logics was the so-called
logical omniscience problem, an inherent issue of the standard possible-world seman-
tics of epistemic logics (Von Wright 1951; Hintikka 1962): agents know all the valid
propositions and all logical consequences of what they know. Under possible-world
semantics, the knowledge operator Ki for agent i , and its dual ̂Ki are interpreted

3 However, it is essentially knowledge, following the intuition given by the authors.
4 See Teepe (2006) for a more elaborate discussion on the soundness of BAN-logic.

[295] 123

56 Synthese (2010) 177:51–76

through an equivalence relation ∼i capturing the epistemic possibilities over the set
of states S of a Kripke model (S, {∼i }i∈I, V), where V is a valuation function for the
proposition letters in concern. Kiφ is true at a state s if all the ∼i -reachable worlds
satisfy φ. Therefore, if a message m is indeed of the form {m′}k (thus m = {m′}k is
true everywhere in the model), then an agent knows it, even when she does not possess
the key k. This sounds contradictory to our intuition in security analysis.

Many approaches have been suggested to avoid the logical omniscience problem
(see Fagin et al. 1995b [Chap. 9] and Halpern and Pucella 2010 for surveys). In the
context of security analysis, the most relevant one is the approach of algorithmic
knowledge (Halpern et al. 1994), which is prominent in our later introduction of var-
ious epistemic approaches. The idea is that an agent knows a message term only if it
is derivable by some algorithm with respect to a deductive system capturing idealised
cryptographic operations (Halpern and Pucella 2003a; Pucella 2006). For propositional
knowledge, a more sophisticated way of avoiding the logical omniscience problem can
be obtained by deviating the standard Kripke semantics in the definition of reachable
possible worlds, as demonstrated in Cohen and Dam (2005b), Cohen and Dam (2007).
Essentially, such approach introduces extra possible worlds which may not be in the
model when evaluating epistemic formulas. Awareness can also be used to deal with
logical omniscience in the security setting (see Accorsi et al. 2001, for instance), but
we will not elaborate on this here.

Before moving on from BAN to the modern model checking epistemic approaches,
we should mention that several authors have proposed analyses for security protocols
involving belief rather than knowledge, e.g. Hunter and Delgrande (2007), van der
Meyden and Wilke (2007), Baltag and Smets (2008). Also, the epistemic approaches
that we survey are possibilistic in the sense that an agent knows a fact if he does not
consider it possible to be false, while in certain security contexts this may be inap-
propriate. For example, can we rightfully say that A anonymously sent the message,
if the intruder knows A is the sender of a message in 99 out of 100 possible runs?
Such example suggests a probabilistic approach to knowledge or belief to analyse
certain security properties, as in Reiter and Rubin (1998), Syverson and Stubblebine
(1999), Halpern and O’Neill (2002), Halpern and O’Neill (2005), Shmatikov (2004),
Bhargava and Palamidessi (2005). These doxastic and probabilistic approaches are
not covered in our survey.

2.2 Basics of epistemic approaches

In this section, we will list the commonly used components of most epistemic
approaches in the post-BAN era. We first need a logical language LI to specify prop-
erties of models, where I is a (finite) set of agents. Due to the fact that we are talking
about message passing in a protocol setting, we need to mention messages in our
language. This is often done by introducing the message terms in the logical language
in the shape of the following:

m ::= c | k | {m}k | (m,m′)

123 [296]

Synthese (2010) 177:51–76 57

where c stands for some basic plain terms which may in general be of many types (e.g.,
names, integers etc.), {m}k is the encryptions of m with key k and (m,m′) intuitively
represents pairing of m and m′. In general, arbitrary cryptographic operations f can
be introduced in this way.

Associated with the message terms there is a derivation system to capture the cryp-
tographic functions in the message terms (Paulson 1997, 1998; Clarke et al. 1998). For
example the following derivation rules capture the symmetric encryption and pairing
in of the messages:

synth : m m′
(m,m′)

m k
{m}k

analz : (m,m′)
m

(m,m′)
m′

{m}k k
m

where synth rules govern the application of cryptographic operations to form new
terms from the old, while analz rules intuitively extract information from complex
terms. We can alternatively represent analz rules by an equational theory E e.g.,
dec(enc(x, y), y) = x for the last rule above, if dec,enc are introduced as crypto-
graphic operations with the obvious meaning in the language of message terms. Given
a set of messages M , we say M � m if either m ∈ M or m is derivable from M by
applying the rules. We write m =E m′, if m = m′ is an instantiation of an equation
induced by E . Halpern and Pucella (2003a) argue that a derivation system may not
be convenient to model certain powerful adversary operations, and propose to use
arbitrary algorithms instead of derivation systems. For simplicity, we will not cover
such more general cases here.

We build formulas based on message terms which are not formulas themselves.
Following the observations in Sect. 1.1, we need different knowledge operators in the
language to cope with various types of knowledge:

1. Knowledge of explicit data (possession of bit strings): We build basic propositions
in the shape of hasi m, where m is a message term, meaning that agent i possesses
m. For such knowledge we have the de dicto reading: hasi {m}k means that the bit
string of {m}k is possessed by i . However, i may be unsure about the structure of
the message.

2. Algorithmic knowledge (possession of derivable bit strings): In the literature, the
knowledge of explicit data can be viewed as a special case of algorithmic knowl-
edge. We can use hasi m to express that m as a bit string can be derived from the
information agent i possesses, by applying corresponding cryptographic opera-
tions modelled by synth and analz rules (see Halpern and Pucella (2003a) and
Ramanujam and Suresh (2005b) for the detailed rationale).

3. Propositional knowledge (what facts are known to the agents): As in the standard
epistemic logic, we use Kiφ to express that “agent i knows that φ is true.” Thus,
the logical language LI may look like:

hasi m | φ ∧ ψ | ¬φ | Kiφ | Oφ

where m ∈ M , and O can be any other modal operator, depending on what proper-
ties we want to specify. On the other hand, given an existing modal logic language,

[297] 123

58 Synthese (2010) 177:51–76

we can turn it into a language about message passing by adding epistemic operators
and taking hasi m as the basic propositions.5

4. Certain knowledge (the understanding of the bit strings). This kind of knowledge
sits in between algorithmic knowledge and propositional knowledge, since it is not
only about message term itself but also about the observational power of agents
(Baskar et al. 2007). We may use Ki hasi m to express that agent i knows that m is
of certain structure, e.g., Ki hasi {c}k means i knows that he has a bit string which
stands for {c}k .6 Thus, knowledge operator Ki induces somehow a de re reading
of hasi m.

We interpret the formulas of such epistemic language LI on Kripke models M =
(S, {∼i }i∈I, V). To evaluate the basic formulae in the shape of hasi m, we need to
associate a set of message terms for each i at each state. Then hasi m is true at a state
s if m is in the set of messages associated with i on s. The semantics of hasi m is also
straightforward by considering derivable messages at a state.

According to the standard Kripke semantics, Kiφ is true at a state if φ is true any-
where reachable from the current state. The equivalence relations naturally model the
epistemic uncertainties of agents. Thus, the actual formal meaning of propositional
knowledge and certain knowledge depends on the definition of the equivalence rela-
tion in the model and the message terms possessed by agents at various states. We will
compare different equivalence relations in Sect. 3.1.

Given an epistemic language in the above style, an epistemic verification frame-
work should give a general way to build up models from a protocol description in
order to do model checking. Two approaches are discussed in the next subsections
following the traditions of Epistemic Temporal Logic (ETL) and Dynamic Epistemic
Logic (DEL) approaches.

