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Abstract

Bayesian reverse-engineering is a research strategy for developing three-level explanations 
of behavior and cognition. Starting from a computational-level analysis of behavior and 
cognition as optimal probabilistic inference, Bayesian reverse-engineers apply numerous 
tweaks and heuristics to formulate testable hypotheses at the algorithmic and 
implementational levels. In so doing, they exploit recent technological advances in Bayesian 
artificial intelligence, machine learning, and statistics, but also consider established 
principles from cognitive psychology and neuroscience. Although these tweaks and 
heuristics are highly pragmatic in character and are often deployed unsystematically, 
Bayesian reverse-engineering avoids several important worries that have been raised about 
the explanatory credentials of Bayesian cognitive science: the worry that the lower levels of 
analysis are being ignored altogether; the challenge that the mathematical models being 
developed are unfalsifiable; and the charge that the terms ‘optimal’ and ‘rational’ have lost 
their customary normative force. But while Bayesian reverse-engineering is therefore a 
viable and productive research strategy, it is also no fool-proof recipe for explanatory 
success.
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1. Introduction

Whereas the Bayesian approach in cognitive science is thought to be genuinely 
revolutionary by some, it is considered fundamentally flawed by others. Most discussions of 
Bayesian cognitive science focus on Bayesian rational analysis, a method for developing 
ideal observer models of behavior and cognition as optimal solutions to probabilistic 
inference tasks in the environment (Anderson 1991a; Oaksford & Chater 2007). Although 
these models have proven useful for characterizing behavioral and cognitive phenomena in 
a wide variety of domains, critics have worried that they fall short as explanations. In 
particular, Bowers & Davis (2012a; 2012b) argue that ideal observers are little more than 
unfalsifiable “just-so stories”, and Marcus & Davis (2015, p. 542. See also: Marcus & Davis 
2013) worry that the terms ‘optimal’ and ‘rational’ are used far “too often, in too many 
different ways” to be illuminating. Most famously perhaps, Jones & Love (2011) argue that 
the method of Bayesian rational analysis does little more than describe phenomena at David
Marr's computational level of analysis (Marr 1982), thereby falling short of explaining those 
phenomena by specifying the mechanisms responsible for them (See also: Colombo & 
Hartmann 2015; Danks 2008).

This article aims to shift the debate away from Bayesian rational analysis, and toward the 
broader research strategy of Bayesian reverse-engineering. Increasingly, proponents of the 
Bayesian approach treat the method of Bayesian rational analysis as little more than a 
computational-level starting point of a “top-down” research strategy that answers questions
at all three of Marr’s levels. For this reason, a proper evaluation of the explanatory 
credentials of Bayesian cognitive science should consider not only ideal observer models 
that speak to issues at the computational level, but also the methods that are used to 
formulate empirical hypotheses at the algorithmic and implementational levels. That said, 
although recent years have seen a proliferation of methods of this kind (See e.g. Chater et 
al. 2011; Griffiths et al. 2010; Griffiths et al. 2015; Hahn 2014; Knill & Pouget 2004; Ma et al. 
2006; Sanborn et al. 2010), it remains largely unclear what these methods actually have in 
common; it is unclear how Bayesian reverse-engineering actually works. In what follows, 
therefore, the different methods that have recently been used to explore all three levels of 
analysis within the Bayesian context will be subsumed under a general framework in which 
tweaking strategies are used to ensure the empirical adequacy of ideal observers at the 
computational level (Section 2), and heuristic strategies are used to formulate testable 
hypotheses at the algorithmic and implementational levels (Section 4). Along the way, it will 
be argued that alternative construals of the Bayesian approach that focus solely on the 
computational level—notably, Bayesian Fundamentalism (Jones & Loves 2011) and 
Bayesian Instrumentalism (Colombo & Seriès 2012; Danks 2008)—misrepresent the stated 
aims and established practices of Bayesian cognitive science (Section 3).

Armed with a detailed conception of Bayesian reverse-engineering, it will be possible to 
properly evaluate the explanatory credentials of Bayesian cognitive science. This article is 
cautiously optimistic, responding to the critics but also reigning in the revolutionaries. 
Specifically, in Section 5 it will be argued that Bayesian reverse-engineering evades the most
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prevalent worries about the Bayesian approach: It does in fact go beyond the computational
level of analysis, it can withstand concerns about “just-so-stories”, and it is unharmed by the
fast-and-loose application of terms such as ‘optimality’ and ‘rationality’. At the same time, 
however, it will here be argued that Bayesian reverse-engineering is no fool-proof recipe for
explanatory success. Indeed, this research strategy is highly pragmatic in nature, in the 
sense that its outcome depends on the rather unprincipled application of tweaks and 
heuristics. As a consequence, there is no guarantee that any particular episode of Bayesian 
reverse-engineering will actually succeed, and it seems likely that different Bayesian 
reverse-engineers will advance different, and possibly conflicting, three-level explanations 
of behavior and cognition.

