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Abstract: The Necker cube and the productive class of related stimuli involving multiple 

depth interpretations driven by corner-like line junctions are often taken to be ambiguous. 

This idea is normally taken to be as little in need of defense as the claim that the Necker 

cube gives rise to multiple distinct percepts. In the philosophy of language, it is taken to 

be a substantive question whether a stimulus that affords multiple interpretations is a case 

of ambiguity. If we take into account what have been identified as hallmark features of 

ambiguity and look at the empirical record, it appears that the Necker cube and related 

stimuli are not ambiguous. I argue that this raises problems for extant models of 

multistable perception in cognitive neuroscience insofar as they are purported to apply to 

these stimuli. Helpfully, similar considerations also yield reasons to suggest that the 

relevant models are well motivated for other instances of multistable perception. 

However, a different breed of model seems to be required for the Necker cube and related 

stimuli. I end with a sketch how one may go about designing such a model relying on 

oscillatory patters in neural firing. I suggest that distinctions normally confined to the 

philosophy of language are important for the study of perception, a perspective with a 

growing number of adherents. 
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1. Introduction 

Various static stimuli can give rise to multiple distinct percepts. Well-studied examples 

are figures like the duck rabbit, the Necker cube (Fig. 1), and similar figures allowing for 

alternative depth interpretations. Another example is binocular rivalry. 

     

  

 

  Figure 1 

Stimuli engendering perceptual mutistability have held enduring interest in the study of 

the mind and brain for at least 180 years and have been said to offer “a unique window” 

to the workings of the visual system (Long and Toppino 2004). More recently, both 

philosophers and cognitive neuroscientists have described stimuli of this kind as 

important tools for the study of the neural correlates of consciousness (Crick & Koch 

1998; 2003; Chalmers 2004). In one particularly interesting sense of the term, “neural 

correlates of consciousness” would be aspects of brain function that correlate specifically 

with changes in phenomenal experience and cannot simply be accounted for in terms of 

changes in sensory stimulation. If we cannot hold sensory stimulation fixed, it is hard to 

tell whether a particular pattern of neural activity is to be associated with consciousness 

or merely with sensory processing. Stimuli engendering perceptual multistability 

potentially allow us to sidestep the confound of sensory stimulation and allow us to study 

changes in conscious perceptual states independent of changes in perceptual stimulation. 

 The role perceptual multistability plays in the scientific study of consciousness 

makes an understanding of the mechanisms underlying perceptual multistability more 

central than it might appear on a first look. The aim of this paper will be to argue that 

there are important systematic weaknesses in relevant models that have been proposed in 
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cognitive neuroscience, and to suggest a possible direction to remedy these weaknesses. 

In particular, I will argue that study of multistable perception would benefit from 

importing a few concepts from the philosophy of language, in particular, the distinction 

between ambiguity and non-specificity. The idea that the study of perception may benefit 

from a semantic perspective, pioneered by Atlas (1989; 2005), to whose insights the 

present work is heavily indebted, has a growing number of adherents. Work in a similar 

spirit can be found in Koralus (2010; 2013; 2014), Cumming (ms), and Greenberg 

(2011), among others. How the findings in this paper affect what conclusions we might 

want to draw from perceptual multistability about the neural correlates of consciousness 

will have to be left for another day. 

A large number of models of the processes underlying multistable perception 

have been proposed (See reviews in Borisyuk et al. 2009; Long & Toppino 2004). It has 

been noted that the empirical record sometimes appears conflicting; some data suggest 

that low-level mechanisms are responsible for perceptual flips, while other data are more 

suggestive of top-down influence (Long & Toppino 2004). I will argue that extant models 

share an unexamined and often unwarranted assumption about the nature of the 

representations that underlie different percepts. In short, extant models take as their 

starting point the assumption that different percepts result from ambiguity. As I will make 

clear, this assumption is a more specific commitment then the uncontroversial 

observation that certain stimuli give rise to a variety of different percepts. I will argue 

that a large productive class of multistable stimuli similar to the Necker cube are not 

ambiguous and thus are not explained by extant models. 

A broader methodological lesson I propose is that vision science may benefit from 

paying attention to some distinctions familiar in semantic analysis, as done in philosophy, 

linguistics and, to some extent, computer science. This does not mean that vision science 
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should be conducted from the armchair or rely on “purely conceptual” arguments; the 

distinctions at issue have concrete empirical consequences, as argued below. 

2. Models of multistability and the topology of ambiguity 

2.1. What is ambiguity? 

Verbal perceptual inputs like “bank” that have two separate entries in the mental lexicon 

(e.g. “money bank” and “river bank”), only one of which can be integrated into a 

sentence at a time, are paradigmatic instances of ambiguity. It is important not to confuse 

“ambiguous” with “allowing for multiple interpretations.” It has been recognized at least 

since the thirteenth century that not all stimuli (sentences) that superficially appear 

ambiguous are in fact ambiguous, and linguists have developed tests for ambiguity 

(Zwicky & Sadock 1975; Atlas 1989; Ashworth 1991). Some varieties of interpretation 

are better understood as due to pragmatics (Grice 1989; Atlas 1989). Some of these cases 

are obvious. For example, nobody would take it that “this philosophy job candidate has 

excellent handwriting” is ambiguous between “this philosophy job candidate just has 

excellent handwriting” and “this philosophy job candidate is not qualified for the job.” 

