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Abstract We show that various paradoxes can arise in a natural class of social
networks. They demonstrate that more services or products may have adverse con-
sequences for all members of the network and conversely that restricting the number
of choices may be beneficial for every member of the network. These phenomena
have been confirmed by a number of empirical studies. In our analysis we use a sim-
ple threshold model of social networks introduced in Apt and Markakis (2011), and
more fully in Apt and Markakis (2014). In this model the agents, influenced by their
neighbours, can adopt one out of several alternatives. We identify and analyze here
four types of paradoxes that can arise in these networks. These paradoxes shed light
on possible inefficiencies arising when one modifies the sets of products available to
the agents forming a social network or the network structure. One of the paradoxes
corresponds to the well-known Braess paradox in congestion games and shows that by
adding more choices to a node, the network may end up in a situation that is worse for
everybody. We exhibit a dual version of this, according to which removing a product
available to an agent can eventually make everybody better off. The other paradoxes
that we identify show that by adding or removing a product from the choice set of
an agent may lead to permanent instability. Finally, we also identify conditions under
which some of these paradoxes cannot arise.
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1 Introduction

Social networks have developed over the years into a large interdisciplinary research
area with important links to sociology, economics, epidemiology, computer science,
and mathematics. An important aspect of social networks in the modern days is that
they help accelerate the spread of new products and technologies through word-of-
mouth effects, as people tend to be influenced by their social circle. The diffusion
of such product adoptions, and more generally of behavioral patterns over social
networks, was studied in a flurry of numerous articles, notably the influential Morris
(2000), and books, see Rogers (2003), Chamley (2004), Goyal (2007), Vega-Redondo
(2007), Jackson (2008), Easley and Kleinberg (2010). This helped to delineate better
this area and to appreciate the importance of the diffusion process.

However, the fact that more services or products may become available within
a social network can also have some adverse consequences. As an example, it was
noticed in a number of empirical studies that an abundance of choices may sometimes
lead to non-optimal decisions. To quote from (Gigerenzer 2008, p. 38):

The freedom-of-choice paradox. Themore options one has, themore possibilities
for experiencing conflict arise, and the more difficult it becomes to compare the
options. There is a point where more options, products, and choices hurt both
seller and consumer.

This phenomenon is sometimes called ‘more is less’. This suggests that the spread
of a new product over a network may not always lead to a better outcome for the
community.

Our main contribution is to demonstrate that such paradoxes can indeed arise in
social networks and to provide a formal framework for studying the emergence of these
phenomena. The general setup in which we study these paradoxes makes it possible
to interpret them as phenomena that can take place in any community the members
of which make choices by taking into account the choices of others. An example is
a ‘bubble’ in a financial market, where a decision of a trader to switch to some new
financial product triggers a sequence of transactions, as a result of which all traders
involved become worse off.

In order to study formally these issues,we use amodel of social networks introduced
in Apt and Markakis (2011) and more fully in Apt and Markakis (2014). In these
networks the agents (players), influenced by their neighbours, can adopt one out of
several alternatives. An example of such a network is a group of people who choose
providers of mobile phones by taking into account the choice of their friends. This
model belongs to the family of threshold models where each agent is associated with
a threshold number that can be viewed as his resistance for adopting a product (the
threshold in this setting can also be viewed as a price one has to pay for the product).
We believe this model has the essential ingredients for capturing interactions and
influence over social networks.

To analyze the dynamics of such networks, a natural class of social network games
was introduced in Simon and Apt (2012), and more fully in Simon and Apt (2015).
These are strategic games in which the payoff of each player weakly increases when
more players choose the same product (strategy) as him. This property, that we call
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‘join the crowd’, captures an essential aspect of social networks. There have been
other game-theoretic approaches in social networks, where the players correspond to
companies that are trying to promote their products over the network, see e.g., Goyal
and Kearns (2012), Tzoumas et al. (2012). However, the models of Goyal and Kearns
(2012), Tzoumas et al. (2012) are not suitable for studying strategic considerations
of individual nodes within a network (the only strategic players in these models are
competing companies that try to infect a network), contrary to the focus of our work.

Given the game-theoretic setup of Simon and Apt (2015), we can now describe our
main findings.We start by illustrating that in some games, an addition of a new strategy
(a new product) can trigger a sequence of changes (an improvement path) that brings
the players from an initial Nash equilibrium to a new one with worse payoff for each
player. This is similar in flavour to the Braess paradox in congestion games, one of
the most striking paradoxes in game theory, e.g., see (Nisan et al. 2007, pp. 464–465).
We also exhibit a natural ‘dual’ version of this paradox, concerning the removal of a
product. Namely, there exist games in which the removal of a product can trigger a
sequence of changes bringing the players from an initial Nash equilibrium to a new
one with a better payoff for each player. This is in analogy to the dual version of Braess
paradox, studied in Fotakis et al. (2012), Fotakis et al. (2012).

However, the analogy with the paradoxes in congestion games is not precise. One
of the reasons is that all improvement paths in congestion games always terminate
(Rosenthal 1973), in contrast to the social network games, which may even fail to
have Nash equilibria (Simon and Apt 2012). Consequently, the set up we consider
here is more complex. In particular, it is possible that an addition of a new product
to (respectively, a removal of a product from) the choice set of a player results in a
permanent instability, in the sense that the sequence of triggered changes may fail to
terminate.

Furthermore, we analyze variants of these paradoxes that are obtained by stipulating
that the corresponding ‘new situation’ is inevitable instead of only being possible.

Finally, we also show that the same types of paradoxes arise when instead of adding
a new product or removing an existing product, we add an edge or remove an edge.
This suggests that the growth of a social network may have an adverse effect on the
optimality of the choices made by its members. Given the use of social networks as a
platform for advertising and promoting products, and as a natural vehicle for spreading
certain patterns of social behaviour, we feel it is important to identify such paradoxes
in this context and to clarify that, in contrast to the congestion games, they can take
several forms.

Apart from exhibiting these paradoxes, it is also natural to try to identify classes of
social networks in which the introduced paradoxes cannot arise. The last part of our
work (Sects. 7 and 8) is devoted to such an analysis.

The paper is organized as follows. In the next section we introduce the background
material. In Sects. 3, 4, 5, and 6, using the social network games,we define formally and
analyze four types of paradoxes. Then, in Sect. 7 we consider the case of networks
where the underlying graph has no source nodes and provide sufficient conditions
ensuring that one of the main paradoxes cannot arise. Subsequently, we utilize this
result in Sect. 8, in which we study the special case where the underlying graph is a
simple cycle. Finally, in Sect. 9 we discuss future research directions.
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2 Preliminaries

2.1 Social networks

We consider here a specific model of social networks, originally introduced in Apt
and Markakis (2011), which we recall first.

Let V = {1, . . . , n} be a finite set of agents andG = (V, E, w) a weighted directed
graph with wi j ∈ [0, 1] being the weight of the edge (i, j). Given a node i of G, we
denote by N (i) the set of nodes fromwhich there is an incoming edge to i .We call each
j ∈ N (i) a neighbour of i in G. We assume that for each node i such that N (i) �= ∅,∑

j∈N (i) w j i ≤ 1. An agent i ∈ V is said to be a source node in G if N (i) = ∅.
By a social network (fromnowon, justnetwork)wemean a tupleS = (G,P, P, θ),

where

– G is a weighted directed graph,
– P is a finite set of alternatives or products,
– P is a function that assigns to each agent i a non-empty set of products P(i) from
which it can make a choice,

– θ is a threshold function that for each i ∈ V and t ∈ P(i) yields a value θ(i, t) ∈
(0, 1].
A threshold value θ(i, t) can be viewed as a resistance of node i to adopt product

t . Alternatively, it can be seen as the price charged to node i for the acquisition of
product t or as the measure of node i’s prior preference for product t .