2.3 Epistemic Temporal Approaches

Developed independently by Parikh and Ramanujam (1985) and Halpern and Moses
(1990), and made popular later by the seminal book Fagin et al. (1995b), the Inter-
preted Systems (IS) nicely combine the temporal developments of a system (in runs)
with epistemic ones in a distributed setting. Despite their different appearances, most
of the epistemic temporal verification languages and models can be reformulated into
this very general framework, e.g., epistemic linear-time logic LTL+K (Dixon et al.
2003), epistemic branching-time logic CTL+K (Lomuscio et al. 2009), and epistemic
alternating time temporal logic ATL+K (van der Hoek and Wooldridge 2002). More-
over, some process models like Strand Spaces (Javier et al. 1999) can be related to
ISs Halpern and Pucella (2003b).7

5 In addition to hasi m, it is also common to introduce special propositions to denote the actions happened
in the past, e.g., sendi

j (m) (see, for instance Halpern and Pucella 2003a).
6 Different semantics for Ki operator may cause subtly different readings for such statements. We will see
different semantics in Sect. 3.1.
7 Halpern and Pucella (2003b) show that strand spaces correspond to a subset of a class of ISs, which they
call Strand Systems.

123 [298]

Synthese (2010) 177:51–76 59

Based on the expositions in Fagin et al. (1995b) and Parikh and Ramanujam (2003),
we now define the interpreted systems with explicit events. Given a set of agents
I = {i1, . . . , in, ε}, with ε modelling the environment, and n + 1 corresponding non-
empty sets L1, . . . , Ln, Lε of local states, the set of global states for an interpreted
system is a set S ⊆ Lε × L1 × · · · × Ln . Given a set of events E , we associate with
each e ∈ E a transition relation

e→⊆ S × S. An infinite run r on S is a function
r : N
→ S × E . Let rS(u) and rE (u) be the corresponding global state and event
(to happen) at the uth point of the run r respectively. We say a run r is admissible

if ∀u ≥ 0 : rS(u)
rE (u)→ rS(u + 1). An interpreted system I is then defined as a pair

(R, V) where R is a set of admissible runs, and V : S
→ 2P is a valuation function
that at each global state in S, assigns a truth value to each proposition atom in P. We
denote by (I, r, u) the point r(u) in interpreted system I.

To verify a protocol in the presence of an adversary, we need to formalise the pro-
tocols and the adversary model, describing the possible actions of an adversary. Here
we show an example of a formalisation of the Needham-Schroeder authentication
protocol mentioned in Sect. 1, with the Dolev-Yao adversary model Dolev and Yao
(1983) where all the messages are delivered via the intruder role (E) acting as a buffer
(see, e.g., Cremers (2006) for rationale):8

for A : 1. A send E : {nA,A}PKB for B : 1. B rec E : {nA,A}PKB
2. A rec E : {nA,nB}PKA 2. B send E : {nA,nB}PKA
3. A send E : {nB}PKB 3. B rec E : {nB}PKB

Here the action patterns in a protocol are broken down and grouped into local protocols
by roles. Note that, in the above formalisation, the intruder implicitly eavesdrops all
the messages and the agents will accept any message that the intruder may possess, as
long as it is in the forms specified (thus modelling the intruder’s ability to manipulate
messages).

Despite differences in details in each specific framework, e.g. (Halpern and Pucella
2003a; van der Meyden and Su 2004; Ramanujam and Suresh 2005b; Boureanu et al.
2009), we can summarise the merit of the general ETL approach for modelling proto-
cols under an adversary model, in the following steps.

Step 1. Suppose the set of agents is I = {1, 2, . . . , n, ε}, where ε indicates the
intruder. We start from a set S0 (usually a singleton) of initial states which are tuples
of local states 〈l1, . . . ln, lε〉. An initial local state for agent i should, among other
things, encode a set of message terms representing the messages that agent i initially
possesses (i.e. the information states of agents (Ramanujam and Suresh 2005b)). In
such a setting, we can retrieve the information state of i at global state s by infoi (s).
We can then define the semantics of hasi m and hasi m at (I, r, u) by infoi (rS(u)) in
a straightforward way.

Step 2. We can generate a temporal structure, based on the initial states, by collect-
ing all the admissible sequences of global states according to the protocol under the

8 Due to space limitation, we cannot go into the details of the various specification languages and adver-
sary models proposed in the literature. For example, Halpern and Pucella (2003a) provide the possibility
of modelling different adversaries in the IS-framework.

[299] 123

60 Synthese (2010) 177:51–76

adversary model. The protocol specification and the adversary model define a set of
events (instantiated action patterns). To give the transition relation

e→ for the events
on the global states, we can give each event e a precondition and a postcondition.
The first specifies when the event can happen and the latter one changes the local
states of agents to model information updates by the events. In the above example,
an instantiated action: (j send ε : {n j , j}P Ki) has the precondition that {n j , j}P Ki

is in the current information set of j and the postcondition that {n j , j}P Ki is added
to the information state of the intruder. In general, agents can send a message only
if they possess it, and the effect of a send action is that the message is delivered to
the intruder (under the Dolev-Yao model). The order of the actions according to the
protocol can be encoded also by preconditions requiring that a certain action happened
in the earlier stage of the run. We call the resulting set of runs the generated temporal
structure T (S0).

We choose to let each e be observable to an agent i iff i herself is involved, e.g.
(j send ε : m) is only observable by ε and j . Similarly, the i-observable subse-
quence of (j send ε : m)(i rec ε : m′) is (i rec ε : m′). In the Dolev-Yao
setting we presented above, the intruder can observe all the events. In a more sophis-
ticated analysis, the events are composed by synchronising local events with respect
to each agent according to their local protocols, cf. e.g. Boureanu et al. (2009).

Step 3. From T (S0), we build up the epistemic temporal model E(T (S0)) by defin-
ing epistemic relations ∼i between points (T (S0), r, k). The standard way of defining
∼i in IS is by matching local states of i , or local views of i of the histories of events.
However, the information sets and local histories in the protocol setting, do not cap-
ture how the messages are understood by the agents (recall what we called certain
knowledge, Sect. 2.2). It is possible that two message terms are different, but still
regarded as the same by an agent e.g., events rec : {m}k and rec : {m′}k are not
distinguishable to an agent who does not have the key k. Moreover, if an agent later
obtains the key k, then she can tell {m}k and {m′}k apart by “looking back with a
fresh eye”. Thus, we need to build ∼i on some sophisticated equivalence relation on
messages (≈). In Sect. 3.1, we will discuss different existing definitions for ≈ on lists
of message terms, since we usually assume that the agents can remember the order of
the messages passing actions that she can observe.

It is not hard to see that we can lift ≈ to equivalence between points in an IS. Sup-
pose each information set is represented by a list of messages. Let Mi (e0, . . . , eu) be
the list of messages occurring in i’s observable subsequence of events in e0, . . . , eu .
Two obvious possibilities are:

– Asynchronous: (s0
e0→ s1 . . . su−1

eu−1→ su) ∼i (s′
0

e′
0→ s′

1 . . . s
′
u′−1

e′
u′−1→ s′

u′) iff
infoi (su) ≈ infoi (s

′
u′).9

– Synchronous: (s0
e0→ s1 . . . su−1

eu−1→ su) ∼i (s′
0

e′
0→ s′

1 . . . s
′
u−1

e′
u−1→ s′

u) iff
〈infoi (s0),Mi (e0, . . . , eu−1)〉 ≈ 〈infoi (s

′
0),Mi (e′

0, . . . , e′
u−1)〉.

The above procedure can be summarised with the slogan:

9 This is an example of asynchronous and forgetful agents Shilov and Garanina (2002), other memory
conditions can be applied here.

123 [300]

Synthese (2010) 177:51–76 61

First temporal then epistemic.

Notably, Boureanu et al. (2009) presents an fully automated method to generate
interpreted systems from formal specification of protocols taking many details into
consideration. Other methods to generate IS-like models include process algebra with
epistemic annotations, e.g. Dechesne et al. (2007), who make use of an operational
semantics to generate the model from the protocol specified in process algebra terms.