Other cases are more easily confused with ambiguity. For example, take “the producer 

started the script.” Is this ambiguous between “the producer started reading the script”, 

“the producer started writing the script” and “the producer started producing the script” ? 

It is not immediately obvious, but sentences affording multiple interpretations of this sort 

are better understood as non-specific or “silent” with respect to different interpretations, 

involving supplementation from our background knowledge, rather than picking different 

mental lexicon entries that store complete different disambiguations wholesale, and there 

is some evidence that their processing differentially recruits certain brain regions 

(Pylkkänen & McElree 2007).  
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 In terms of a network model, ambiguity is a topological feature. As in Fig. 2, 

separate nodes or sub-networks correspond to separate disambiguations.  

 

 

 

 

 

 

 

Figure 2 (Adapted from Frost et al. 1990) 

 

At the heart of linguistic tests for ambiguity is the observation that only one 

disambiguation of an ambiguous constituent like “bank” can be active at a time. As a 

result, for example, ‘John went to the bank and so did Bill’ is two-ways but not four-ways 

ambiguous; any literal interpretation of this sentence has to have both John and Bill going 

to a money bank or to a river bank, but not to a mix of the two (Zwicky & Sadock 1975). 

Ambiguous constituents do not support crossed interpretations (Atlas 1989) (I’ll leave it 

as an exercise to the reader to show that “started a script” is not ambiguous with respect 

to the activity started). Thus, the two semantic representations in Fig. 2 have to be in 

competition for dominance. One possibility would be that the networks corresponding to 

the semantic representations “Bank Money” and “Bank River” directly inhibit each other. 

Another possibility is that both networks compete for the resources of some third network 

“X” that inhibits the loser of the competition. The latter possibility could also coexist in 

some form with a version of the former, with a combination of inhibitory connections 

between the “Bank Money” and “Bank River” networks and connections with some third 
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network “X”. All of these possibilities can be represented in an abstract network diagram 

like Fig. 3, where we can assign different excitatory or inhibitory roles (or similar 

modulatory roles like gain control) to the different arrows (including the possibility that 

some arrows have “zero” weights and thus no causal effect). 

               

       Figure 3 

Thus, Fig. 3 displays in abstract form the topology of neural networks for ambiguous 

representations. 

2.2. Ambiguity as a general feature of models of multistability 

I will now make the case that neural network models of multistable perception have 

tended to be models of ambiguity. A wide variety of models have been proposed. As far 

as I can see, they all have the following features: Each percept type corresponds to a sub-

network. These networks compete for dominance. The dominance of one of the sub-

networks means that what the sub-network represents corresponds to the current percept. 

Only one sub-network may be dominant at a time. In addition, there may be an additional 

“control” network that mediates the competition. Thus, extant neural network models of 

multistable perception are largely subsumed by the below diagrams, where A and B 

represent sub-networks each of which underlies one of the two percepts and X represents 

a possible third “control” network. Individual proposals from the literature can be 

represented as parameterizations of model types A and B in Fig. 4, as shown in Table 1. 
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   Model Type A       Model Type B 

 

 

 

     Figure 4 

Notice that the general form of a model of perceptual multistability as in Fig. 4 is 

identical to a model of ambiguity in terms of its network topology: We have two sub-

networks representing two interpretations, with the possibility of a third control network, 

and we have various inhibitory connections between those sub-networks that ensure that 

only one of the interpretations is dominant. In other words, models of multistable 

perception that have the form described in Fig. 4 fundamentally embody an ambiguity 

analysis of multistable perception.1 

 Models of multistable perception vary with respect to the functional role of the 

arrows, the code for dominance, and the mechanism that leads to shifts in dominance 

over time. For example, on an early model of type A, the sub-networks A and B both 

receive excitatory input from the Necker cube stimulus. Units that correspond to one 

depth interpretation have excitatory connections, while units that correspond to distinct 

interpretations inhibit each other (Feldman & Ballard 1982). The model can be adapted to 

different views of what the distributed representations corresponding to each visual 

                                                
1 The term “ambiguity” may have other connotations that are not represented in these diagrams, 

but this is not important for the arguments to follow. 
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interpretation are. With additional assumptions about neural fatigue over prolonged 

periods of activation, together with random noise in the system, models of this type can 

predict that we should get uncontrollable switches between the two percepts. The 

perceptional fluctuations would be explained by successive stages in which one of the 

two networks becoming fatigued and the other becomes dominant. 