Given such a network S, we denote by source(S) the set of source nodes in the
underlying graph G.

Example 1 Figure 1 shows an example of a network. Let the threshold be 0.3 for all
nodes and all products. The set of products P is {t1, t2, t3}, the product set of each
agent is marked next to the node denoting it and the weights are labels on the edges.

Given two social networks S and S ′ we say that S ′ is an expansion of S if it results
from adding a product to the product set of a node in S. We say then also that S is a
contraction of S ′.

2.2 Strategic games

To analyze paradoxes in our model of social network we use strategic games. Recall
that a strategic game for n > 1 players, written as (S1, . . . , Sn, p1, . . . , pn), consists
of a non-empty set Si of strategies and a payoff function pi : S1 × · · · × Sn → R,
for each player i .

1

0.5

{t1,t2}

4
{t2}

0.4
3

0.5

{t2,t3}
2

0.5

{t1,t3}
5

{t3}
0.4

Fig. 1 A social network
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Fix a strategic game G := (S1, . . . , Sn, p1, . . . , pn). We denote S1 × · · · × Sn by
S, call each element s ∈ S a joint strategy, denote the i th element of s by si , and
abbreviate the sequence (s j ) j �=i to s−i . Occasionally we write (si , s−i ) instead of s.

We call a strategy si of player i abest response to a joint strategy s−i of his opponents
if ∀s′

i ∈ Si pi (si , s−i ) ≥ pi (s′
i , s−i ). We call a joint strategy s a Nash equilibrium

if each si is a best response to s−i . Further, we call a strategy s′
i of player i a better

response given a joint strategy s if pi (s′
i , s−i ) > pi (si , s−i ).

By a profitable deviation we mean a pair (s, s′) of joint strategies such that s′ =
(s′
i , s−i ) for some s′

i and pi (s′) > pi (s). Following Monderer and Shapley (1996), an
improvement path is a maximal sequence (i.e., a sequence that cannot be extended)
of joint strategies such that each consecutive pair is a profitable deviation. Clearly, if
an improvement path is finite, then its last element is a Nash equilibrium. Moreover,
if s is a Nash equilibrium, then s is also a (trivial) improvement path.

If the initial joint strategy of an improvement path ξ is not a Nash equilibrium,
then we call ξ a non-trivial improvement path. When each profitable deviation in an
improvement path results from a switch to a best response, we say that it is a best
response improvement path.

Given two joint strategies s and s′ we write

– s >w s′ if for all i , pi (s) ≥ pi (s′) and for some i , pi (s) > pi (s′),
– s >st s′ if for all i , pi (s) > pi (s′).

When s >w s′ (respectively, s >st s′) holds we say that s′ is weakly worse (respec-
tively, strictly worse) than s.

2.3 Social network games

Next, we recall the strategic games over the social networks here considered, intro-
duced in Simon and Apt (2012). Fix a network S = (G,P, P, θ). Each agent can
adopt a product from his product set or choose not to adopt any product. We denote
the latter choice by t0.

With each network S we associate a strategic game G(S). The idea is that the agents
simultaneously choose a product or abstain from choosing any. Subsequently, each
node assesses his choice by comparing it with the choices made by his neighbours.
Formally, we define the game as follows:

– the players are the agents (i.e., the nodes),
– the set of strategies for player i is Si := P(i) ∪ {t0},
– For i ∈ V , t ∈ P(i) and a joint strategy s, let N t

i (s) := { j ∈ N (i) | s j = t}, i.e.,
N t

i (s) is the set of neighbours of i who adopted in s the product t .
The payoff function is defined as follows, where c0 is some given in advance
positive constant:
• for i ∈ source(S),

pi (s) :=
{
0 if si = t0
c0 if si ∈ P(i)
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• for i /∈ source(S),

pi (s) :=
⎧
⎨

⎩

0 if si = t0∑

j∈N t
i (s)

w j i − θ(i, t) if si = t, for some t ∈ P(i)

In the first entry we assume that the payoff function for the source nodes is constant
only for simplicity. The second entry in the payoff definition is motivated by the
following considerations. When agent i is not a source node, his ‘satisfaction’ from a
joint strategy depends positively from the accumulated weight (read: ‘influence’) of
his neighbours who made the same choice as him, and negatively from his threshold
level (read: ‘resistance’) to adopt this product. The assumption that θ(i, t) > 0 reflects
the view that there is always some resistance to adopt a product. Strategy t0 represents
the possibility that an agent refrains from choosing a product.

Example 2 Consider the network given in Example 1 and the joint strategy s where
each source node chooses the unique product in its product set and nodes 1, 2 and 3
choose t2, t3 and t2 respectively. The payoffs are then given as follows:

– p1(s) = 0.5 − 0.3 = 0.2,
– p2(s) = 0.4 − 0.3 = 0.1,
– p3(s) = 0.4 − 0.3 = 0.1,
– p4(s) = c0,
– p5(s) = c0.

Let s′ be the joint strategy in which player 3 chooses t3 and the remaining players
make the same choice as given in s. Then (s, s′) is a profitable deviation since p3(s′) >

p3(s). In what follows, we represent each profitable deviation by a node and a strategy
it switches to, e.g., 3 : t3. Starting at s, the sequence of profitable deviations 3 : t3, 1 : t0
cannot be extended, so it is an improvement path which results in the joint strategy in
which nodes 1, 2 and 3 choose t0, t3 and t3 respectively, and each source node chooses
the unique product in its product set.

By definition, the payoff of each player depends only on the strategies chosen by
his neighbours, so the social network games are related to graphical games of Kearns
et al. (2001). However, the underlying dependence structure of a social network game
is a directed graph and the presence of the special strategy t0 available to each player
makes these games more specific. Finally, note that these games satisfy the join the
crowd property that we define as follows:

Each payoff function pi depends only on the strategy chosen by player i and the
set of players who also chose his strategy. Moreover, the dependence on this set
is monotonic.

The last qualification is exactly opposite to the definition of congestion games with
player-specific payoff functions of Milchtaich (1996), in which the dependence on the
above set is antimonotonic. That is, when more players choose the strategy of player
i , then his payoff weakly decreases.
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∀s

∃s ∀w

∃w

Fig. 2 Dependencies between the notions of vulnerability

3 Vulnerable networks

In what follows we introduce and analyze four types of networks. In each of them an
addition (respectively, a removal) of a product to (respectively, from) a product set
of a node can trigger a sequence of changes with counterintuitive outcomes. In this
section we focus on the following notions.