2.4 Dynamic epistemic logic approaches

A different perspective towards the dynamics of multi-agent system is provided by the
development of the so-called Dynamic Epistemic Logic (DEL) (Plaza 1989; Gerbrandy
and Groeneveld 1997; Baltag et al. 1999). The focus of DEL is not on the temporal
structure of the system but rather on the epistemic impact of the events as the agents
perceive them. A typical DEL-language is defined as follows:

φ ::= � | p | ¬φ | φ1 ∧ φ2 | [A, e]φ | Kiφ

where p is in a set of basic propositions Prop, G ⊆ I and A is an action model with e
as its designated action. [A, e]φ intuitively says after execution of the event (A, e), φ
is true. Action models are tuples of the form (E, {�i }i∈I,Pre,Pos) where �i models
agents i’s observational power on events in E (e.g. e1 �i e2 means i is not sure which
one of e1 and e2 happened); the precondition function Pre : E → Form(DEL) assigns
each event a DEL-formula such that the event can only happen when the formula is
satisfiable; the postcondition Pos : E → (Prop → Form(DEL)) models the factual
changes caused by the event by changing the truth values of basic propositions p to
the truth value of Pos(e)(p) (see van Benthem et al. 2006 for details). The semantics
for epistemic formulas is as usual and for [A, e]φ formulas:

M, s � [A, e]φ ⇐⇒ (M, s � Pre(e) ⇒ M ⊗ A, (s, e) � φ)

where, given a static Kripke model M = (S, {∼i }i∈I, V) and an action model A =
(E, {�i }i∈I,Pre,Pos), the updated model is M ⊗ A = (S′, {∼′

i }i∈I, V ′) with:

S′ = {〈s, e〉 | M, w � Pre(e)}
∼′

i = {(〈s, e〉, 〈t, e′〉) | s ∼i v and e �i e′}
V ′(〈s, t〉)(p) = � ⇐⇒ M, w � Pos(e)(p)

DEL has been successful in modelling what agents learn through different commu-
nication acts according to epistemic reasoning, for example in the scenario where an
agent shows his cards to the players on his team without the opponent noticing van
Ditmarsch (2003). Thus, it looks promising to analyse security protocols by model-
ling protocols in terms of action models. In Hommersom et al. (2005), van Eijck and
Orzan (2007), and Dechesne and Wang (2007) the first attempts were made towards the
security protocol verification by DEL. We summarize the modeling steps as follows:

[301] 123

62 Synthese (2010) 177:51–76

Step 1. We start with a finite initial static model M with given epistemic relations
∼i . Similar as in the interpreted system approach, a state is associated with a tuple of
information sets modelling the messages that agents possess. The epistemic relations
can be given similarly according to the equivalence ≈ on lists of messages.

Step 2. We need to build an event model A which captures all the protocol
actions with suitable pre- and postconditions similar to what we described at step
2 for ETL approaches. For example, to model the Needham-Schroeder authentication
protocol mentioned above, we can build action model A = (E, {�i }i∈I,Pre,Pos)
such that E includes all instantiated actions of the protocol, for example: event
e = (j send ε : {n j , j}P Ki) with precondition Pre(e) = has j ({n j , j}P Ki) and
postcondition Pos(e)(hasε({n j , j}P Ki)) = �. The epistemic relations �i between
events can be generated by lifting ≈ on lists of messages to events, under the con-
straint that agent can always distinguish the events that she is involved from other
actions.

Step 3. The update execution computes the result of performing A on M iteratively,
thereby it essentially builds up all the possible runs of the protocol.

The above procedure can be summarised as the slogan:

First epistemic then temporal.

Although it seems that DEL modelling is very similar to ETLmodelling, we will
pinpoint the tricky differences between the two approaches in details in Sect. 3.2.

2.5 Tools

In the last decade, many tools have been developed to handle formal verification in
the setting of ETL or DEL, with potential application in security analysis. For ETL
model checking, we have MCK: Model Checking Knowledge (Gammie and van der
Meyden 2004; van der Meyden and Su 2004) and MCMAS: Model Checker for Multi-
Agents Systems (Lomuscio and Raimondi 2006b; Lomuscio et al. 2009). Boureanu
et al. (2009) recently presented a fully automatic translation from protocol descriptions
given in CAPSL (Common Authentication Protocol Specification Language) into the
input language for MCMAS, enabling the automated checking of the security proto-
cols from the Clark-Jacobs security protocol library by means of temporal epistemic
logic. For DELmodel checking, we have DEMO: Dynamic Epistemic MOdelling (van
Eijck 2005) and LYS: a knowledge anaLYSis toolset (Orzan 2005). Other relevant tool
sets include the ETL-model checker MCTK (Su 2004), the ATL-model checker (Alur
et al. 1998), and the real-time system model checker (Kacprzak et al. 2008).10

In the literature, various tools are presented with some case studies demonstrat-
ing how the framework can be applied. For these demonstrations, often well-known
situations or protocols are chosen which require relatively small models. The clas-
sic examples in the epistemic verification demonstrations are the Dining Cryptogra-
phers protocol for anonymous broadcast (Chaum 1988), the Muddy Children puzzle

10 This is definitely not a complete list, see Lomuscio and Penczek (2007) for a survey of symbolic model
checking for ETL.

123 [302]

Synthese (2010) 177:51–76 63

(see, e.g., Fagin et al. 1995b) for demonstrating the effect of (repetition of) public
announcements, and Russian Cards problem (see van Ditmarsch 2003) for secure
public announcements. Such common examples facilitate comparisons of the mod-
elling and efficiency among different tools based on different frameworks, see for
example van Ditmarsch et al. (2006), which takes the Russian Cards problem as a test
case for MCK, MCMAS and DEMO.

3 Comparisons

In this section we will compare more technical aspects of the approaches mentioned in
the previous section. In the first part, we discuss the different versions of equivalence.
In the second part, we compare the epistemic temporal approach with the dynamic
epistemic one in the security setting.

3.1 On equivalences

Some well known formal methods have been adapted or designed to include (trace)
equivalences to deal with multi-trace security properties (e.g., applied pi-calculus
Abadi and Fournet (2001)). In this part, we focus on how the equivalence relations of
agents are defined, based on the lists 〈m1, . . . ,mn〉 that record the messages that this
agent received in order. The rest of this subsection will be devoted to the comparison
of the following equivalence relations:

– simple deduction equivalence ≈d

– pattern matching equivalence ≈pat (in Abadi and Tuttle (1991), Abadi and Rog-
away (2002) and Baskar et al. (2007));

– static equivalence ≈s (defined in Abadi and Fournet (2001), Abadi and Cortier
(2004), and later used in Ciobâcă et al. (2009), Chadha et al. (2009));

– permutation equivalence ≈per (in Cohen and Dam (2005a), Garcia et al. (2005),
and later used in Cohen and Dam (2007), Jonker and Pieters (2006)).

We assume there is a fixed equational theory E corresponding to the derivation system
on terms of messages. Let M = 〈m1, . . . ,mn〉 and M ′ = 〈m′

1, . . . ,m′
n〉11 then:

– M ≈d M ′ iff for all message terms m: M � m ⇐⇒ M ′ � m.
– M ≈pat M ′ iff M and M ′ induce the same recognisable message patterns, i.e. for

all j : pat (m j ,M) = pat (m′
j ,M ′), where pat (m j ,M) is roughly the message

term in which the unconstructable parts are replaced by an uninterpreted symbol
�. For example:

pat ({m}k,M) =
{ {pat (m,M)}k if M � k

� otherwise

11 Note that the equivalences we consider here all respect the number of messages.

[303] 123

64 Synthese (2010) 177:51–76

For formal details on various cryptographic operations we refer to Abadi and
Rogaway (2002), Baskar et al. (2007).

– M ≈s M ′ iff M and M ′ satisfy the same equality tests. Formally, defining σM , σM ′
to be the substitutions replacing x j with m j and m′

j respectively, then M ≈s M ′
iff for any message terms with variables t (x1, . . . , xn) and t ′(x1, . . . , xn):

σM (t) =E σM (t
′) ⇐⇒ σM ′(t) =E σM ′(t ′).12

– M ≈per M ′ iff there is a permutationπ : M → M ′ such that for all j :π(m j) = m′
j

and π(t (m)) = t (π(m)) for any message term with variables t and any suitable
list m from {m | M � m}. Cohen and Dam (2005a) show that ≈per is indeed an
equivalence relation.