To avoid neuroanatomical implausibilities associated with postulating a large 

number of local inhibitory connections, one proposal has been to adopt a “k-Winners 

Take All” (kWTA) model of competition (O’Reilly & Munakata 2000). The key idea is 

that instead of having individual distributed representations compete by having each unit 

inhibit its counterpart, one imposes a systemic constraint that only k units or fewer may 

be active at a given time, where k is enforced by the influence of some further network X 

in models of type B. If we add the assumption that units become fatigued over time, we 

can again explain perceptual alternations over time. Other proposals are possible within 

the same network topology. While there is considerable variation in the assumed type of 

neural coding and in the details of interactions between units, the majority of mainstream 

models are essentially variants of type A and type B. Below, I classify what I take to be a 

representative selection of models as parameters of those diagrams 
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     Table 1: Selection of models as parameters of type A and B 

  

There are various relative strengths and weaknesses of adopting the various parameters in 

Table 1, but those are not my primary concern (O’Reilly & Munakata 2000; Leopold and 

Logothetis 1999; Borsellino et al. 1972). My concern is point out that extant models of 

multistable perception, though they may vary along many dimensions, are fundamentally 

ambiguity theories, in the sense in which Fig. 3 displays the general topology of an 

ambiguity network. 

It bears mentioning that there is an interesting gap in the review literature on 

multistable pereption that remains to be filled, and which I cannot attempt to fill here. 

There is a tendency in the literature to review models of perceptual alternation in general, 

without keeping track of stimuli types used in studies (e.g. Long & Toppino 2004; 

Leopold & Logothetis 1999). At the time this paper was written, there seemed to be no 

comprehensive reviews of the past 170 years worth of experimental data on perceptual 

alternation that systematically classify results by stimuli type. This is not to deny that 

there are studies that contrast different types of multistable perception (Meng & Tong 

2004). Once it becomes clear that it is a substantive hypothesis that a given type of 



 10 

multistable perception is due to an underlying ambiguity, we have to look more carefully 

at each type of multistability to decide whether that hypothesis is warranted.  

In the rest of this paper, I will argue that for a large productive class of multistable 

figures like the Necker cube, the ambiguity analysis is mistaken. It should be clear that 

this is not to say that the models under discussion are useless; I will later consider what 

types of multistability are plausible cases of ambiguity. 

3. The representational basis of the Necker cube and related figures 

3.1. The representational foundations of models of multistability. 

Any neural model of perceptual multistability needs to say what the nodes it postulates 

represent. In many cases, the focus of the modeling is on the phenomenon of 

multistability in the abstract, rather than the multistability of a particular class of stimuli. 

This approach makes it tempting simply to take as a starting point that there are n 

percepts, which are going to be represented by n sub-networks, since we then do not have 

to bother with details that would reduce the generality of the model. As noted, this move 

assumes a general hypothesis about the representational underpinnings of multistability, 

and it is a substantive question whether this yields the right results for all sorts of 

multistability.  

 First, I will ask what visual representations are plausibly involved in the percepts 

we get from figures like the Necker cube. Then, I will examine whether it is plausible that 

those representations correspond to ambiguity networks of the sort just discussed. 
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Figure 5 

 

The instances of multistable perception in Fig. 5 are interesting for only requiring bare 

contours to generate multiple depth percepts. Contour detection has a special fundamental 

status in the visual processing hierarchy. Object recognition primarily relies on input 

from processes that detect contours. Differences between gray-scale photos and line 

drawings register very little in key brain areas involved in object recognition (Kourtzi & 

Kanwisher 2000; Hayworth & Biederman 2006). Reaction times for recognition are 

virtually the same for line drawings and color photographs (Biederman & Ju 1988). 

Children can identify line drawings by 22-26 weeks of age, and recognition of objects 

from line drawings is possible even if no pictures of any sort were previously 

encountered (Hochberg & Brooks 1962; Yonas et al. 1978). In sum, the processing of 

line-based stimuli bears on a core aspect of visual processing. 

 How the visual system detects (flat) contour segments of various orientations 

when presented with the sorts of stimuli illustrated above is about as well understood as 

any subject in visual cognitive neuroscience. Networks in primary visual cortex can 

represent oriented segments at various points in retinal space via a population code over 

various neurons that selectively respond to luminance gradients of different orientations. 

What is less clear is how a depth impression is created from figures like the Necker cube. 
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3.2. Corners as depth cues 

First, we have to ask what visual representations are plausibly involved in the percepts 

we get from the Necker cube and related figures. Then, we must examine whether it is 

plausible that those representations give rise to ambiguity networks of the sort just 

discussed. We are dealing with a systematic class of figures, so the representations are 

unlikely to be holistic. What features do all those line-based figures that give rise to 

multiple depth interpretations have in common? Line junctions that could roughly be the 

projections of cubic corners, as in Fig. 6. 

 

 

Figure 6 

One way to argue that the way we assign depth interpretations to figures based on 

line-junctions like the above is not fundamentally holistic is to find cases in which we 

assign depth interpretations yielding apparent object configurations that we could never 

encounter in the real world because they are impossible. We perceive the left figure in 

Fig. 7 as presenting a solid object, even though the object visually presented evidently 

could not be a real object in Euclidian three-dimensional space. 

 

 

 

 

  

 

   Figure 7 (Adapted from Rock 1983) 
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Impossible figures support the idea that the relevant depth cues operate locally. The 

visual system does not provide a percept of the Penrose Triangle that is geometrically 

possible, even though the Penrose Triangle could in fact (roughly) be the projection of a 

slightly unusual real object viewed from a certain angle. In the right figure in Fig. 7 one 

of the corners is occluded, and a coherent percept is more readily obtained (Rock 1983). 

