Skip to main content
Log in

The mathematical form of measurement and the argument for Proposition I in Newton’s Principia

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

Newton characterizes the reasoning of Principia Mathematica as geometrical. He emulates classical geometry by displaying, in diagrams, the objects of his reasoning and comparisons between them. Examination of Newton’s unpublished texts (and the views of his mentor, Isaac Barrow) shows that Newton conceives geometry as the science of measurement. On this view, all measurement ultimately involves the literal juxtaposition—the putting-together in space—of the item to be measured with a measure, whose dimensions serve as the standard of reference, so that all quantity (which is what measurement makes known) is ultimately related to spatial extension. I use this conception of Newton’s project to explain the organization and proofs of the first theorems of mechanics to appear in the Principia (beginning in Sect. 2 of Book I). The placementof Kepler’s rule of areas as the first proposition, and the manner in which Newton proves it, appear natural on the supposition that Newton seeks a measure, in the sense of a moveable spatial quantity, of time. I argue that Newton proceeds in this way so that his reasoning can have the ostensive certainty of geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aiton E. (1989) Polygons and parabolas. Centaurus 31: 207–221

    Article  Google Scholar 

  • Andersen K., Bos H. (2006) Pure mathematics. In: Porter R., Park K., Daston L. (eds) The Cambridge history of science. Cambridge University Press, Cambridge, pp 696–726

    Google Scholar 

  • Ariotti, P. (1972). Celestial reductionism of time. Studi internazionali di filosofia, Autunno.

  • Arthur R. T. W. (1995) Newton’s fluxions and equably flowing time. Studies in History and Philosophy of Science 26: 323–351

    Article  Google Scholar 

  • Arthur R. T. W. (2008) Leery bedfellows: Newton and Leibniz on the status of infinitesimals. In: Goldenbaum U., Jesseph D. (eds) Infinitesimal differences. de Gruyter, Berlin, pp 7–30

    Google Scholar 

  • Arthur, R. T. W. (2011, forthcoming). On Newton’s fluxional proof of the vector addition of motive forces. In C. Fraser & W. Harper (Eds.) Infinitesimals.

  • Barrow, I. (1734). The usefulness of mathematical learning explained and demonstrated: Being mathematical lectures read in the public schools of Cambridge (J. Kirkby, Trans.). London: Stephen Austen.

  • Barrow, I. (1860). Geometrical lectures. In W. Whewell (Ed.) The mathematical works of Isaac Barrow (E. Stone, Trans., London: Stephen Austen, 1735). Cambridge: Cambridge University Press.

  • Bos H. J. M. (2001) Redefining geometrical exactness. Springer, New York

    Book  Google Scholar 

  • Brackenridge B. (1995) The key to Newton’s dynamics. University of California Press, Berkeley

    Google Scholar 

  • Brackenridge Bruce (2000) Newton’s dynamics: The diagram as a diagnostic device. In: Dalitz R. H., Nauenberg M. (eds) The foundations of Newtonian scholarship. World Scientific, Singapore, pp 71–102

    Chapter  Google Scholar 

  • Brackenridge B., Nauenberg M. (2002) Curvature in Newton’s dynamics. In: Cohen I.B., Smith G.E. (eds) Cambridge companion to Newton.. Cambridge University Press, Cambridge, pp 85–137

    Chapter  Google Scholar 

  • Čapek M. (1976) Concepts of space and time. D. Reidel, Dordrecht

    Google Scholar 

  • Cohen I. B. (1970) Newton’s second law and the concept of force in the Principia. In: Palter R. (eds) The Annus Mirabilis of Sir Isaac Newton 1666–1966. MIT Press, Cambridge MA, pp 143–185

    Google Scholar 

  • Cohen, I. B. (1999). A guide to Newton’s Principia. In: I. Newton The Principia: mathematical principles of natural philosophy (I. Bernard Cohen & A. Whitman, Trans.) (pp. 1–370). Berkeley and Los Angeles: University of California Press.