The relation ≈d is very fine (despite the fact it does not require a one-one correspon-
dence of messages) and thereby assigns strong observational power to the agents: e.g.
M1 = 〈{c}k〉 �≈d M2 = 〈{c′}k〉. It may only make sense to employ such equiv-
alence relation for the intruder if we need to guarantee extreme security. On the
other hand ≈pat is rather coarse as it treats all the unreadable parts as the same: e.g.
M3 = 〈{c}k, {c′}k〉 ≈pat M4 = 〈{c}k, {c}k〉 since pat ({c}k,M3) = pat ({c′}k,M3) =
pat ({c}k,M4) = �.

Static equivalence is somewhere in between, e.g. M1 ≈s M2 but M3 �≈s M4 since
{c}k �=E {c′}k but {c}k =E {c}k . To relate ≈s and ≈per , Cohen and Dam show that:

Theorem 1 (Cohen and Dam 2007) For any lists of messages M and M ′ satisfying
|{m | M �� m}| = |{m | M ′ �� m}| = ω:

M ≈s M ′ ⇐⇒ M ≈per M ′

where the cardinality condition allows us to permute all the non-derivable messages
in M to the non-derivable messages in M ′.

Petride and Pucella (2007) plead for a principled approach to model indistinguish-
ability relations that is worth elaborating upon. They define two states to be indis-
tinguishable for an agent if the agent can compute the same observations from both
states. There observations can be considered as tests in the spirit of static equivalence.
They generate relations on the basis of the computational power of the agents: taking
� to be a set of observations θ (tests), and A an algorithm returning for each θ ∈ �
and M the answer “yes”, “no” or “unknown” to the question whether θ holds at M ,
they let M ≈�,A M ′ iff for all θ ∈ � A(θ,M) = A(θ,M ′). For example ≈pat can
be reformulated as ≈�,A where θ is built as follows:

t ::= x | c | k | {t}k | (t, t)

θ ::= has(t) | ∃x .θ where the only free variable in θ is x .

12 Here we leave out the details about protected names in the original frame (our σ) in applied-pi calculus.

123 [304]

Synthese (2010) 177:51–76 65

It is easy to see that θ expresses the pattern of a message. The corresponding algorithm
A then takes a pattern and then try to match it in M . On the other hand, to have� define
≈s , we at least need to introduce equality into the language of�. If fact, if we take�
as a logical language then this proposal is actually asking for logical characterisations
to different equivalence relations with corresponding “model checking” algorithms
for� on M . As another example, a logical characterisation of ≈per is given in (Cohen
and Dam, 2007, Theorem 3).

Regarding the complexity of checking such equivalence, we should first note that
the decidability of M � m can be encoded by the decidability of ≈s or ≈pat . However,
checking � can be undecidable (Abadi and Cortier 2004) depending on the underlying
derivation system. Baskar et al. (2007) show that when M is finite, a derivation system
containing encryption and blind signature can be decided in PTIME . This implies the
decidability of ≈pat according to the definition of ≈pat in Baskar et al. (2007). More
general results in Abadi and Cortier (2004) show that when the E is a convergent
subterm theory that can cover many important cryptographic operations, both ≈s and
� are decidable in PTIME .

3.2 ETL vs. DEL in modelling

We now compare the epistemic temporal approach with the dynamic epistemic
approach in modelling.

3.2.1 Limitations of DEL

As epistemic temporal logic and dynamic epistemic logic are two important methods
of describing epistemic interaction over time, technical comparisons have been done
to pinpoint the differences between the two. From an abstract point of view, ignoring
the structure of the local states, an ETL-model is a tree-like Kripke structure with
relations labelled by events and agent names. We get a similar structure, if we start
from a static initial Kripke model, performing sequences of DEL-updates, and link
each state and its update by the corresponding event (s

e→ 〈s, e〉).
Van Benthem et al. (2007) characterise the class of ETL tree-like structures that

are DEL constructable in the above sense, by the notions of Synchronicity (agents are
always aware if something has happened), Perfect Recall (the local history is remem-
bered), No Miracles, and Epistemic Bisimulation Invariance (see below). This means
that standard DEL can only deal with idealised agents who satisfy those properties.
If we model intruders with enough observation power for better security, then Syn-
chronicity and Perfect Recall can be intuitively assumed. However, No Miracles and
Epistemic Bisimulation Invariance may lead to some drawbacks of DEL approaches
in security verification:

No Miracles: An ETL-model M, considered as a Kripke model with temporal
action transitions

e→ and epistemic relations ∼i , has the property No Miracles if the

following holds: for all states s, s′ and events e, e′ such that s
e→ t and s′ e′→ t ′, for

some t, t ′: if s ∼i s′ and there are s′′, s′′′ with s′′ e→ t ′′, s′′′ e′→ t ′′′ for some t ′′ ∼i t ′′′,

[305] 123

66 Synthese (2010) 177:51–76

then t ∼i t ′. (If two actions lead to indistinguishable states somewhere in the model,
then it can’t be the case that performing these actions on indistinguishable states will
lead to distinguishable states.)

However consider the following (partial) model where ∼i denotes an equivalence
relation based on ≈pat :

i : {{c}k} �� i ��

(i rec ε:k)
��

i : {{c′}k} �� i ��

(i rec ε:k)
��

i : {{c}k′ } �� i ��

(i rec ε:k)
��

i : {{c′}k′ }
(i rec ε:k)

��
i : {{c}k, k} i : {{c′}k, k} i : {{c}k′, k} �� i �� i : {{c′}k′ , k}

where k′ �= k and c′ �= c. Clearly, this model violates No Miracle, so it is impossible to
be generated by the standard DEL approach. The problem roots in the definition of epi-
stemic relations in the action models. Recall that the epistemic relations in the updated
model are defined by the synchronisation of the epistemic relations in the static model
and those in the action model. However, in the security protocol setting, the same
receive action on indistinguishable states may cause the resulting states to be distin-
guishable, as the example shows. One way to go around this is to “split” each action
into multiple copies with different preconditions such that an action can be looked
differently under different conditions. For example, in the action model, the action
(i rec ε : k) with the precondition hasi {c}k ∧ ¬hasi k should be i-distinguishable
from the same action with the precondition hasi {c′}k ∧¬hasi k. However, this ad-hoc
method may introduce infinitely many copies of actions in the action model, which is
not allowed by the standard DEL.

Epistemic Bisimulation Invariance requires the same event to happen at the states
that are epistemically bisimilar (i.e. bisimulation disregarding the temporal relations).
This is because the pre-conditions in the action model are formalised in the dynamic
epistemic language. This may cause problems if we want to model protocol actions
with temporal preconditions in terms of the past (for example, if i sends k only if j sent
k′). The usual solution is to encode the history of actions by new basic propositions.

3.2.2 Limitations of ETL

According to the modelling procedure we described in Sect. 2.3, the epistemic relations
are built after the temporal structures. This may prevent us from handling knowledge-
based protocols, which have preconditions in terms of knowledge, e.g., i sends m only
if i knows that j has k. As shown in Halpern and Fagin (1989), Fagin et al. (1995a),
it is possible to construct the unique temporal structure and epistemic relations simul-
taneously according to a knowledge-based protocol, if the system is synchronous and
the epistemic preconditions are not about the future.13 On the other hand, DEL by
definition can handle conditions about what may happen in the future, since in action

13 As argued in Halpern and Fagin (1989), if a protocol has “forward-looking” conditions (like Ki Fφ: “i
knows that φ will hold eventually”), it is circular to define the admissible runs uniquely. Therefore, there
may be none or several solutions to the fix-point-like definition of the admissible runs.