The local nature of the mechanisms that suggest depth in line drawings of this sort 

is evident in even simpler figures. 

 

 

 

  

Figure 8 (Adapted from Gillam 1979) 

Most observers spontaneously perceive Fig. 8 as an impossible figure, with both ends of 

the rectangular box facing the viewer, even though there is a plausible visual 

interpretation that would be spatially coherent (Gillam 1979). Again, these figures 

suggest that depth interpretations of line drawings are computed locally without decisive 

global coherence constraints. Thus, it is plausible that the corner-like line junctions the 

figures under considerations have in common trigger a depth cue that is a local feature. 

 Why would we have a depth cue of this sort based on monocular contour 

configurations? For vision beyond 30m of distance from our retinas, we need to rely on 

monocular depth cues (Ware 1995). This leaves open what aspect of the scene we should 

treat as depth cues. One consideration is that two-dimensional projections leave distal 

object layouts underdetermined. Yet, it is an interesting fact that with minimal 

assumptions, projections of corners enable good approximations of three-dimensional 

edges in the distance (Perkins 1968; Mulder & Dawson 1990). Thus, it would make 
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geometric sense to have detectors for corner-like line junctions that are processed as 

depth cues. 

 There is evidence from electroneurophysiology that there are neurons in primary 

visual cortex as well as in inferotemporal cortex that are selectively sensitive to the sorts 

of line junctions that could correspond to corners in depth (Shevelev et al. 2001; Tanaka 

1996). In perceptual psychology, it has been argued that rapid search performance that is 

only linearly dependent on the number of distractors is diagnostic of primitive visual 

features (Treisman & Gelade 1980). There is some evidence that line junctions are in fact 

detected rapidly in this way (Enns & Rensink 1991). One reason to think that the visual 

system treats line junctions of the relevant sort as depth cues is that naïve observers 

report perceiving depth even in isolated line junctions that could correspond to corners 

(Perkins 1971; 1972; Shepard 1981; Shepard 1990). There is also evidence that line 

junctions that correspond to corners rather than surface markings exhibit salience for 

observers as young as 7.5 months (Yonas & Arteberry 1994). Finally, the propensity to 

perceive depth in simple line drawings with corner-like line junctions is present even in 

Bushmen of the Northern Kalahari growing up in non-carpentered environments 

(Deregowski & Bentley 1986; Deregowski 1989). On the basis of observations of this 

sort, it has been suggested that the basic ability to see corner-like line junctions in depth 

is largely independent of experience with geometrically precise corners (Deregowski & 

Bentley 1986; Deregowski 1989). If detection of corners in depth is indeed performed in 

early visual processing, this is not surprising. The core architecture of low-level visual 

feature detectors appears to be arranged before any input from visual experience. Even 

before natural eye opening, orientation selective cells can be found in newborn kittens 

(Crair et al. 1998). The gross mapping of different orientations onto primary visual cortex 

seems to stay largely the same through maturation, unless the animals grow up with 
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abnormal visual experience (Crair et al. 1998; Chapman et al. 1996; Blakemore & 

Cooper 1970). 

 In sum, it appears plausible that the visual system has local representations of 

corner-like junctions that serve as depth cues. Evidence from electroneurophysiology, 

perceptual psychology, and cross-cultural psychology suggests that line junctions that are 

perceived as corners are visual coding primitives. There also appear to be good reasons to 

suspect that those line junctions are interpreted as primitive depth cues. It appears that the 

visual system includes dedicated “corner-in-depth” (CD) detectors. Trehub (1991) came 

to a similar conclusion. This is plausibly what underlies the possibility of depth percepts 

from figures like the Necker cube. The question is what exactly these CD detectors 

encode with respect to depth orientation. 

4. Against the ambiguity of CD detectors with respect to depth orientation 

4.1. The ambiguity hypothesis 

One possibility would be that the corner representations are ambiguous with respect to 

depth orientation. This brings us back to the network topology of the models of 

multistable perception considered earlier. We would effectively have two units for every 

corner detector, one representing a convex corner (represented by a letter in the diagram 

below) and a corresponding one representing a concave corner (represented by a primed 

letter). There are several observations that speak against this analysis. 
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Figure 9 

4.2. Redundancy and stability 

It is a familiar thought in the study of semantic representations in language that one 

should not postulate ambiguous representational constituents unless absolutely necessary, 

often referred to as Grice’s Modified Occam’s Razor (Grice 1989). If cubic corner 

representations are ambiguous, we need at least double the number of nodes devoted to 

corners. If those representations are local ones in primary visual cortex, then this means a 

lot of extra neurons. 

 A further worry is that if the multiple depth interpretations of the Necker cube are 

due to competition between convex and concave corner detectors, any line layouts seen in 

depth due to these corner detectors would be expected to produce qualitatively the same 

phenomenon of multistability. However, it is not at all clear that simpler figures like the 

below give rise to the same sort of multistability. In contrast to those in Fig. 11, it is quite 

hard to perceive the corners in Fig. 10 as anything other than convex. At the same time, 

there are no perspectival cues that rule out that would rule out an alternative depth 

interpretation. 
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Figure 10 

 

 

 

 

  

    Figure 11 

 

The multistability in Fig. 11 contrasts with the relative stability in Fig. 10 On the 

ambiguity hypothesis about CD detectors, it is not clear why this should be so. 