We say that a social network S is ∃w-vulnerable if for some Nash equilibrium
s in G(S), an expansion S ′ of S exists such that some improvement path in G(S ′)
leads from s to a Nash equilibrium s′ in G(S ′) such that s >w s′. In general we
have four notions of vulnerability, that correspond to the combinations XY , where
X ∈ {∃,∀} and Y ∈ {w, s}. For example, we say that S is ∀s-vulnerable if for some
Nash equilibrium s in G(S), an expansion S ′ of S exists such that each improvement
path in G(S ′) leads from s to a Nash equilibrium s′ in G(S) such that s >st s′.

First note that there are some obvious implications between the four notions of
vulnerability and inefficiency that we exhibit in Fig. 2.

We show now that these implications are the only ones that hold between these four
notions.

Example 3 (∀w) In Fig. 3 we exhibit an example of a ∀w-vulnerable network that is
not ∃s-vulnerable. The product set of each node ismarked next to it and theweights are
labels on the edges.We assume that each threshold is a constant θ , where 0 < θ < 0.1.
Here and elsewhere the relevant expansion is depicted by means of a product and the
dotted arrow pointing to the relevant node. In this case product t1 is added to node 4.

The initial Nash equilibrium s is the joint strategy formed by the underlined prod-
ucts, i.e., (t2, t3, t3, t3, t1, t1, t3, t3). Now consider what happens after product t1 is
added to the product set of node 4. Then s ceases to be a Nash equilibrium since
p4(t1, s−4) = 0.4 − θ > 0.3 − θ = p4(s). Addition of t1 triggers the unique best
response improvement path

4 : t1, 3 : t2, 5 : t2, 6 : t0, 4 : t3, 3 : t3, 5 : t0
resulting in the Nash equilibrium (t2, t3, t3, t3, t0, t0, t3, t3). Note that at each step of
any improvement path starting in s triggered by the addition of product t1 to node 4
there is a unique node not playing its best response. For instance, in the second step
of the above improvement path, node 3 is such a unique node.

So every such improvement path can be transformed to a unique best response
path by deleting profitable deviations that do not result in a switch to a best response.
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Fig. 3 An ∀w-vulnerable network
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Fig. 4 A ∃s-vulnerable network

Therefore to prove that the network depicted in Fig. 3 is ∀w-vulnerable, it suffices to
consider the outcome of the above best response improvement path.

Now, in the Nash equilibrium (t2, t3, t3, t3, t0, t0, t3, t3) the payoffs of players
1, 2, 3, 4, 7 and 8 did not change with respect to the original Nash equilibrium, while
the payoffs of players 5 and 6 decreased.

Finally, notice that a network is not ∃s-vulnerable since no product addition can
cause a change of payoffs of players 1, 2, 7 and 8.

In this specific example the payoff of the player who triggered the change in the end
did not change. A slightly more complicated example, that we omit, shows that the
initiator’s payoff in the final Nash equilibrium can decrease. Also, one can construct
examples in which the payoffs in the final Nash equilibrium decrease for an arbitrary
large fraction of the players and remain constant for the other players.

Example 4 (∃s) In Fig. 4 we exhibit an example of a ∃s-vulnerable network that is not
∀w-vulnerable (and hence not ∀s-vulnerable). We assume that θ(1, t3) < θ(1, t1) <

0.1 (so that product t3 is more attractive for node 1 than product t1) and that on all other
arguments the threshold is equal to a constant θ , where 0 < θ < 0.1. We underline
the strategies that form the initial Nash equilibrium s = (t1, t1, t2, t2). Note that the
payoff of each player in s is > 0.

To see that this network is ∃s-vulnerable it suffices to note that starting from s the
addition of product t2 to node 2 triggers an improvement path

2 : t2, 1 : t3, 3 : t3, 4 : t0, 2 : t0, 1 : t0, 3 : t0
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that ends in a Nash equilibrium in which each strategy equals t0, and consequently
each payoff becomes 0.

To show that this network is not ∀w-vulnerable we need to analyze each of the
initial Nash equilibria and all possible expansions.

There are in total four Nash equilibria: (t1, t1, t2, t2), (t0, t0, t2, t2), (t1, t1, t0, t0),
and (t0, t0, t0, t0). The only expansions that can trigger a non-trivial improvement path
are the ones in which a product is added to a node that has more than one neighbour,
so to node 2 or 3.

For each Nash equilibrium and each such expansion we list an improvement path
after which the payoff of the node with the modified product set increases or report
non-existence of a non-trivial improvement path.

– (t1, t1, t2, t2).
• Node 2: addition of t2 triggers the improvement path 2 : t2, 1 : t0.
• Node 3: addition of t1 triggers the improvement path 3 : t1, 4 : t0.

– (t0, t0, t2, t2).
• Node 2: addition of t2 triggers the improvement path 2 : t2.
• Node 3: no non-trivial improvement path is triggered.

– (t1, t1, t0, t0).
• Node 2: no non-trivial improvement path is triggered.
• Node 3: addition of t1 triggers the improvement path 3 : t1.

– (t0, t0, t0, t0).
Then no non-trivial improvement path is triggered.

As mentioned earlier, a threshold can be alternatively seen as a price charged to the
node for the acquisition of a product. Having this in mind the paradoxes discussed in
this and the next section can be also viewed as examples of undesirable consequences
of lowering the price. Namely, instead of adding a product to the product set of a
node we can simply assume that initially it is already present but is ‘expensive’ (the
threshold equals 1) and the addition of a product to a node amounts to lowering the
threshold. In the above example the addition of t2 to node 2 can thus be simulated by
lowering the threshold θ(2, t2) from 1 to θ , that we assumed is less than 0.1.

Braess paradox that we mentioned in the introduction can also be interpreted as
a statement that a congestion game with a unique Nash equilibrium exists, with the
property that an addition of a road segment yields a game with again a unique Nash
equilibrium in which every player is strictly worse off.

Such a stronger interpretation of the paradox cannot be reproduced in the setting
of social network games. Indeed, to start with, the sought social network cannot have
source nodes, as their payoffs in each Nash equilibrium are the same, namely c0. Now,
if the social network has no source nodes, then t0 is a Nash equilibrium in which each
node has a minimal payoff among all Nash equilibria. So an addition of a product can
lead to strictly lower payoffs only if initially also another Nash equilibrium exists.

Example 5 (∃w) Next, we provide an example of a ∃w-vulnerable network that is
neither ∃s-vulnerable nor ∀w-vulnerable. It suffices to add to the network given in
Fig. 4 a source node 7 with the product set {t1} and connect it to node 1 using an
arbitrary threshold and weight. In each Nash equilibrium, node 7 chooses t1, so its
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payoff is the same. Further, the choice of this node has no influence on the choices of
other nodes in the Nash equilibria in the original and the extended networks. So the
conclusion follows from the previous example.

Next, we would like to mention the following intriguing question:

Open problem

Do ∀s-vulnerable networks exist?
The following result shows that if they do, they use at least three products.

Theorem 1 When there are only two products, ∀w-vulnerable networks, so a fortiori
∀s-vulnerable networks, do not exist.

Proof Suppose a ∀w-vulnerable network S = (G,P, P, θ) exists. Let P = {t1, t1}
be the two products in S. So there exists a Nash equilibrium s in G(S), a node, say
1, and a product, say t1, such that for the network expansion S ′ obtained by adding t1
to the product set of node 1 each improvement path that starts in s ends up in a Nash
equilibrium s′ in G(S ′) such that s >w s′.

Below by an improvement segment we mean an initial segment of an improvement
path.