123 [306]

Synthese (2010) 177:51–76 67

models we can have preconditions like Ki 〈A, e〉φ (i knows that e may happen and in
that case φ will be true).

In the ETL modelling of security protocols, the initial (global) states represent
the initial distribution of names, keys, and other messages. If we focus on a par-
ticular distribution, then we can start with a unique initial state. By doing so, we
implicitly assume that the distribution of the information, e.g, who has what key,
is commonly known (Baskar et al. 2007). However, what if one agent is uncertain
about whether another agent knows that she has a public key? Such higher order
uncertainties are not well-handled if we generate epistemic relations between initial
states based on matching local states. For example, suppose the only message term
is a public key k and agent i has it while agent j does not. To make the formula
φ = Ki (hasi k ∧ ¬has j k) ∧ ̂Ki K j hasi k ∧ ̂Ki¬K j hasi k true in an initial model, we
need at least two states which represent the same initial distribution of messages, as
the following model shows:

i : {k}; j : {} �� i ��
��

j
��

i : {k}; j : {}

i : {}; j : {}

It is clear that φ holds at the upper two states. However, if the epistemic relations are
generated by matching local states or other local information, then there should be
a j relation linking all the states. But then formula Ki¬K j hasi k will be true at the
upper worlds, contradictory to our initial intention. In fact, if we want to handle higher
order uncertainties by the generated epistemic relations, we need to introduce some
extra tokens in the local states of j to distinguish the two upper states. Intuitively, a
local state of one agent, though called local, should also contain information about
one’s opinion on others, in order to handle higher order uncertainties. However, it is
rather ad-hoc to introduce those auxiliary tokens. On the other hand, DEL is more flex-
ible in modelling how agents reason about each other, because the equivalences can
be defined by choice. More flexibility is also offered by the possibility of modelling
higher order uncertainties in the action models.

To summarize, the distinct features in either DEL or ETL approaches are usually
double-edged swords:

Features ETL DEL

Equivalence
relations

Generated by matching local
information

Generated by product update or
by hand (for initial models)

Pros Flexible and automatic; generated
in a distributed fashion

Easy to handle higher order
uncertainties; update
mechanism is formally defined

Cons Inconvenient for higher order
uncertainties at initial states

Inconvenient in a cryptographic
setting

[307] 123

68 Synthese (2010) 177:51–76

Features ETL DEL

Events Represented by transitions on
global states

Modelled in action models

Pros Flexible Pre- and postconditions are encoded in
the DEL language thus easy to handle
epistemic conditions in protocols

Cons Detailed modelling (e.g. pre- and
postconditions) is outside the
framework

Equivalence relations between
events are designed by hand

Based on the above observation, we may want to combine the two frameworks, as
already attempted in Hoshi and Yap (2009), van Benthem et al. (2009), Wang et al.
(2010).

Comparing to theETL approach, the standardDEL-approach has limitations in gen-
erating suitable equivalence relations for the security setting. On the other hand, DEL
seems convenient for the knowledge-based protocols (or simply epistemic protocols)
where:

– preconditions are in terms of knowledge of the agents;
– higher order uncertainties are crucial (e.g., higher order uncertainty about initial

distribution of information or observation of actions);
– protocol goals are in terms of nested knowledge form.

Epistemic protocols use epistemic reasoning rather than cryptography to obtain secu-
rity. Examples of such protocols include e.g., Dining Cryptographers (Chaum et al.
1988) and Card Cryptography (Fischer and Wright 1996; van Ditmarsch 2003, 2008).
Notably, to verify such protocols, meta-knowledge of the protocols themselves matters
and creates some complications (Wang et al. 2009).

4 To know or not, towards a technical answer

As emphasised in the previous sections, many epistemic approaches are motivated by
a common conviction that epistemic logic can express security properties “more natu-
rally”. However, in practice, in most of the formal frameworks, security properties are
formalised as temporal formulae rather than in terms of knowledge. To really justify
the use of epistemics, it is crucial to understand better whether adding epistemics into
the temporal logic can indeed help to express more security properties, and if so, what
the cost is for the improved expressivity.

4.1 On expressivity of ETL

In this section, we try to formally address the expressivity of epistemic temporal logic
(ETL) versus pure temporal logic (TL), aiming at a technical basis to answer the above
questions. Here we regard ETL and TL as classes of logics: we do not fix the exact
logic unless necessary. The comparison will always be between a temporal logic L
and an epistemic temporal logic that extends L with epistemic operators.

123 [308]

Synthese (2010) 177:51–76 69

Roughly speaking, a logic L1 is strictly more expressive than L2, if (1) for every
formula in L2 there is a formula in L1 defining the same class of models (i.e. they
have exactly the same models.); but (2) there is a formula in L1 which does not have a
corresponding formula in L2. Note that the comparison of the expressivity of different
logics is usually studied given the condition that the logics concerned are defined on
the same type of models. However, in the case of ETL and TL, this condition does
not hold: the models of ETL involve epistemic relations, while these are absent in
the TL-models. This complicates formal comparisons of the two logics in terms of
expressivity. To make the comparison of ETL and TL possible, we need to provide the
common playground for these two logics.

A rather straightforward observation is that if we consider the epistemic relations
of agent i to be just another kind of transitions, labelled ‘i’, then ETL can be “reduced”
to TL. Let CTL∗

I and MuI be CTL∗ and modal μ−calculus with extra actions labelled
by the names of agents in I respectively. Let CETL and CTL be the classes of all ETL-
and TL-models respectively. Then:

Theorem 2 There exists a language translation tL : LETL → LTL and a model
transformation tM : CETL → CTL where TL ∈ {CTL∗

I ,PDL,MuI} such that:

∀ϕ ∈ ETL∀M ∈ CETL(M |�ETL ϕ ⇔ tM(M) |�TL tL(ψ)).

Proof We only discuss the CTL∗ case. Let tL be the translation that, for each formula,
1) replaces each occurrence of Ki by AXi , 2) recursively replaces each common
knowledge operator CI′ (with I′ ⊆ I) by A(¬((∨i∈I ′ Xi�)UtL(¬φ))). Let tM be
the transformation which unravels the epistemic relations into labelled temporal rela-
tions.

This observation suggests a way to reduce ETL model checking into TL model
checking, with the help of some small model property. However, the unravelling of epi-
stemic relations may introduce an exponential blow-up of the models, see for instance
(Alur et al. (2007)).

On the other hand, the above result is somehow misleading in understanding the
expressivity of ETL and TL, since we reinterpret epistemic relations as temporal oper-
ators by introducing new operators in the temporal language. To address the compari-
son of expressivity without manipulating the language we can consider the following
case:

Suppose that the epistemic relations of theETL-models are generated by the tempo-
ral structures as explained in Sect. 2.3. We can turn the ETL-models into TL-models
by ignoring the generated epistemic relations. A straightforward question is to ask
whether explicit epistemics helps to define more classes of such temporal models, or if
the epistemic information can be retrieved from the temporal structure. Formally we
need to prove or disprove the following:

∃φ ∈ LETL,∀ψ ∈ LTL : t−M(Cφ) �= Cψ.

[309] 123

70 Synthese (2010) 177:51–76

where Cφ (Cψ) is the class ofETL (TL) models which satisfy φ (ψ); t−M transforms the
ETLmodels in Cφ into corresponding TLmodels by ignoring the generated epistemic
relations.

In case that the epistemic relations are generated respecting synchronicity (i.e.
epistemic relations only appear in the same level of the tree unravelling of the tem-
poral model), then we have a clear answer to the above question. We can reformulate
Theorem 1 of Alur et al. (2006) in spirit as follows:

Theorem 3 If we only consider the ETL models satisfying synchronicity, then the
secrecy flavoured ETL formula AX AG(¬K¬p ∧¬K p) (never be sure about p in the
future) is not t−M-translatable into the language of modal μ-calculus.