4.3. Crossed depth percepts 

Is it possible to find more direct perceptual evidence for the claim that CD detectors are 

not ambiguous with respect to depth orientation? In linguistics and philosophy, it has 

been observed that a paradigmatic feature of ambiguous representations is that only one 

disambiguation can be integrated into an interpretation or “verbal percept” at a time. 

Thus, “John went to a bank” is two-ways ambiguous, since “bank” is two-ways 

ambiguous, but “John went to a bank and so did Bill” is not four-ways ambiguous. 

“Bank” cannot do double duty to be simultaneously interpreted in two different ways 

with respect to its possible disambiguations (Zwicky & Sadock 1975). These sorts of 

constraints do not hold for differences in interpretation that are only due to 

supplementation from context (Atlas 2005; 1989). A similar idea underlies the ambiguity 

model of multistable perception: two networks are in a winner-takes-all competition and 
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the network that loses does not contribute its representational content at all. Thus, if the 

contribution of CD detectors is ambiguous with respect to depth orientation, then insofar 

as you perceive them in depth at all (without shading or binocular disparity cues) you 

perceive them as convex or concave but not both at the same time. Now, one might think 

that of course you cannot perceive the same corner as both convex and concave because 

no real corner could possibly be both. However, as the impossible figures discussed 

above made clear, possibility in the distal world is not a decisive constraint on perceptual 

possibility. 

 Rather surprisingly, it is in fact possible to perceive line layouts corresponding to 

corners as doing double duty with respect to convex and concave interpretations. Some of 

the best demonstrations are due to the Bauhaus artist and former Dean of the Yale’s 

department of Architecture and Design Joseph Albers. Discussing works in his Structural 

Constellation series, he remarks on the possibility of perceiving the center parts of the 

figures as “simultaneously in a forward and a backward direction” (Albers 1977). 

Consider Fig. 12 and Fig. 13 with respect to the spatial configurations indicated in the 

photos on the right of each drawing. 
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Figure 12: Albers (ca. 1950). Structural Constellation VI. Princeton University 

Art Museum. 

 

 

 

 

 

 

 

 Figure 13: Albers (ca. 1950). Structural Constellation. 

 

One can perceive Fig. 12 and Fig. 13 as presenting spatial configurations roughly like 

those indicated in the accompanying photos. On each of those percepts, at least two of the 

three-line junctions in the center of the figure correspond to both convex and concave 

corners on the object configuration that is perceived. Those three-line junctions do double 

duty as convex and concave, giving the figures an illusory quality. Note that “able to 

perceive” does not mean “will always perceive”. For example, if we strongly focus on the 

center of the figures, the unusual visual interpretations tend to disappear. Attentional 

focus has a tendency to make things appear as in the foreground, if this is a perceptual 
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possibility afforded by a line display, so it has to be kept in mind that in cases of displays 

like the above, “scanning” the image with attentional focus in fact alters the percept 

(Kawabata 1987; Kawabata & Yamagami 1978; Peterson & Gibson 1991). 

The first suggestion that the Necker cube is not ambigous because it allows for 

crossed depth interpretations is due to Atlas, who discovered that two Necker cubes 

drawn in such a way that they share corners, can still be perceived in different depth 

orientations (even if the normal tendency is to perceive both in the same depth 

orientation) (Atlas 1989; Atlas 2005). See Fig. 14. 

 

 

 

   Fig. 14 Adapted from Atlas 2005 

The fact that it is possible to perceptually integrate a line junction as a convex 

corner and as a concave corner simultaneously strongly suggests that the ambiguity 

theory is the wrong account of representational contribution of corner detectors. 

4.4. Learning 

If the ability to see depth in line drawings like the Necker cube were based on 

convex/concave ambiguous representations then being able to perceive depth in any 

relevant drawing should predict the ability to get some depth interpretation for all others, 

even though those interpretations may sometimes be implausible or incoherent. On an 

ambiguity account of the contribution of CD detectors with respect to depth, each corner 

representation by itself suggests either a convex or a concave corner.  

 However, it appears that though all children appear to be able to obtain depth 

percepts from some corner-based line drawings, the ability to obtain them for more 

complex ones is subject to learning, even if we allow impossible depth configurations 
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(Young & Deregowski 1981; Deregowski 1969; Deregowski & Dziurawiec 1986). 

Deregowski, reviewing developmental and cross cultural evidence, suggests that the basic 

ability to use corner-like line junctions as depth cues is either innate or acquired without 

need for exposure to carpentered environments, while the ability to obtain a depth 

interpretation in more complex line layouts using the same cues involves learning 

(Deregowski 1989). On the ambiguity hypothesis, this is unexpected. 