For a product t ∈ P ∪ {t0} and a joint strategy s, we denote by t-phase, a best
response improvement segment ρ′ : s = s0, s1, s2, . . . , sk starting at s such that for
all j ∈ {0, . . . , k − 1}, for every profitable deviation (s j , s j+1) in which the deviating
player is i , we have s j+1

i = t . That is, the deviating player has product t as his best
response. Clearly each t-phase is finite since there are only finite number of players
in S.

We construct a best response improvement path ρ in G(S ′) by repeatedly concate-
nating the best response improvement segment obtained from a t1-phase followed by
a t0-phase. We then prove that ρ is finite and that the last joint strategy in ρ is a Nash
equilibrium which is not weakly worse than s.

First consider a best response improvement segment ρ0 obtained from a t1-phase
starting in the joint strategy s and let s′′ be the last joint strategy in ρ0. Note that
for any profitable deviation (s1, s2) in ρ0, if t1 is a best response for a node i to s1−i ,
then t1 is also a best response for i to s2−i . Indeed, by the join the crowd property
pi (t1, s2−i ) ≥ pi (t1, s1−i ) and pi (t2, s1−i ) ≥ pi (t2, s2−i ), so pi (t1, s2−i ) ≥ pi (t2, s2−i )

since pi (t1, s1−i ) ≥ pi (t2, s1−i ). Further, pi (t1, s
1−i ) ≥ pi (t0, s1−i ), so also pi (t1, s2−i ) ≥

pi (t0, s2−i ). Consequently, in s′′, for every player i such that s′′
i = t1, i is playing a

best response.
Now consider the best response improvement segment ρ1 obtained from a t0-phase

starting in the joint strategy s′′ and let s′′′ be the last joint strategy in ρ1. Suppose
the best response for a player i in s′′ is t0. By the above observation, s′′

i �= t1 and
thus s′′

i = t2. So, again by the join the crowd property, this deviation does not affect
the property that the nodes that selected t1 in s0 play a best response. Iterating this
reasoning we conclude that in the joint strategy s′′′, each node that has the strategy t1
continues to play a best response.
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Fig. 5 A modified ∃s-vulnerable network

By the same reasoning subsequent t1 and t0-phases have the same effect on the
set of nodes that have the strategy t1: each of these nodes continues to play a
best response. Moreover, this set continues to weakly increase. Consequently these
repeated applications of the t1-phase followed by the t0-phase terminate, say in a joint
strategy s′.

We now argue that s′ is a Nash equilibrium. Suppose a node i does not play a best
response to s′−i . If s

′
i = t0, then by the construction t1 is not a best response, so t2

is a best response. Suppose the initial strategy of node i was also t0, i.e., si = t0.
Since s is a Nash equilibrium in G(S), we have pi (t2, s−i ) ≤ pi (t0, s−i ). By join the
crowd property pi (t2, s′−i ) ≤ pi (t2, s−i ), so pi (t2, s′−i ) ≤ pi (t0, s′−i ), which yields a
contradiction. Hence node i deviated to t0 from some intermediate joint strategy s1

by selecting a best response. So pi (t2, s1−i ) ≤ pi (t0, s1−i ). Moreover, by the join the
crowd property pi (t2, s′−i ) ≤ pi (t2, s1−i ), so pi (t2, s′−i ) ≤ pi (t0, s′−i ), which yields a
contradiction, as well.

Further, by the construction s′
i �= t1, so the only alternative is that s′

i = t2. But then
either t0 or t1 is a best response, which contradicts the construction of s′. We conclude
that s′ is a Nash equilibrium in G(S ′).

Notice that the payoff of node 1 strictly increased when it switched to t1 and, on
the account of the above arguments, during the remaining steps of the considered
improvement path it either increased or remained the same. We conclude that the final
Nash equilibrium s′ is notweaklyworse than the original, which yields a contradiction.

�

The definition of vulnerability referred to an expansion of a social network, defined

as an addition of a single product to a single node. Another natural definition of an
expansion consists of adding a single weighted edge to the social network.

In each of the social networks used in the above examples we added a new product,
say t , to a node, say a. In each case there is a single node, say b, that has t in his
product set and such that the edge from b to a is present in the considered network.

When we adopt the alternative definition of expansion it suffices to use as the initial
network the one in which this edge from b to a is removed and in which the product
t is already present in the product set of a. The expansion of the considered network
consists then of adding the edge from b to a. For instance, in Example 4 instead of the
network depicted in Fig. 4 we consider the social network depicted in Fig. 5 to which
we add the edge 4 → 2 with weight 0.3.
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Fig. 6 A fragile network

We leave to the reader the straightforward task of checking that under this alternative
definition of expansion (and hence of vulnerability) both the examples and Theorem 1
continue to hold.

4 Fragile networks

Related notions to vulnerable networks are the following ones.
We say that a social network S is ∃-fragile if for some Nash equilibrium s in G(S),

an expansion S ′ of S exists such that some improvement path in G(S ′) that starts in
s is infinite. In turn, we say that a social network S is ∀-fragile if for some Nash
equilibrium s in G(S), an expansion S ′ of S exists such that each improvement path
in G(S ′) that starts in s is infinite. Finally, we say that a social network S is fragile if
G(S) has a Nash equilibrium, while for some expansion S ′ of S, G(S ′) does not.

Obviously each fragile network is ∀-fragile, while each ∀-fragile network is
∃-fragile. We now show that these two implications are proper.

Example 6 (Fragile)Consider the networkS given inFig. 6where the source nodes are
represented by the unique product in their product set. We assume that each threshold
is a constant θ such that θ < w1 < w2.

Consider the joint strategy s, in which nodes 1, 2, and 3 choose t1, t1 and t2,
respectively and the other nodes choose the unique product in their product set. For
convenience, we denote s by the choices of nodes 1, 2 and 3, so s = (t1, t1, t2). It is
easy to verify that s is a Nash equilibrium in G(S).

Consider now the expansion S ′ of S in which product t2 is added to the product set
of node 1. In G(S ′) the joint strategy s ceases to remain a Nash equilibrium. In fact,
no joint strategy is a Nash equilibrium in G(S ′). Each agent residing on the triangle
can secure a payoff of at least w1 − θ > 0, so it suffices to analyze the joint strategies
in which t0 is not used. There are in total eight such joint strategies. Here is their
listing, where in each joint strategy we underline a strategy that is not a best response
to the choice of other players: (t1, t1, t2), (t1, t1, t3), (t1, t3, t2), (t1, t3, t3), (t2, t1, t2),
(t2, t1, t3), (t2, t3, t2), (t2, t3, t3). This shows that the initial network S is fragile.

Example 7 (∀-fragile) Consider the network S given in Fig. 7. We assume that each
threshold is a constant θ , where θ < w1 < w2. Consider the joint strategy s, in which
the nodes 1, 2, and 3 choose t1, t1 and t2, respectively, and the other nodes choose
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Fig. 7 A ∀-fragile network and an infinite improvement path

the unique product in their product set. As in the previous example we denote s by
(t1, t1, t2). It is easy to check that s is a Nash equilibrium in G(S).