The proof is essentially hidden in Emerson (1987), which shows that the class of
the trees that have a level where p is true everywhere, is not recognisable by non-
deterministic Muller tree automata. We can employ the pumping-lemma-like argu-
ment of Emerson (1987) to obtain this result.

The merit of the above untranslatability result may actually root in the property
of synchronicity, since it is known that Monadic Second Order logic cannot express
“x and y are at the same level” on trees (Läuchli and Savioz 1987). Hence, although
synchronicity is a commonly accepted idealisation of the agents, we still want to know
whether we can ignore it or replace it by other properties but get a similar untranslat-
ability result. This is still open.

4.2 Relevant results of model checking ETL

The previous sections gave both the intuitive and technical arguments on the usability
and expressivity of the epistemic approaches in protocol verification. However, do we
pay any cost in the complexity of model checking? In this section we summarize the
important model checking results of the literature. For complexity results regarding
the satisfiability problems of the corresponding logics we refer to Halpern and Vardi
(1986), Shilov and Garanina (2002).

Shilov and Garanina (2002) show that on explicit Kripke models the model check-
ing problem of CTL with common knowledge operators (CTL + C) can be done in
PTIME and van der Hoek and Wooldridge (2002) proved that for Alternating Time
Logic (ATL) with knowledge, it is PTIME -complete. This looks similar to the logics
without knowledge operators. However, due to the construction of epistemic mod-
els in the protocol verification setting, we are more interested in the model check-
ing problem on finitely generated infinite epistemic temporal models. Results in
Shilov and Garanina (2002) indicate that on asynchronous generated models with
forgetful agents, the complexity of model checking complies to the general case on
Kripke structures. However, we are more interested in the finitely generated synchro-
nous system with perfect recall agents as intruders. Here are some results for this
situation:

123 [310]

Synthese (2010) 177:51–76 71

Reference Logic Fragment Complexity

van der Meyden and Shilov (1999) LTL+ K full non-elementary
van der Meyden and Shilov (1999) LTL+ C full undecidable
van der Meyden and Shilov (1999) LTL+ C UNTIL-free PSPACE-complete
Engelhardt et al. (2007) LTL+ C single agent PSPACE-complete
Shilov and Garanina (2002) CTL+ K full non-elementary
Shilov and Garanina (2002) CTL+ C full undecidable
Alur et al. (2007) CTL+ K nesting-free PSPACE-complete
Shilov and Garanina (2002) PDL+ C full PSPACE-complete
Shilov and Garanina (2002) MU+ K full undecidable
Alur et al. (2007) MU+ K nesting-free EXPTIME-complete

Putting together the decidability of ≈ on messages terms (cf. Sect. 3.1) and the
model checking results above, we can obtain decidability results for security verifica-
tion (e.g. Baskar et al. 2007).14

The above results suggest that we may focus on single agent cases or nesting-free
ETL formulas due to the complexity issues. This somehow coincides with the disad-
vantages of ETL modelling we mentioned in Sect. 3: ETL modelling is not very suit-
able for multi-agent cases with higher order uncertainty. On the other hand, although
multi-agent cases are often undecidable in general, we can still have some hope by
restricting ourselves to certain class where equivalence relations of agents have certain
pattern (e.g. Engelhardt et al. 2002). Moreover, some model checking techniques such
as abstraction and symmetry reduction that are specific to ETL or DEL can be found
in Dechesne et al. (2008), Cohen et al. (2009a), Cohen et al. (2009b). Due to the space
limitations we will not go into the details.

As a final note, in practice, the performance of an ETL model checking tool kit
relies on the particular class of models in concern and their representations, for exam-
ple, model checking CTL+K against “compact models” is in PSPACE Lomuscio and
Raimondi (2006a).

5 Conclusions

In this paper, we surveyed the epistemic approaches to security protocol verification
with the questions: are security protocols essentially about knowledge (what is there
to know?), what kinds of knowledge can we distinguish (how to know?), and does
an epistemic approach bring benefits (why to know?). We first made the distinctions
between different types of knowledge relevant in the security setting and then gave an
overview of commonly used techniques in the epistemic approaches. In particular, we
compared various equivalence relations defined in the literature that correspond to the
semantics of propositional knowledge. We also compared two major epistemic logical
approaches proposed to model interaction in multi-agent systems. It turns out that, in
a security protocol verification setting, ETL approaches are more suitable to model

14 Important security properties are generally undecidable if there are no restrictions on the number of
messages and nonces, for example, cf. Durgin et al. (1999) for the undecidability for secrecy. A solution is
to focus on decidable subclasses as in e.g. Ramanujam and Suresh (2005a).

[311] 123

72 Synthese (2010) 177:51–76

message passing over time, based on which appropriate equivalence relations can be
generated. On the other hand, the DEL approach offers all freedom to model higher
order information and uncertainties in terms of agents’ knowledge about each other.
The model checking results of ETL also confirm that it is better to focus on a single
agent case: in the security setting, this would be the intruder. Finally, we collected
clues for the comparison of the expressivity of ETL and TL, in order to see when an
epistemic approach is inevitable. We showed under the assumption of synchronicity,
that ETL can define more (security) properties of the temporal structures.

Acknowledgements The authors would like to thank the anonymous referees for their insightful com-
ments and Ramaswamy Ramanujam for the discussions on various issues that motivated this work.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

Abadi, M., & Cortier, V. (2004). Deciding knowledge in security protocols under equational theories.
In ICALP04, LNCS (Vol. 3142, pp. 46–58).

Abadi, M., & Fournet, C. (2001). Mobile values, new names, and secure communication. In POPL ’01
(pp. 104–115).

Abadi, M., & Rogaway, P. (2002). Reconciling two views of cryptography (The computational soundness
of formal encryption). Journal of Cryptology, 15(2), 103–127.

Abadi, M., & Tuttle, M. R. (1991). A semantics for a logic of authentication (extended abstract). In
PODC ’91 (pp. 201–216). New York, NY, USA.

Accorsi, R., Basin, D., & Vigano, L. (2001). Towards an awareness-based semantics for security protocol
analysis. In Logical aspects of cryptographic protocol verification, ENTCS (Vol. 55, pp. 5–24).

Alur, R., Henzinger, T. A., Mang, F. Y. C., Qadeer, S., Rajamani, S. K., & Tasiran, S. (1998). Mocha:
Modularity in model checking. In CAV’98, LNCS (Vol. 1427, pp. 521–525).

Alur, R., Černý, P., & Chaudhuri, S. (2007). Model checking on trees with path equivalences. In
TACAS’07, LNCS (Vol. 4424, pp. 664–678).

Alur, R., Černý, P., & Zdancewic, S. (2006). Preserving secrecy under refinement. In ICALP’06, LNCS
(Vol. 4052, pp. 107–118).

Anderson, R., & Needham, R. (1995). Programming Satan’s computer. In J. Leeuwen (Ed.), Computer
science today, LNCS (Vol. 1000, Chap. 26, pp. 426–440). Berlin/Heidelberg: Springer.

Baltag, A., Moss, L. S., & Solecki, S. (1999). The logic of public announcements, common knowledge,
and private suspicions. Technical Report SEN-R9922, CWI, Amsterdam.

Baltag, A., & Smets, S. (2008). Probabilistic dynamic belief revision. Synthese, 165(2), 179–202.
Baskar, A., Ramanujam, R., & Suresh, S. P. (2007). Knowledge-based modelling of voting protocols.

In TARK ’07 (pp. 62–71).
Bhargava, M., & Palamidessi, C. (2005). Probabilistic anonymity. In CONCUR’05, LNCS (Vol. 3653,

pp. 171–185).
Bieber, P. (1990). A logic of communication in hostile environment. In Computer security foundations

workshop III (pp. 14–22).
Boureanu, I., Cohen, M., & Lomuscio, A. (2009). Automatic verification of temporal-epistemic properties

of cryptographic protocols. Journal of Applied Non-Classical Logics, 19(4), 463–487.
Brookes, D., Hoare, C. A. R., & Roscoe, A. W. (1984). A theory of communicating sequential

processes. Journal of the ACM, 31(3), 560–599.
Burrows, M., Abadi, M., & Needham, R. (1989). A logic of authentication. In Proceedings of the royal

society of london, Series A, Mathematical and Physical Sciences (Vol. 426(1871), pp. 233–271).
Chadha, R., Delaune, S., & Kremer, S. (2009). Epistemic logic for the applied pi calculus. In FMOODS

’09/FORTE ’09, LNCS (Vol. 5522, pp. 182–197).