4.5. Corner depth-cues as orientation non-specific 

The foregoing observations suggest that corner representations are not ambiguous with 

respect to depth orientation. As noted, a flexible visual system needs monocular depth-

cues, and geometrical facts make line junctions that likely correspond to corners a good 

candidate for a feature detector that would serve as a depth cue. However, the advantages 

of using such line junctions as depth cues do not extend to settle the question whether the 

corner in the distance is convex or concave. If we just consider geometrical constraints, it 

would be a good solution to let a visual system include detectors for line junctions that 

likely correspond to corners. If this detector is only interpreted as signaling what 

geometry helps it estimate, this detector should be taken as leaving open whether the 

corner is convex or concave. From an informational perspective, the best solution may be 

to let those corner representations represent depth, but not depth orientation with respect 

to the viewer. 

 In what way could orientation-nonspecific corner representations be useful to the 

visual system? Major theories of object recognition are based on the neurophysiologically 

well-grounded view that higher-level visual processing areas like IT detect features of 

objects of an intermediate level of complexity. On an influential view, the way in which 

objects are represented is largely invariant to orientation with respect to the viewer 

(Biederman 2001). An important observation is that even pigeons seem to spontaneously 
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categorize “box like” stimuli in a way that is relatively independent of perspective, 

regardless of whether they are presented as viewed from above or below. Peissig et al. 

trained pigeons to peck four different buttons in response to four different shapes. 

Pigeons that were trained to peck a certain button when presented with the left figure in 

Fig. 15  reliably pecked that button in response to the right figure (Peissig et al. 2002). 

 

 

 

 

      Figure 15 

If recognition of objects of this sort is largely viewpoint independent, it would be  

unnecessary and perhaps unhelpful for CD detectors to encode particular orientations. For 

ventral-stream visual processing aimed at classifying objects, orientation non-specific 

corner detectors may be a good solution. 

4.6. Contrasting more plausible cases of ambiguity 

There are important differences between the duck-rabbit and similar “imagistic” 

ambiguous figures on the one hand and the Necker cube and related figures on the other. 

For example, there is greater possibility for control of perceptual fluctuations for the 

duck-rabbit compared to the Necker cube. It is both easier to slow fluctuations and to 

speed them up (Strüber & Stadler 1999). There is also a greater possibility for controlling 

perceptual fluctuations with the Necker cube than with binocular rivalry (Meng & Tong 

2004). This provides some support for the notion that the mechanisms underlying 

perceptual fluctuation in the case of the Necker cube are different. I argued that it is 

implausible that an ambiguity network underlies perceptual fluctuation in the case of the 

Necker cube. However, it seems quite plausible to postulate such a network for figures 
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like the duck-rabbit and for binocular rivalry. A plausible theory of object recognition 

would most likely include separate units for ducks and rabbits, and the demands of object 

classification might even independently motivate inhibitory connections between those 

units. In the case of the leftmost figure in Fig. 16 that can be perceived as a mouse or a 

face, it is even more plausible that different percepts correspond to separate neural 

networks, since it has been argued that there is a dedicated area of IT, the “fusiform face 

area (FFA),” that selectively processes faces but not animal pictures (Kanwisher et al. 

1999; McKone et al. 2007). As for binocular rivalry, we know that cortical columns in 

primary visual cortex differ in whether they are primarily activated by the left or right eye 

(Blasdel et al. 1995). Thus, there is independent reason to postulate distinct neural 

networks corresponding to left-eye and right-eye dominant percepts. 

 

 

 

    Figure 16 

In sum, though the Necker cube and related figures do not appear to be ambiguous, there 

are plenty of other types of multistable perception that are plausibly seen as cases of 

perceptual ambiguity. 

5. Toward a neural network without ambiguity: The NAPS (Non-Accidental 
Property constrained Synchronization) model 

I will now sketch how one might construct a new model of the Necker cube that does not 

have the topology of an ambiguity analysis. The main aim for this section is to make the 

case that the negative arguments in the previous sections can in fact serve as a new 

starting point for a constructive project of designing non-ambiguous models of perceptual 

multistability. 



 24 

5.1. NAPs and object recognition 

My starting point is a rough model of object recognition for figures like the Necker cube. 

Some theories of object recognition rely on viewpoint-dependent “templates,” others rely 

on collections of metric features. Still others rely on detecting combinations of non-

accidental properties (NAPs) like symmetries, curvature and line intersections that do not 

change much under changes in viewpoint (Biederman 2001). NAPs are features of an 

image that that are unlikely to be a consequence of an accident of viewpoint and that are 

highly likely to have corresponding properties in the object itself (Lowe 1977; Witkin & 

Tenenbaum 1983). For example, if line segments in a retinal projection are collinear, the 

corresponding edges in three dimensions are likely collinear as well. Similarly, the 

symmetries and parallels in a projection of an object are likely mirrored in the object 

itself. Importantly, NAPs are detected as properties of the 2D projection; they do not rely 

on depth interpretation (Biederman 1987). Data from visual search tasks as well as 

eletroneurophysiological evidence suggets that there are indeed detectors for NAPs in the 

visual system (Wolfe and Friedman-Hill 1992; Vogels et al. 2001; Kayaert et al. 2003; 

2005). It is likely that both sorts of accounts are required for the full range of objects we 

can recognize. As noted, recognition for cube-like objects seems to be largely invariant to 

orientation, so a model that relies on NAPs for recognition is plausible as core model for 

the type of figure under consideration (Peissig et al. 2002). 