Now consider the expansion S ′ obtained by adding the product t2 to the product
set of node 1. Then s ceases to remain a Nash equilibrium in G(S ′). In fact, Fig. 7b
shows the unique best response improvement path starting in s which is infinite. We
only list strategies selected by nodes 1, 2, and 3 and for each joint strategy in the
figure underline the strategy that is not a best response. As in the case of Example 3
at every step of every improvement path starting in s, there is a unique node which
is not playing its best response. Therefore each improvement path triggered by the
above expansion can be transformed to the best response improvement path depicted
in Fig. 7b. So each such improvement path is infinite, which shows that S is ∀-fragile.

Also note that the game G(S ′) has a Nash equilibrium. Indeed, it is easy to check
that (t1, t1, t0, t1, t0, t0, t3) is a Nash equilibrium. To prove thatS is not fragile we need
to check all other expansions and prove that for each of them the underlying game has
a Nash equilibrium.

Consider first the expansion resulting from adding the product t3 to the product set
of node 1. Then (t3, t3, t3, t1, t2, t2, t3) is a Nash equilibrium.

In every other expansion the product set of node 1 remains {t1}, so nodes 1, 2 and 4
always play a best response when they select t1, while nodes 5, 6 and 7 always play a
best response when they select respectively t2, t2 and t3. So if product t1 is added to the
product set of node 3, then (t1, t1, t1, t1, t2, t2, t3) is a Nash equilibrium and otherwise
(t1, t1, t2, t1, t2, t2, t3) is a Nash equilibrium. Hence S is indeed not fragile.

Example 8 (∃-fragile) Consider the network S given in Fig. 8a. Let the threshold be
a constant θ , where θ < w3 < w1 < w2. Assume that each source node selects
its unique product. Identify each joint strategy that extends this selection with the
selection of the strategies by the nodes 1, 2 and 3. The joint strategy s = (t1, t3, t3) is
a Nash equilibrium in G(S).

Now consider the expansion S ′ obtained by adding the product t1 to the product
set of node 2 in S. The joint strategy s ceases to remain a Nash equilibrium in G(S ′)
since node 2 can profitably deviate to t1. Figure 8b shows an infinite improvement
path starting in (t1, t1, t3). Therefore S is ∃-fragile.
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Fig. 8 A ∃-fragile network and an infinite improvement path

However, S is not ∀-fragile. First, one can check that s = (t1, t3, t3) is the only
Nash equilibrium in G(S) for which profitable additions exist. Indeed, the only other
Nash equilibrium is (t4, t4, t4) in which nodes 1, 2 and 3 already secure the maximal
possible payment, due to the conditions on the weights.

Below we analyze the two profitable additions in the case of the Nash equilibrium
(t1, t3, t3).

– Addition of t1 to node 2 (depicted in Fig. 8a). The following improvement path

2 : t1, 3 : t2, 1 : t2, 2 : t3, 3 : t3, 1 : t4, 2 : t4, 3 : t4
starting in s terminates in the joint strategy (t4, t4, t4)which is a Nash equilibrium.

– Addition of t3 to node 1. This triggers a unique one-step improvement path that
terminates in a new Nash equilibrium (t3, t3, t3).

5 Inefficient networks

The last two types of deficiency are concerned with product removal. These form
the dual versions of the paradoxes we have seen so far. In this section we study the
following notions.

We say that a social network S is ∃w-inefficient if for some Nash equilibrium s in
G(S), a contraction S ′ of S exists such that some improvement path in G(S ′) leads
from s to a Nash equilibrium s′ in G(S ′) such that s′ >w s. We note here that if the
contraction was created by removing a product from the product set of node i , we
impose that any improvement path in G(S ′), given a starting joint strategy from G(S),
begins by having node i making a choice (we allow any choice from his remaining set
of products or t0 as an improvement move). Otherwise the initial payoff of node i in
G(S ′) is not well-defined.

As in the case of the vulnerability, we have four notions of inefficiency that corre-
spond to the combinations XY , where X ∈ {∃,∀} and Y ∈ {w, s}. For example, we
say that S is ∀s-inefficient if for some Nash equilibrium s in G(S), a contraction S ′ of
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Fig. 9 An example of a ∀s-inefficient network

S exists such that each improvement path in G(S ′) leads from s to a Nash equilibrium
s′ in G(S ′) such that s′ >st s.

We now show that the implications between the various notions shown in Fig. 2 for
the case of vulnerable networks are also proper implications for inefficient networks.
However, in contrast to the concept of vulnerability, here even when there are only
two choices (|P| = 2), there exist ∀s-inefficient networks.
Example 9 (∀s) We exhibit in Fig. 9 an example of a ∀s-inefficient network. The
weight of each edge is assumed to be w and is omitted, and we also have the same
product-independent threshold, θ , for all nodes, with w > θ .

Consider as the initial Nash equilibrium the joint strategy s = (t2, t2, t1, t1). It is
easy to check that this is a Nash equilibrium, with a payoff equal tow−θ for all nodes.
Suppose now that we remove product t1 from the product set of node 3. We claim that
all improvement paths then lead to the Nash equilibrium in which all nodes adopt t2.

To see this, we note that in all these improvement paths, nodes 1 and 2 do not switch
from t2. Consequently, in all joint strategies in all of these improvement paths, t2 is a
unique best response for both node 3 and node 4. Hence all improvement paths result
in all nodes adopting t2 and producing a payoff of 2w − θ for each node, which is
strictly better than the payoff in s.

Example 10 (∀w) We now exhibit a network which is ∀w-inefficient but not ∃s-
inefficient (and hence also not ∀s-inefficient). We proceed as in Example 5 and add
to the network given in Fig. 9 a source node 5 with the product set {t1} and connect
it to node 1, using the same weight w and threshold θ . By the same argument as in
Example 5 the conclusion follows by virtue of the previous example.

We also remark that one can construct even simpler networks with three nodes and
two products that exhibit the same behaviour.

Example 11 (∃s) Next, we exhibit a network that is ∃s-inefficient but not ∀w-
inefficient. The network is shown in Fig. 10. The weight of each edge is assumed
to be w and is omitted, and we also have a product-independent threshold θ (with
w > θ ), that applies to all nodes and products except three cases: θ(2, t3) < θ , and
θ(5, t2) = θ(5, t3) > θ . Note that in the underlying graph, each node has exactly two
incoming edges, one from the set {1, 2} and one from {3, 4, 5}, which is crucial in
order to ensure certain equilibrium outcomes.

To see first that this is a ∃s-inefficient network, consider the Nash equilibrium
(t2, t2, t1, t1, t1). In this joint strategy each node receives suport from exactly one out

123



678 Synthese (2016) 193:663–687

2
{t2,t3}

4 {t1,t2,t3}

1
{t2}

3
{t1,t2,t3}

5

{t1,t2,t3}

Fig. 10 An example of a ∃s-inefficient network

of its two neighbours. If we delete t1 from the choice set of node 3, then we can see
that the following improvement path

3 : t2, 4 : t2, 5 : t2
converges to all nodes adopting t2 (by having first node 3 adopt t2, followed by nodes
4 and 5). Hence in this new Nash equilibrium every node receives support from all its
neighbours and the payoff of everyone has strictly increased.