123 [312]

Synthese (2010) 177:51–76 73

Chaum, D. (1988). The dining cryptographers problem: Unconditional sender and receiver untraceabil-
ity. Journal of Cryptology, 1, 65–75.

Chaum, D., Crépeau, C., & Damgard, I. (1988). Multiparty unconditionally secure protocols. In STOC
’88 (pp. 11–19).

Ciobâcă, S., Delaune, S., & Kremer, S. (2009). Computing knowledge in security protocols under
convergent equational theories. In CADE-22, LNCS (Vol. 5663, pp. 355–370).

Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model checking. Cambridge: The MIT Press.
Clarke, E. M., Jha, S., & Marrero, W. R. (1998). Using state space exploration and a natural deduction

style message derivation engine to verify security protocols. In PROCOMET ’98 (pp. 87–106).
Cohen, M., & Dam, M. (2005a). A completeness result for BAN logic. In Methods for modalities (pp.

202–219).
Cohen, M., & Dam, M. (2005b). Logical omniscience in the semantics of BAN logic. In FCS’05 (pp.

121–132).
Cohen, M., & Dam, M. (2007). A complete axiomatization of knowledge and cryptography. In LICS

(pp. 77–88).
Cohen, M., Dam, M., Lomuscio, A., & Russo, F. (2009a). Abstraction in model checking multi-agent

systems. In AAMAS ’09 (pp. 945–952).
Cohen, M., Lomuscio, A., Dam, M., & Qu, H. (2009b). A symmetry reduction technique for model

checking temporal epistemic logic. In IJCAI’09 (pp. 721–726).
Cremers, C. J. F. (2006). Scyther—Semantics and verification of security protocols. Ph.D. dissertation,

Eindhoven University of Technology.
Dechesne, F., Mousavi, M. R., & Orzan, S. (2007). Operational and epistemic approaches to protocol

analysis: Bridging the gap. In LPAR (pp. 226–241).
Dechesne, F., Orzan, S., & Wang, Y. (2008). Refinement of Kripke models for dynamics. In ICTAC’08,

LNCS (Vol. 5160, pp. 111–125).
Dechesne, F., & Wang, Y. (2007). Dynamic epistemic verification of security protocols: Framework

and case study. In A meeting of the minds (LORI 2008), Texts in Computer Science (Vol. 8, pp.
129–144).

Delaune, S., Kremer, S., & Ryan, M. (2006). Coercion-resistance and receipt-freeness in electronic
voting. In CSFW’06 (pp. 28–42).

Delaune, S., Kremer, S., & Ryan, M. (2009). Verifying privacy-type properties of electronic voting
protocols. Journal of Computer Security, 17(4), 435–487.

Dixon, C., Carmen, Fisher, M., & van der Hoek, W. (2003). Using temporal logics of knowledge in the
formal verification of security protocols. Technical Report ULCS-03-022, University of Liverpool,
Department of Computer Science.

Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2), 198–208.

Durgin, N. A., Lincoln, P. D., Mitchell, J. C., & Scedrov, A. (1999). Undecidability of bounded security
protocols. In Proceedings of the workshop on formal methods and security protocols.

Emerson, E. A. (1987). Uniform inevitability is tree automaton ineffable. Information Processing
Letters, 24(2), 77–79.

Engelhardt, K., Gammie, P., & van der Meyden, R. (2007). Model checking knowledge and linear time:
PSPACE cases. In LFCS (pp. 195–211)

Engelhardt, K., Van Der Meyden, R., & Su, K. (2002). Modal logics with a linear hierarchy of local
propositional quantifiers. In Advances in modal logic (Vol. 9, pp. 9–30).

Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995a). Knowledge-based programs. In Symposium
on principles of distributed computing (pp. 153–163).

Fagin, R., Halpern, J. Y., Vardi, M. Y., & Moses, Y. (1995b). Reasoning about knowledge. Cambridge,
MA, USA: MIT Press.

Fischer M. J., & Wright R. N. (1996) Bounds on secret key exchange using a random deal of cards.
Journal of Cryptology, 9, 71–99

Focardi, R., Gorrieri, R., & Martinelli, F. (2004). Classification of security properties (Part II: Network
Security), In LNCS (Vol. 2946, pp. 139–185). Springer.

Gammie, P., & van der Meyden, R. (2004). MCK: Model checking the logic of knowledge. In CAV’04,
LNCS (Vol. 3114 pp. 256–259). Springer.

Garcia, F. D., Hasuo, I., van Rossum, P., & Pieters, W. (2005). Provable anonymity. In Formal Methods
in Security Engineering ’05 (pp. 63–72).

[313] 123

74 Synthese (2010) 177:51–76

Gerbrandy, J., & Groeneveld, W. (1997). Reasoning about information change. Journal of Logic,
Language and Information, 6(2), 147–169.

Gong, L., Needham, R., & Yahalom, R. (1990). Reasoning about belief in cryptographic protocols.
In Research in security and privacy. pp. 234–248.

Halpern, J., & O’Neill, K. (2002). Secrecy in multiagent systems. In Proc. 15th IEEE Computer Security
Foundations Workshop (pp. 32–46).

Halpern, J., & O’Neill, K. (2005). Anonymity and information hiding in multiagent systems. Journal
of Computer Security, 13(3), 483–514.

Halpern, J. Y., & Fagin, R. (1989). Modelling knowledge and action in distributed systems. Distributed
Computing, 3(4), 159–177.

Halpern, J. Y., & Moses, Y. (1990). Knowledge and common knowledge in a distributed environ-
ment. Journal of the ACM, 37(3), 549–587.

Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1994). Algorithmic knowledge. In TARK ’94 (pp. 255–266).
Halpern, J. Y., & Pucella, R. (2003a). Modeling adversaries in a logic for security protocol analysis.

In Formal aspects of security, LNCS (Vol. 2629, pp. 87–100). Springer.
Halpern, J. Y., & Pucella, R. (2003). On the relationship between strand spaces and multi-agent

systems. ACM Transactions on Information and System Security, 6(1), 43–70.
Halpern, J. Y., & Pucella, R. (2010). Dealing with logical omniscience: Expressiveness and pragmatics.

Artificial Intelligence. doi:10.1016/j.artint.2010.04.009.
Halpern, J. Y., & Vardi, M. Y. (1986). The complexity of reasoning about knowledge and time. In

STOC ’86 (pp. 304–315).
Halpern, J. Y., & Vardi, M. Y. (1991). Model checking vs. theorem proving: A manifesto. In Artificial

intelligence and mathematical theory of computation: Papers in honor of John McCarthy (pp.
151–176). Academic Press Professional, Inc.

Herzog, J. C., & Guttman, J. D. (1999). Strand spaces: Proving security protocols correct. Journal of
Computer Security, 7(2–3), 191–230.

Hintikka, J. (1962). Knowledge and belief: An introduction to the logic of the two notions. Ithaca, NY:
Cornell University Press.

Hommersom, A., Meyer, J.-J., & Vink, E. (2005). Update semantics of security protocols. In W. van
der Hoek (Ed.), Information, interaction and agency (pp. 289–327). Berlin: Springer.

Hoshi, T., & Yap, A. (2009). Dynamic epistemic logic with branching temporal structures. Syn-
these, 169(2), 259–281.

Hunter, A., & Delgrande, J. P. (2007). Belief change and cryptographic protocol verification. In AAAI
(pp. 427–433).