  • Cohen, I. B., Smith, G. E. (eds) (2002) The Cambridge companion to Newton. Cambridge University Press, Cambridge

    Google Scholar 

  • De Gandt F. (1995) Force and geometry in Newton’s principia (C. Wilson, Trans). Princeton University Press, Princeton

    Google Scholar 

  • Densmore D. (1995) Newton’s Principia: The central argument. Green Lion Press, Santa Fe

    Google Scholar 

  • DiSalle R. (2002) Newton’s philosophical analysis of space and time. In: Cohen I. B., Smith G. E. (eds) Cambridge companion to Newton.. Cambridge University Press, Cambridge, pp 85–137

    Google Scholar 

  • Domski M. (2003) The constructible and the intelligible in Newton’s philosophy of geometry. Philosophy of Science 70: 1114–1124

    Article  Google Scholar 

  • Dreyer J. L. E. (1953) A history of astronomy from Thales to Kepler. Dover, New York

    Google Scholar 

  • Dunlop K. (2011) What geometry postulates. In: Janiak A., Schliesser E. (eds) Interpreting Newton. Cambridge University Press, Cambridge

    Google Scholar 

  • Edwards M. (2008) Time and perception in late Renaissance Aristotelianism. In: Knuuttila S., Kärkkäinen P. (eds) Theories of perception in medieval and early modern philosophy. Springer, Dordrecht, pp 225–244

    Chapter  Google Scholar 

  • Elzinga A. (1972) Huygens’ theory of research and Descartes’ theory of knowledge II. Zeitschrift für Allgemeine Wissenschaftstheorie/Journal for General Philosophy of Science 3: 9–27

    Article  Google Scholar 

  • Erlichson H. (1992) Newton’s polygon model and the second order fallacy. Centaurus 35: 243–258

    Article  Google Scholar 

  • Erlichson H. (2003) Passage to the limit in Proposition 1, Book I of Newton’s Principia. Historia Mathematica 30: 432–440

    Article  Google Scholar 

  • Feingold M. (1993) Newton, Leibniz, and Barrow too: An attempt at a reinterpretation. Isis 84: 310–338

    Article  Google Scholar 

  • Gabbey A. (1992) Newton’s Mathematical principles of natural philosophy: A treatise on ‘Mechanics’. In: Harman P., Shapiro A. (eds) The investigation of difficult things. Cambridge University Press, Cambridge, pp 305–322

    Google Scholar 

  • Galileo, G. (1638). Discorsi e dimonstrazioni mathematichè intorno à due nuove scienze. In Opere (1890–1909) (Vol. viii). Edizione Nazionale. Florence: Barbèra.

  • Grant E. (1977) Physical science in the middle ages. Cambridge University Press, Cambridge

    Google Scholar 

  • Grosholz E. (1987) Some uses of proportion in Newton’s Principia, Book I. Studies in History and Philosophy of Science 18: 209–220

    Article  Google Scholar 

  • Guicciardini N. (1998) Reading the Principia. Cambridge University Press, Cambridge

    Google Scholar 

  • Guicciardini N. (2003) Geometry and mechanics in the preface to Newton’s Principia. Graduate Faculty Philosophy Journal 25: 119–159

    Google Scholar 

  • Guicciardini N. (2009) Isaac Newton on mathematical certainty and method. MIT Press, Cambridge MA

    Google Scholar 

  • Heath T. E. (Ed.). (1956). Euclid’s elements, 3 vols. New York: Dover.

  • Janiak A. (2008) Newton as philosopher. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jesseph D. (1999) Squaring the circle. University of Chicago Press, Chicago

    Google Scholar 

  • Klein, J. (1992). Greek mathematical thought and the origin of algebra (E. Brann, Trans.). Cambridge: MIT Press (Reprint, New York: Dover).

  • Knorr, W. (1986). The ancient tradition of geometric problems Boston: Birkhäuser (Reprint, New York: Dover, 1993).

  • Macbeth D. (2004) Viète, Descartes, and the emergence of modern mathematics. Graduate Faculty Philosophy Journal 25: 87–117

    Google Scholar 

  • Mahoney M.S. (1980) The beginnings of algebraic thought in the seventeenth century. In: Stephen G. (eds) Descartes: Philosophy, mathematics, and physics.. Totowa, Barnes and Noble Books, pp 141–155

    Google Scholar 

  • Mahoney M. S. (1990) Barrow’s mathematics: Between ancients and moderns. In: Feingold M. (eds) The life and times of Isaac Barrow. Cambridge University Press, Cambridge, pp 179–249

    Chapter  Google Scholar 

  • Mahoney M. S. (1993) Algebraic vs. geometric techniques in Newton’s determination of planetary orbits. In: Theerman P., Seeff A. (eds) Action and reaction. University of Delaware Press, Newark, pp 183–205

    Google Scholar 

  • Mancosu P. (1996) Philosophy of mathematics and mathematical practice in the seventeenth century. Oxford University Press, Oxford

    Google Scholar 

  • Manders K. (2008) The Euclidean diagram. In: Mancosu P. (eds) The philosophy of mathematical practice.. Oxford University Press, Oxford, pp 80–133 (First appeared in 1995.)