To show that this is not a ∀w-inefficient network, we need to consider all Nash
equilibria and argue about all the possible contractions from each equilibrium. One
can verify that the initial game has four Nash equilibria, namely (t2, t2, t1, t1, t1),
(t2, t2, t2, t2, t2), (t0, t0, t1, t1, t1), and (t0, t3, t3, t3, t3). Note that we do not have to
consider contractions from node 1, who has only a singleton product set. Note also
that for the other nodes, the only contraction we have to consider is the removal of
the product they have at the equilibrium, otherwise no improvement path arises. We
claim now that in any contraction, either node 1 or node 2 or node 5 will get worse
off in some improvement path. This will happen either because nodes 1 or 2 will lose
support for t2 or because node 5 will end up with product t3, which is a worse choice
for him than t1. We analyze below all the different contractions that one needs to
examine from these four Nash equilibria.

– (t2, t2, t1, t1, t1).
• Node 2: deletion of t2 triggers the improvement path 2 : t0, 1 : t0, where nodes

1 and 2 are worse off.
• Node 3: deletion of t1 triggers the improvement path 3 : t3, 4 : t3, 5 : t3, 2 :
t3, 1 : t0. The deviation of node 2 in this path is ensured by our assumption
that θ(2, t3) < θ . This implies that node 1 is worse off at the end.

• Node 4: deletion of t1 triggers the improvement path 4 : t3, 5 : t3, 3 : t3, 2 :
t3, 1 : t0. Note that the second move in the improvement path is possible since
θ(5, t2) = θ(5, t3). Hence again, node 1 is worse off at the end.

• Node 5: deletion of t1 similarly triggers the improvement path 5 : t3, 3 : t3, 4 :
t3, 2 : t3, 1 : t0. It is again, node 1 as above that is worse off at the end.

– (t2, t2, t2, t2, t2).
• Node 2: deletion of t2 triggers the improvement path 2 : t0, 1 : t0, where nodes

1 and 2 are worse off.
• Node 3, 4, or 5: deletion of t2 in these nodes results in the improvement path
i : t0, i ∈ {3, 4, 5}. But then the node whose product set was contracted is
worse off.
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– (t0, t0, t1, t1, t1).
• Node 3: deletion of t1 triggers the improvement path 3 : t3, 4 : t3, 5 : t3, 2 : t3,

and at the end node 5 is worse off, since θ(5, t3) > θ .
• Node 4: deletion of t1 triggers the improvement path 4 : t3, 5 : t3, 3 : t3, 2 : t3.

Again node 5 is worse off.
• Node 5: deletion of t1 makes node 5 worse off in all improvement paths since
for the remaining products, θ(5, t2) = θ(5, t3) > θ .

– (t0, t3, t3, t3, t3).
• Node 2: deletion of t3 triggers the improvement path 2 : t0, with node 2 being

worse off.
• Node 3: deletion of t3 triggers the improvement path 3 : t0, 2 : t0, 4 : t0, 5 : t0,
with most nodes being worse off.

• Node 4: deletion of t3 triggers the improvement path 4 : t0, 5 : t0, 3 : t0, 2 : t0,
with most nodes being worse off.

• Node 5: deletion of t3 triggers the improvement path 5 : t0, 3 : t0, 2 : t0, 4 : t0,
again with most nodes being worse off.

This concludes the analysis of the equilibria and hence we can deduce that this is
not a ∀w-inefficient network.

Example 12 (∃w) Finally, we exhibit a ∃w-inefficient network that is neither ∀w-
inefficient nor ∃s-inefficient. We proceed as in Example 10 and simply modify the
previous example. We add to the network given in Fig. 10 a source node 6 with the
product set {t2} and connect it to node 1, using the same weight w and threshold θ .
By the same argument as in Examples 5 and 10 the conclusion follows by virtue of
the previous example.

Actually, the argument that this network is not ∀w-inefficient becomes now simpler
because after the addition of the source node 6 the initial game has only two Nash
equilibria, namely (t2, t2, t1, t1, t1, t2) and (t2, t2, t2, t2, t2, t2).

In analogy to Sect. 3we now consider amodified definition of contraction according
to which we remove a single edge. This yields an alternative definition of inefficient
social networks. Then the social networks illustrating the types of inefficient networks
considered here, continue to exist. However, in contrast to Sect. 3 we cannot modify
the exhibited networks in a ‘standard’ way. The reason is that in these two definitions
the changes in the product selection are triggered differently.

According to the original definition, in the examples of appropriately inefficient
networks we always need to remove the product selected by a node in the initial Nash
equilibrium. This necessarily causes a temporary ‘illegal situation’ which is restored
by stipulating that this node switches to an arbitrary alternative product in his product
set or to t0. In contrast, when we remove an edge, no ‘illegal situation’ is ever created.
Moreover, the initial Nash equilibrium can ‘survive’ such a removal. A sequence of
changes will be triggered only if the node at the end of the removed edge can switch
to a better alternative.

By way of example we only provide here in Fig. 11 an example of a network that
is ∀s-inefficient according to the alternative definition. All the weights are w (and are
omitted in the drawing) and we use a product-independent threshold θ , where w > θ .
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Fig. 11 An alternative ∀s-inefficient network

It is easy to check that the removal of the edge 4 → 3 triggers an (not
unique) improvement path each of which leads from the initial Nash equilibrium
(t2, t2, t1, t1, t1) to aNash equilibrium (t2, t2, t2, t2, t2) inwhich each node has a strictly
higher payoff. Consequently, this network is indeed ∀s-inefficient.

6 Unsafe networks

Finally, we have three notions that are counterparts of the fragility notions.We say that
a social network S is ∃-unsafe (respectively, ∀-unsafe) if for some Nash equilibrium s
in G(S), a contraction S ′ of S exists such that some (respectively, each) improvement
path in G(S ′) that starts in s is infinite. Further, a social network S is unsafe if G(S)

has a Nash equilibrium, while for some contraction S ′ of S, G(S ′) does not.
Analogously to Sect. 4 each unsafe network is ∀-unsafe, while each ∀-unsafe net-

work is ∃-unsafe. We now prove that these two implications are proper.

Example 13 (Unsafe)LetS1 be themodification of the networkS given inFig. 6where
node 1 and the source node marked with {t1} has the product set {t1, t2}. Consider the
joint strategy in which this source node along with node 1 choose t2, nodes 2 and 3
choose t3 and nodes marked by {t2} and {t3} choose the unique product in their product
set. This is a Nash equilibrium in S1. Now consider the contraction S2 of S1 in which
the product t2 is removed from the source node with product set {t1, t2}. Then S2
is same as the network S ′ in Example 6. Following the argument in Example 6 we
conclude that the initial network S1 is unsafe.

Example 14 (∀-unsafe) Let S1 be the modification of the network S given in Fig. 7
in which nodes 1 and 4 have now the product set {t1, t2}. We depict it in Fig. 12.

Consider the joint strategy in which nodes 1 and 4 choose t2, nodes 2 and 3 choose
t3 and the remaining nodes choose the unique product in their product set. This is a
Nash equilibrium in S1. Now consider the contraction S2 of S1 in which the product
t2 is removed from the product set {t1, t2} of node 4. Then S2 is same as the network
S ′ in Example 7. Following the argument in Example 7 we conclude that the initial
network S1 is ∀-unsafe.

To prove that S1 is not unsafe for each contraction of it we need to find a Nash equi-
librium in the associated game. Belowwe denote each contraction in a self-explanatory
way and list the corresponding Nash equilibria by only giving the selections of nodes
1–4, as in each Nash equilibrium the choice of nodes 5–7 is, respectively, t0, t0 and t3.