 It is plausible that among the NAP features that are involved in detecting a cube 

are certain arrangements of corners. It is also plausible that relevant processing is done in 

a feed-forward manner, as has been argued is the case for rapid object identification 

(Serre et al. 2007). This would yield a network layout like the below. Proposals for the 

neural transfer functions for a network as in Fig. 17 are readily available (ibid). 
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          Figure 17 

The above sketch of a neural network model does not fall into the ambiguity pattern. 

There are no nodes that are unique to one depth interpretation or another, because so far 

nothing encodes depth. We now have to address how this network could encode 

additional information about depth orientation without interfering with the feed-forward 

processing involved in object recognition and without falling back into the mold of the 

ambiguity models criticized above. I propose that differences in depth orientation are 

encoded by different patterns of oscillatory coherence. 

5.2. Depth organization via patterns in neural oscillation 

For the purposes of the Necker cube in the simplified framework proposed, we only need 

to encode which parts of the figure are in the foreground and which are in the 

background. We could say that if two features are both in the foreground, they both fall 

into a certain pattern of neural oscillation. Now, we want the detection of a cube to serve 

as a constraint on which depth interpretations remain possible for parts of the Necker 

cube. If, say, the corner detectors corresponding to line junctions 1 and 2 do not have 
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similar patterns of oscillation, then signals originating from these detectors will not arrive 

at the same time at the relevant NAP detectors that would allow us to recognize a cube. 

The result may be that the relevant NAP is not detected and thus we do not see a cube. 

Insofar as we detect a cube, what corresponds to nodes 1 and 2 in Fig. 18 may have to be 

in synchrony and thus has to be given the same depth interpretation. 

 

 

 

 

     Figure 18 

On this view, given a certain set of active NAP feature detectors, certain combinations of 

depth interpretations are ruled out.  

The underlying mechanism that would account for this constraint relies on the 

‘communication-through-coherence’ (CTC) hypothesis, according to which the 

effectiveness of communication between neuronal units is proportional to the degree of 

oscillatory coherence between the units (Fries 2005). At certain points within the 

oscillation cycle of the neuron, units are more excitable. If a spike from one unit arrives 

within the excitable window of the receiving unit, communication is possible. If such a 

spike arrives within the window of least excitability, communication is inhibited. 

 If a depth interpretation puts units feeding a crucial NAP into sufficiently 

different oscillatory patterns, it may inhibit detection of that NAP. If we continuously 

perceive a cube, we may not be able to assign a depth interpretation that breaks up NAPs 

for this reason. Thus, an object recognition network can constrain depth interpretation, 

even if depth is not encoded through “depth nodes” in the recognition network.  
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 In principle, it is possible to have multiple added oscillatory patterns at the same 

neural units, and so, in principle, the proposed framework does not rule out crossed depth 

percepts, as long as the relevant oscillatory patterns allow for all NAPs involved in seeing 

the crossed-depth configuration to get adequate input. In sum, the core idea of the 

proposed model is NAP-constrained synchronization of neural activity (NAPS). This 

NAPS model can in principle allow for the sorts of crossed-depth percepts that seemed to 

cast doubt on ambiguity models. 

On the NAPS model, the alternating depth interpretations of the Necker cube can 

be explained using exactly the same network of units we need to understand cube 

recognition. The only modification is that the connections not only have to support feed-

forward integrate-and-fire processing, but also synchronized oscillatory activity. It is 

usually thought that neural synchrony in the brain relies on reentrant connections, so we 

would at least add “downward” arrows to the diagram in Fig. 16. Since we want object 

recognition to constrain depth interpretation, we would predict two processing stages. A 

first pass, feed-forward stage without a special synchronization pattern that culminates in 

cube detection is the first stage. The second stage establishes a pattern of neuronal 

oscillations that corresponds to a particular depth interpretation, with the constraint that 

the activation that underlies recognition has to remain essentially undisturbed.  

 What would provide the initial impetus for the visual system to begin assigning an 

oscillatory pattern to the network that would yield one depth interpretation rather than 

another? I suggest that attentional focus provides the seed for establishing this pattern. 

The model I will sketch has some similarities to the more developed model proposed by 

Trehub (1991). 
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5.3. The role of attentional focus 

There is considerable evidence to suggest that shifts in attention, some voluntary and 

some involuntary, drive changes in perceived depth orientation. In an unbiased Necker 

cube, the corner nearest ocular fixation is very likely to be seen as convex and in the 

foreground (Kawabata & Yamagami 1978). Adding bold lines or other biases that attract 

attention near a corner makes it much more likely that that corner will be seen as in the 

foreground at first (Kawabata 1987; Peterson & Gibson 1991). Finally, the perceived 

depth orientation of a Necker cube spontaneously alternates over time, but if participants 

are told to hold their attention fixed as much as they can, the alternation rate slows down 

(Meng & Tong 2004). Diverting observers’ attention has a similar effect (Reisberg & 

O’Shaughnessy (1984). Though shifts in attention are normally tracked by shifts in ocular 

fixation, the latter is not necessary for the former. It is widely accepted that “covert” 

attention shifts independently of eye focus are possible (Wright & Ward 2008). 