Jonker, H. L., & de Vink, E. P. (2006). Formalising receipt-freeness. In Information security, LNCS
(Vol. 4176, pp. 476–488).

Jonker, H. L., & Pieters, W. (2006). Receipt-freeness as a special case of anonymity in epistemic logic.
In Workshop On trustworthy elections 2006.

Kacprzak, M., Nabiałek, W., Niewiadomski, A., Penczek, W., Półrola, A., Szreter, M., Woźna,
B., & Zbrzezny, A. (2008). VerICS 2007—A model checker for knowledge and real-time. Fund-
amenta Informaticae, 85(1), 313–328.

Kramer, S. (2007). Logical concepts in cryptography. Ph.D. thesis, EPFL.
Läuchli, H., & Savioz, C. (1987). Monadic second order definable relations on the binary tree. The

Journal of Symbolic Logic, 52(1), 219–226.
Lomuscio, A., & Penczek, W. (2007). Symbolic model checking for temporal-epistemic logics. SIGACT

News, 38(3), 77–99.
Lomuscio, A., Qu, H., & Raimondi, F. (2009). MCMAS: A model checker for the verification of

multi-agent systems. In CAV’09, LNCS (Vol. 5643, pp. 682–688).
Lomuscio, A., & Raimondi, F. (2006a). The complexity of model checking concurrent programs against

CTLK specifications. In AAMAS ’06 (pp. 548–550).
Lomuscio, A., & Raimondi, F. (2006b). MCMAS: A model checker for multi-agent systems. In TACAS

’06, LNCS (Vol. 3920, pp. 450–454).
Lowe, G. (1996). Breaking and fixing the needham-schroeder public-key protocol using FDR. In TACAS

’96, LNCS (Vol. 1055, pp. 147–166).
Needham, R. M., & Schroeder, M. D. (1978). Using encryption for authentication in large networks

of computers. Communications of the ACM, 21(12), 993–999.
Orzan, S. (2005). LYS. Available from http://www.mobanet.nl/simona/lys/.

123 [314]

http://dx.doi.org/10.1016/j.artint.2010.04.009
http://www.mobanet.nl/simona/lys/

Synthese (2010) 177:51–76 75

Parikh, R., & Ramanujam, R. (1985). Distributed processes and the logic of knowledge. In Logic of
programs, LNCS (Vol. 193, pp. 256–268).

Parikh, R., & Ramanujam, R. (2003). A knowledge based semantics of messages. Journal of Logic,
Language and Information, 12(4), 453–467.

Paulson, L. C. (1997). Proving properties of security protocols by induction. In 10th Computer Security
Foundations Workshop (pp. 70–83).

Paulson, L. C. (1998). The inductive approach to verifying cryptographic protocols. Journal of Computer
Security, 6, 85–128.

Petride, S., & Pucella, R. (2007). Perfect cryptography, S5 knowledge, and algorithmic knowledge. In
TARK ’07 (pp. 239–247).

Plaza, J. A. (1989). Logics of public communications. In Proceedings of the 4th international symposium
on methodologies for intelligent systems (pp. 201–216).

Pucella, R. (2006). Deductive algorithmic knowledge. Journal of Logic and Computation, 16(2), 287–309.
Ramanujam, R., & Suresh, S. P. (2005a). Decidability of context-explicit security protocols. Journal of

Computer Security, 13(1), 135–165.
Ramanujam, R., & Suresh, S. P. (2005b). Deciding knowledge properties of security protocols. In TARK

’05 (pp. 219–235).
Reiter, M. K., & Rubin, A. D. (1998). Crowds: Anonymity for web transactions. ACM Transactions

on Information and System Security, 1, 66–92.
Ryan, P., & Schneider, S. (2001). Modelling and analysis of security protocols. Reading, MA, USA:

Addison Wesley.
Shilov, N. V., & Garanina, N. O. (2002). Model checking knowledge and fixpoints. In FICS, BRICS

notes series (Vol. NS-02-2, pp. 25–39).
Shmatikov, V. (2004). Probabilistic model checking of an anonymity system. Journal of Computer

Security, 12(3/4), 355–377.
Su, K. (2004). Model checking temporal logics of knowledge in distributed systems. In AAAI (pp.

98–103).
Syverson, P. F. (1992). Knowledge, belief, and semantics in the analysis of cryptographic protocols. Journal

of Computer Security, 1(3–4), 317–334.
Syverson, P. F., & Stubblebine, S. G. (1999). Group principals and the formalization of anonymity. In

World congress on formal methods, LNCS (Vol. 1708, pp. 814–833).
Teepe, W. (2006). BAN logic is not ‘sound’, constructing epistemic logics for security is difficult. In

Proceedings of FAMAS’06 (pp. 79–91).
van Benthem, J., Gerbrandy, J., Hoshi, T., & Pacuit, E. (2009). Merging frameworks for interaction. Journal

of Philosophical Logic, 38(5), 491–526.
van Benthem, J., Gerbrandy, J., & Pacuit, E. (2007). Merging frameworks for interaction: DEL and

ETL. In TARK ’07 (pp. 72–81).
van Benthem, J., van Eijck, J., & Kooi, B. (2006). Logics of communication and change. Information

and Computation, 204(11), 1620–1662.
van der Hoek, W., & Wooldridge, M. (2002). Tractable multiagent planning for epistemic goals. In

AAMAS ’02 (pp. 1167–1174).
van der Meyden, R., & Shilov, N. (1999). Model checking knowledge and time in systems with perfect

recall. In FSTTCS ’99, LNCS (Vol. 1738, pp. 432–445).
van der Meyden, R., & Su, K. (2004). Symbolic model checking the knowledge of the dining

cryptographers. In CSFW ’04 (pp. 280–291).
van der Meyden, R., & Wilke, T. (2007). Preservation of epistemic properties in security protocol

implementations. In TARK ’07 (pp. 212–221).
van Ditmarsch, H. (2003). The Russian cards problem. Studia Logica, 75(1), 31–62.
van Ditmarsch, H. (2008). Unconditionally secure protocols with card deals. Presentation, available at

http://www.cs.otago.ac.nz/staffpriv/hans/lorentz/niaslorentz.pdf.
van Ditmarsch, H., van der Hoek, W., van der Meyden, R., & Ruan, J. (2006). Model checking Russian

cards. In MoChArt 05, ENTCS (Vol. 149(2), pp. 105–123).
van Eijck, J. (2005). DEMO program and documentation. Available from http://www.cwi.nl/~jve/demo/.
van Eijck, J., & Orzan, S. (2007). Epistemic verification of anonymity. Electronic Notes in Theoretical

Computer Science, 168, 159–174.
Von Wright, G. H. (1951). An essay in modal logic. Amsterdam: North Holland.

[315] 123

http://www.cs.otago.ac.nz/staffpriv/hans/lorentz/niaslorentz.pdf
http://www.cwi.nl/~jve/demo/

76 Synthese (2010) 177:51–76

Wang, Y., Kuppusamy, L., & van Eijck, J. (2009). Verifying epistemic protocols under common
knowledge. In TARK ’09 (pp. 257–266).

Wang, Y., Sietsma, F., & van Eijck, J. (2010). Logic of information flow on communication channels
(extended abstract). In AAMAS ’10 (to appear).

123 [316]

	To know or not to know: epistemic approaches to security protocol verification
	Abstract
	1 Knowledge in security protocols
	1.1 Different aspects of knowledge
	1.2 Tension between epistemic and temporal structure

	2 Epistemic approaches: a brief survey
	2.1 BAN logic
	2.2 Basics of epistemic approaches
	2.3 Epistemic Temporal Approaches
	2.4 Dynamic epistemic logic approaches
	2.5 Tools

	3 Comparisons
	3.1 On equivalences
	3.2 ETL vs. DEL in modelling
	3.2.1 Limitations of DEL
	3.2.2 Limitations of ETL

	4 To know or not, towards a technical answer
	4.1 On expressivity of ETL
	4.2 Relevant results of model checking ETL

	5 Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