1 - t1: (t0, t3, t3, t1),
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Fig. 12 A ∀-unsafe network that is not unsafe

1 - t2: (t0, t3, t3, t2),
2 - t1: (t2, t3, t3, t2),
2 - t3: (t2, t0, t0, t2),
3 - t2: (t2, t3, t3, t2),
3 - t3: (t0, t3, t0, t2),
4 - t1: (t2, t3, t3, t2),
4 - t2: (t1, t1, t0, t1).

Example 15 (∃-unsafe) Let S1 be the modification of the network S given in Fig. 8
where node 2 has the product set {t1, t3, t4} and the source node marked with {t3} has
the product set {t1, t3}. Consider the joint strategy in which this source node along with
node 2 choose t1, nodes 1 and 3 choose t2 and nodesmarked by {t1}, {t2} and {t4} choose
the unique product in their product set. This is a Nash equilibrium in S1. Now consider
the contraction S2 of S1 in which the product t1 is removed from the source node with
product set {t1, t3}. ThenS2 is sameas thenetworkS ′ inExample8. Following the argu-
ment in Example 8we conclude that the initial networkS1 is ∃-unsafe but not∀-unsafe.

7 Networks without source nodes

Given the variety of paradoxes exhibited in the above examples it is natural to investi-
gate the status of selected networks. In this section we focus first on networks where
there are no source nodes. This is a reasonable assumption in social networks as
everybody usually has some friends who influence his decisions. We first identify
a property which ensures the non-existence of ∃w-vulnerable networks, when the
underlying graph has no source nodes.

For a joint strategy s and product t , let At (s) := {i ∈ V | si = t}, and prod(s) :=
{si | i ∈ V }\{t0}. Hence, prod(s) is the set of distinct strategies that are used in profile
s. We let also t denote the joint strategy in which every player selects t . We say that a
profile s is a multiple product profile, if |prod(s)| > 1.

Theorem 2 Consider a network S whose underlying graph has no source nodes. If
G(S) does not have a multiple product Nash equilibrium, then S is not ∃w-vulnerable.
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To prove this result, we use a specific structural property of Nash equilibria in
networks whose underlying graph has no source nodes. Below, we only consider
subgraphs that are induced and identify each such subgraphwith its set of nodes. Recall
that (V ′, E ′) is an induced subgraph of (V, E) if V ′ ⊆ V and E ′ = E ∩ (V ′ × V ′).
For subgraphs C1 and C2, we denote by C1 ∩ C2 the intersection of the nodes of the
graphs. We say that a (non-empty) strongly connected subgraph (in short, SCS) C of
G is self sustaining for a product t if for all i ∈ C ,

– t ∈ P(i),
–

∑

j∈N (i)∩C
w j i ≥ θ(i, t).

Hence, C is a self sustaining SCS for a product t if assigning this product to every
node in C ensures that each node in C gets a non-negative payoff. A self sustaining
SCS C is minimal for product t if no subgraph C ′ of C is a self sustaining SCS for
product t . First we prove the following auxiliary result.

Lemma 1 Let S = (G,P, P, θ) be a network whose underlying graph has no source
nodes. If s �= t0 is a Nash equilibrium in G(S), then for all products t ∈ prod(s), there
exists a minimal self sustaining SCS C for t such that C ⊆ At (s).

Proof Suppose s �= t0 is a Nash equilibrium. Take any product t �= t0 and an agent
i such that si = t (by assumption, at least one such t and i exists). Recall that N t

i (s)
denotes the set of neighbours of i who adopted in s the product t . Consider the set of
nodes Pred := ⋃

m∈N Predm , where

– Pred0 := {i},
– Predm+1 := Predm

⋃ (⋃
j∈Predm N t

j (s)
)
.

We argue that some Ct ⊆ Pred is a self sustaining SCS for product t . Consider
the node i . Since s is a Nash equilibrium, we have

∑
k∈N t

i (s) wki ≥ θ(i, t). Since

θ(i, t) > 0, we have N t
i (s) �= ∅. By the construction of Pred, N t

i (s) ⊆ Pred1.
Iterating this reasoning, we get that the following invariant holds:

for all m ≥ 0 and all j ∈ Predm,N t
j (s) �= ∅ and

∑

k∈Predm+1 ∩N t
j (s)

wk j ≥ θ( j, t).

Since V is finite, there exists an l ∈ N such that Predl = Predl+1. We conclude that
there exists Ct ⊆ Pred which is an SCS and is self sustaining for product t . From Ct ,
we can then construct a minimal self sustaining SCS C for product t by dropping the
appropriate nodes. �


Given a network S and a product t ∈ P , let Ct (S) be the set of all minimal
self sustaining SCSs for product t . Let Xt (S) = ⋂

C∈Ct (S),Ct (S) �=∅ C and Y (S) =⋂
t∈P,Xt (S) �=∅ Xt (S).

Proof of Theorem 2: To prove the theorem, we show in fact the following claim. Sup-
pose that for the network S = (G,P, P, θ) one of the following conditions holds:

1. for all t ∈ P , Ct (S) = ∅,
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2. Y (S) �= ∅.
Then, S is not ∃w-vulnerable.

In other words, if the network S does not have any self sustaining SCSs or if
the intersection of the set of all minimal self sustaining SCSs is non-empty then
S is not ∃w-vulnerable. We will show that condition 1 implies that t0 is the only
Nash equilibrium in G(S) and condition 2 implies that |prod(s)| = 1 for any Nash
equilibrium s in G(S) that is different from t0.

Note that if S is a network whose underlying graph has no source nodes then the
joint strategy t0 is always a Nash equilibrium. This is because for all nodes i , and for
all products t ∈ P , N t

i (t0) = ∅. Therefore, no player has a profitable deviation from
t0. Suppose that for all t ∈ P , Ct (S) = ∅. From Lemma 1, it follows that t0 is the
only Nash equilibrium in S. Consider any expansion S ′ of S. Then no player has a
profitable deviation from t0 in S ′. Therefore, S is not ∃w-vulnerable.

Now suppose that Y (S) �= ∅. In this case, we first claim that every non-trivial Nash
equilibrium s in S has the property that prod(s) ⊆ {t1} for some t1 ∈ P . Suppose
this is not the case then for some two different products t1 and t2, {t1, t2} ⊆ prod(s).
Since s is a Nash equilibrium, by Lemma 1, there exists a minimal self sustaining
SCS C1 ⊆ At1(s) for t1 and a minimal self sustaining SCS C2 ⊆ At2(s) for t2. By
definition, At1(s) ∩ At2(s) = ∅ and therefore, Ct1(S) ∩ Ct2(S) = ∅. This contradicts
the assumption that Y (S) �= ∅.

Consider a Nash equilibrium s in S and an expansion S ′. By the above claim
prod(s) ⊆ {t} for some t ∈ P . In the expansion S ′, if a new product t ′ �= t is
added to the product set of a node i , then there is no profitable deviation from s since
N t ′

i (s) = ∅. Consequently, there is no improvement path starting at s in G(S ′).
Thus the relevant case is when the product t is added to a node i (with si = t0).