    Chapter  Google Scholar 

  • Mueller I. (1981) Philosophy of mathematics and deductive structure in Euclid’s elements. MIT Press, Cambridge MA

    Google Scholar 

  • Nauenberg M. (1998) The mathematical principles underlying the Principia revisited. Journal for the History of Astronomy 29: 286–300

    Google Scholar 

  • Nauenberg M. (2003) Kepler’s area law in the Principia. Historia Mathematica 30: 441–456

    Article  Google Scholar 

  • Newton, I. (1959–1977). In H. W. Turnbull, J. F. Scott, A. Rupert Hall & L. Tilling (Eds.), The correspondence of Isaac Newton (7 vols). Cambridge: Cambridge University Press.

  • Newton, I. (1964–1967). In D. T. Whiteside (Ed.), The mathematical writings of Isaac Newton (2 vols). New York: Johnson Reprint Corp.

  • Newton, I. (1967–1981). In D. T. Whiteside (Ed.), The mathematical papers of Isaac Newton (8 vols). Cambridge: Cambridge University Press.

  • Newton, I. (1984). In A. E. Shapiro (Ed.), The optical papers of Isaac Newton (Vol. 1). Cambridge: Cambridge University Press.

  • Newton, I. (1999). The Principia: mathematical principles of natural philosophy (I. Bernard Cohen & A. Whitman, Trans.). Berkeley and Los Angeles: University of California Press.

  • Panza M. (2011) From velocities to fluxions. In: Janiak A., Schliesser E. (eds) Interpreting Newton. Cambridge University Press, Cambridge

    Google Scholar 

  • Pourciau B. (2003) Newton’s argument for Proposition I of the Principia. Archive for History of the Exact Sciences 57: 267–311

    Article  Google Scholar 

  • Pourciau B. (2004) The importance of being equivalent: Newton’s two models of one-body motion. Archive for History of the Exact Sciences 58: 283–321

    Article  Google Scholar 

  • Roche J. (1998) The mathematics of measurement. London: Athlone Press, Springer, New York

    Google Scholar 

  • Rynasiewicz R. (1995) By their properties, causes, and effects: Newton’s Scholium on time, space, place, and motion. Studies in History and Philosophy of Science 26: 133–153

    Article  Google Scholar 

  • Sasaki C. (1985) The acceptance of the theory of proportion in the sixteenth and seventeenth centuries. Historia Scientiarum 29: 83–116

    Google Scholar 

  • Schemmel, M. (Forthcoming). Medieval representations of change and their early modern application. In A. Heeffer & M. van Dyck (Eds.), Proceedings of philosophical aspects of symbolic reasoning in the seventeenth century.

  • Stein H. (1970) Newtonian space-time. In: Palter R. (eds) The Annus Mirabilis of Sir Isaac Newton, 1666–1966. MIT Press, Cambridge, pp 258–278

    Google Scholar 

  • Strong E. W. (1951) Newton’s mathematical way. Journal of the History of Ideas 12: 90–110

    Article  Google Scholar 

  • Sylla E. (1984) Compounding ratios. In: Mendelsohn E. (eds) Transformation and tradition in the sciences. Cambridge University Press, Cambridge, pp 11–43

    Google Scholar 

  • Westfall R. (1980) Never at rest. Cambridge University Press, Cambridge

    Google Scholar 

  • Westfall R. (1996) Technical Newton. Isis 87: 701–707

    Article  Google Scholar 

  • Whiteside D.T. (1966) Newtonian dynamics Review of The background to Newton’s Principia, by John Herivel. History of Science 5: 104–117

    Google Scholar 

  • Whiteside D. T. (1966) The mathematical principles underlying Newton’s Principia Mathematica. Journal for the History of Astronomy 1: 116–138

    Google Scholar 

  • Whiteside D. T. (1991) The prehistory of the Principia from 1664 to 1686. Notes and Records of the Royal Society of London 45: 11–61

    Article  Google Scholar 

  • Wilson C. (1989) Predictive astronomy in the century after Kepler. In: Taton R., Wilson C. (eds) The general history of astronomy. Cambride University Press, Cambridge, pp 161–206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Dunlop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunlop, K. The mathematical form of measurement and the argument for Proposition I in Newton’s Principia . Synthese 186, 191–229 (2012). https://doi.org/10.1007/s11229-011-9983-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-011-9983-8

Keywords

Navigation