Correspondingly, retinally fixed Necker cubes still allow perceptual flips (Pheiffer et al. 

1956). 

 It is a peculiar feature of visual attention that it has both stimulus-driven aspects 

that require no conscious involvement, and central goal-driven aspects as well (Wright & 

Ward 2008). This makes attention seem like a good candidate for explaining the peculiar 

mix of uncontrollability and partial control involved in the Necker cube. With 

instructions to speed up perceptual reversals, subjects can increase the frequency of 

perceptual flips of the Necker cube, as well as lower it (Strüber & Stadler 1999). Since it 

is possible to consciously influence the deployment of visual attentional focus, this is not 

a surprise on the proposed model. 

 Yet, over prolonged inspection, the perceived orientation of the Necker cube flips 

spontaneously. The frequency of perceptual flips can be consciously influenced but is not 
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subject to decisive conscious control (Strüber & Stadler 1999; Long et al. 1983; Babich 

& Standing 1981). Dominance durations of Necker cube percepts are sequentially 

stochastically independent and gamma distributed (Borsellino et al. 1972). Now, one of 

the functions of attentional focus is to provide more precise analyses of parts of the visual 

scene. This means that attention should normally wander after analysis of a given part of 

the visual scene is complete. Moreover, attentional wandering should be “anarchic” under 

free-viewing conditions, to ensure faster scan times, instead of waiting for a conscious 

decision to shift attention (Wolfe 2000). Supporting the view that how we perceive the 

Necker cube is mediated by attentional focus, just as dominance durations of Necker cube 

percepts are stochastically independent and gamma distributed under free-viewing 

conditions, uncontrolled shifts in attention are stochastically independent and gamma 

distributed as well (Harris et al. 1988; Suppes et al. 1983; Richards & Gibson 1997; 

Leopold & Logothetis 1999). In sum, it seems plausible that the perceptual dynamics of 

the Necker cube is at least initially driven by the dynamics of attentional focus 

assignment. 

Does this picture of attentional focus being involved in beginning to establish an 

oscillatory pattern that would yield a depth percept fit with neural data? There is evidence 

that involuntary attention shifts correlate with shifting patterns of relatively lower-

frequency synchronization (Vidal et al. 2006). Interestingly, it has also been reported that 

synchronous patterns of activity around 8-14Hz spontaneously fluctuate in visual cortex, 

and that spatially specific activity co-varies with whether a stimulus will be more readily 

detected (Romei et al. 2008). This would not be surprising if it is the focus of attention 

that is reflected in patterns of lower-frequency oscillation, since attentional focus has 

been known since Helmholtz to provide an advantage for stimulus detection. If those 

patterns play the role suggested, we should find that increased perceptual flipping 
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frequency should decrease the amount of synchronization in lower-frequency bands, as 

patterns of synchronization corresponding to a particular depth interpretation are more 

frequently broken up. It has in fact been reported that during continuous viewing, a 

higher number of perceptual flips correlates with greater desynchronization in the lower 

alpha band (6-8Hz) around the posterior area (Isoglu-Alkac & Strüber 2006). In a 

different study that compared the effect of speeding up and slowing down fluctuations, it 

was found that delta band (0-4Hz) synchronization was maximal for the hold condition 

and minimal for the speed condition (Mathes et al. 2006). 

 Furthermore, there is evidence that visual focal attention shifts recruit parietal 

cortex, particularly right parietal cortex (Vidal et al. 2006; Corbetta et al. 1995). On the 

proposed model, reversing the Necker cube percept characteristically involves a shift in 

attentional focus. As expected, reversal frequency is decreased in patients with right 

hemisphere lesions, who also have trouble with visual search that requires attention shifts 

(Cohen 1959). Increased positivity in the right inferior parietal cortex seems to precede 

reports of perceptual reversals of the Necker cube (Britz et al. 2009).  

 In sum, synchronous activity in the 0-8 Hz range seems to correspond both to the 

maintenance of particular depth interpretation of the Necker cube, and activity in this 

range has been independently identified as a correlate of the focus of involuntary 

attention.  This suggests that the 0-8Hz band in fact roughly exhibits some of the 

properties we expect from the type of pattern of neural oscillation postulated by the 

NAPS model. 

We do not have to assume that a particular pattern of neural synchrony on a 

certain bandwidth itself has the representational content of special foreground or 

background. The same broad region of the brain that has been argued to have a key role 

in attention also includes representations of egocentric spatial information (Seubert et al. 
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2008). A certain oscillatory patterns might encode depth through synchronization with 

nodes in parietal lobe that might more generally represent foreground relative to the 

viewer. 

6. Conclusion 

In sum, I have argued that the Necker cube is not ambiguous, which casts doubt on a 

wide range of neural models of multistable perception. I sketched how one may go about 

developing a novel kind of neural network model of the underlying perceptual processes 

based on the idea of NAP constrained patterns of neural oscillation. A broader 

methodological upshot of the proposed analysis is that questions about the precise 

representational content of coding primitives matter for cognitive neuroscience just as 

they matter for linguistics and the philosophy of language. In sum, there is work to be 

done for semanticists in the study of perception. 
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