Consider any improvement path in G(S ′) that leads to a Nash equilibrium s′ in G(S ′).
Since s is a Nash equilibrium in G(S) the first profitable deviation in the improvement
path is of the form i : t1. In the improvement path, if a joint strategy s2 is obtained from
s1 by having some nodes switch to product t1 and t1 is a best response for a node j to
s1− j , then t1 is also a best response for j to s

2− j . Indeed, by the join the crowd property

p j (t1, s2− j ) ≥ p j (t1, s1− j ) ≥ p j (t1, s1− j ) = 0 = p j (t0, s2− j ). So the only deviations
in this improvement path are to t1. Consequently in s′ which is a Nash equilibrium,
t1 is the product selected by node i (i.e., s′

i = t1) and pi (s′) > pi (s). Therefore, the
network is not ∃w-vulnerable. �


8 Simple cycle networks

In this section we focus on networks where the underlying graph is a simple cycle,
say 1 → 2 → . . . → n → 1. We assume that the counting is done in cyclic order
within {1, . . . , n} using the increment operation i ⊕ 1 and the decrement operation
i � 1. In particular, n ⊕ 1 = 1 and 1 � 1 = n. We start with the following corollary
to Theorem 2.

We begin with the following observation.
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1 {t1,t2}

{t1,t2}
3

{t1,t2}
2

Fig. 13 An ∃s-inefficient simple cycle network

Note 1 Consider a simple cycle network S. If s is a Nash equilibrium of the game
G(S) then s = t̄ for some t ∈ P ∪ {t0}. Moreover, t0 is always a Nash equilibrium.

Proof First note that t0 is indeed aNash equilibrium. Consider now aNash equilibrium
s �= t0. Then there exists a product t and a node i such that si = t . Since s is a Nash
equilibrium, we have pi (s) ≥ pi (t0, s−i ) = 0, so si�1 = t as well as otherwise
the node i would have negative payoff. Iterating this reasoning we conclude that
s = t . �

Corollary 1 Simple cycle networks are not ∃w-vulnerable (and a fortiori not XY -
vulnerable, where X ∈ {∃,∀} and Y ∈ {w, s}).
Proof This is an immediate consequence of Note 1 and Theorem 2. �


The remaining types of deficiency are easy to determine. For the case of fragile
networks we prove the following result.

Theorem 3 Simple cycle networks are not ∃-fragile (and a fortiori not ∀-fragile and
not fragile).

Proof Consider a simple cycle network S = (G,P, P, θ), a Nash equilibrium s of
G(S), and an expansion S ′ of S. By Note 1 s = t , where t ∈ P∪{t0}. Hence s remains
a Nash equilibrium of G(S ′). Consequently S is not ∃-fragile. �


In the case of inefficient networks we have the following result.

Theorem 4 (i) There exists a simple cycle network S that is ∃s-inefficient (and a
fortiori ∃w-inefficient).

(ii) Simple cycle networks are not ∀w-inefficient (and a fortiori not ∀s-inefficient).

Proof (i) Consider the network shown in Fig. 13. Suppose that θ(i, t1) > θ(i, t2) for
all nodes i = 1, 2, 3 and that s = t1 is a Nash equilibrium. Starting from s, suppose
we remove t1 from the product set of node 1. Then there exists a finite improvement
path where all the nodes end up adopting t2, by simply having node 1 adopt t2 and
then having the remaining nodes follow their best response. Since θ(i, t1) > θ(i, t2),
all nodes are strictly better off in this new Nash equilibrium, t2.
(i i)Consider a simple cycle networkS = (G,P, P, θ), a Nash equilibrium s of G(S),
and a contraction S ′ of S. By Note 1 s = t , where t ∈ P ∪ {t0}. If s = t0, then it is
impossible that by deleting any productwe couldmake some player better off. Suppose
s = t1 for some product t1. If we delete t1 from some product set, say of node 1, then
there is always an improvement path that terminates at the Nash equilibrium t0 (simply
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1 {t1,t2}

{t1,t2}
3

{t1,t2}
2

(t2,t1,t0) (t1,t1,t0) (t1,t1,t1)

(t2,t2,t0) (t0,t2,t0) (t0,t2,t2)

(t2,t0,t0) (t2,t0,t2) (t0,t0,t2)

(b)(a)

Fig. 14 A simple cycle network and an infinite improvement path

start with node 1 adopting t0, and proceed clockwise. Then gradually every other node
will switch to t0 since they eventually lose support for t1). Hence no node is better off
in this new Nash equilibrium. In conclusion, there can be no Nash equilibrium from
which all improvement paths after the contraction will make the set of nodes weakly
better off. �


Finally, we consider the case of unsafe networks.

Theorem 5 (i) There exists a simple cycle network S that is ∃-unsafe.
(ii) Simple cycle networks are not ∀-unsafe (and a fortiori not unsafe).

Proof (i)Consider the network shown in Fig. 14a. Theweight of each edge is assumed
to be w and is omitted. We also assume that θ(1, t2) < θ(1, t1) < w and θ(2, t2) <

θ(2, t1) < w (so that product t2 ismore attractive for nodes 1 and 2 than product t1) and
that on all other arguments the threshold is equal to a constant θ , where 0 < θ < w.
These assumptions imply that t1 is a Nash equilibrium.

By removing from the product set of node 3 the product t1 we get in the resulting
game an infinite improvement path depicted in Fig. 14b. (In each joint strategy we
underline a strategy that is not a best response to the choice of other players.) So the
initial network is ∃-unsafe.
(i i) By Theorem 28 in Simon and Apt (2015) for every simple cycle network S there
exists a finite improvement path in G(S). This implies both claims. �


The above analysis does not carry through to all strongly connected graphs. Indeed,
we showed in particular that simple cycle networks cannot be ∀w-vulnerable and
also not ∀s-inefficient. However, in Example 3 we exhibited a network that is ∀w-
vulnerable and in Example 9 a network that is ∀s-inefficient. The underlying graphs
of both networks are strongly connected.

9 Conclusions

In this paper we provided a systematic study of paradoxes that can arise in social
networkswithmultiple products. Suchparadoxes allowus to better understandpossible
undesirable consequences of modifying the choices that are available to the agents
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within a social network (which can correspond to new products, new technologies or
adoption of new ideas). The focus of our work was on identifying these paradoxes and
on determining their relative strength.

To analyze them, we used a natural game-theoretic framework in the form of social
network games introduced in Simon and Apt (2012) and Simon and Apt (2015).
These games do not always admit (pure) Nash equilibria, and as a result, more types
of paradoxes can arise (as we exhibited), than in the class of congestion games with
its celebrated Braess paradox. Out of all the notions of paradoxes that we introduced
and studied, one question still remained open: do ∀s-vulnerable networks exist?

In future work we plan to assess the computational complexity of determining the
presence of these paradoxes and plan to analyze other selected networks. We also plan
to expand our analysis of selected classes of networks, determining which paradoxes
can then be present.

Finally, in our analysis we assumed that the agents can refrain from selecting a
product. In Apt and Simon (2013) an alternative version of the social network games
is studied, in which each agent has to choose a product. This corresponds to natural
situations, for instance when pupils have to choose a primary school or when each
student has to select a laptop. Such social networks are studied by modifying our
framework so that the strategy t0 is not available. This change leads to a different
analysis and different results. In particular, in this setup the authors solved the open
problem reported in Sect. 3, by showing that the ∀s-vulnerable networks exist.
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