Before commencing in earnest, it is worth providing a preliminary answer to a question that 
will be revisited repeatedly: What is new and distinctively Bayesian about the Bayesian 
approach? Insofar as many other approaches in cognitive science—including Marr's (1982) 
information-processing approach—rely on the same basic reverse-engineering strategy, 
Bayesian reverse-engineering is in many ways “business as usual”. What makes Bayesian 
reverse-engineering unique, therefore, is not the reverse-engineering methods being 
invoked, but the pragmatic context in which these techniques are deployed. Many of the 
tweaks and heuristics that drive Bayesian reverse-engineering exploit mathematical 
concepts and computational tools developed to understand the nature of Bayesian 
probabilistic inference in highly idealized mathematical domains. Of course, the idea that 
human behavior can be compared to a probabilistic inference engine is not new, and 
statistical concepts and tools have been used in the service of psychological and 
neuroscientific theorizing for a long time (See e.g. Brunswik 1943; Swets et al. 1961; Tanner 
1961; Peterson & Beach 1967). Nevertheless, the novelty and promise of Bayesian reverse-
engineering lies in the use of recent computational and technological advances in Bayesian 
statistical analysis: By relying on these advances, it is now possible to deal with increasingly 
complex and realistic kinds of probabilistic inference. Insofar as investigators in artificial 
intelligence, machine learning, and statistics have gained a sophisticated theoretical 
understanding of probabilistic inference in idealized machines, Bayesian reverse-engineers 
are motivated by the prospect of exploiting this understanding to explain probabilistic 
inference in biological organisms.

2. Bayesian rational analysis

2.1 Starting at the top

Theoretical discussions of the Bayesian approach are traditionally framed in terms of David 
Marr’s (1982) seminal account of explanation in cognitive science.1 On this account, 

1 Although Marr’s account may have its detractors (See e.g. Anderson 2015), a detailed discussion of its virtues 
and vices is beyond the scope of the present article. Moreover, although several other accounts of explanation
in cognitive science have been proposed (See e.g. Cummins 1983; Milkowski 2013a; Zednik 2011), none have 
been similarly influential, especially within the Bayesian context. The present discussion will therefore assume 
a basic familiarity with Marr’s account, and will take its plausibility for granted. Marr’s account of explanation 
in cognitive science will have served its current purpose if it helps illuminate the principles of Bayesian reverse-
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explaining a cognitive system’s behavior involves analyzing the system at three distinct 
levels of analysis. At each level, researchers ask a particular set of questions about the 
system being investigated (See also: McClamrock 1991). At the computational level, 
investigators ask questions about what a cognitive system is doing, and why. Whereas what-
questions are traditionally answered by specifying a mathematical function that maps a 
cognitive system’s inputs onto its outputs, why-questions are answered by considering the 
“appropriateness” of a cognitive system’s behavior with respect to the “task at hand” (Marr 
1982, p. 24. See also: Section 3). At the algorithmic level of analysis, in contrast, 
investigators ask questions about how the system does what it does. These questions are 
traditionally answered by specifying the individual steps needed to compute or approximate
the relevant input-output function. Finally, at the implementational level of analysis, 
investigators are concerned with questions about where (and when) in the brain the 
relevant computations take place. Answers to questions of this kind may be delivered by 
identifying individual steps of an algorithm with the activity (over a certain period of time) 
of particular physical structures such as neurons or neural networks in the brain (For 
discussion see: Zednik, forthcoming).

On Marr’s account, each one of the computational, algorithmic, and implementational levels
is necessary to explain, or “completely understand” (Marr 1982, p. 4ff), a cognitive system’s 
behavior. Because investigators are often unable to answer questions at all three levels 
simultaneously, however, they typically consider one level at a time. Notably, investigators 
disagree about the best order in which to proceed: Whereas proponents of “bottom-up” 
research strategies contend that knowledge of possible implementations and algorithms 
should guide our understanding of behavioral and cognitive capacities (See e.g. McClelland 
et al. 2010), Marr himself favored a “top-down” approach in which what- and why-questions
at the computational level are answered first:

“Although algorithms and mechanisms are empirically more accessible, it is the top 
level, the level of computational theory, which is critically important from an 
information-processing point of view. The reason for this is that [...] an algorithm is 
likely to be understood more readily by understanding the nature of the problem 
being solved than by understanding the mechanism (and the hardware) in which it is 
embodied.” (Marr 1982, p. 27. See also: Dennett 1994)2

Proponents of the Bayesian approach share Marr’s predilection for starting at the top; 
Bayesian reverse-engineers begin by answering what-questions and why-questions at the 
computational level of analysis, and from there proceed to answer how-questions and 
where-questions at the algorithmic and implementational levels.

engineering.
2 In hindsight, the normative force of this claim appears overstated: Marr could not have predicted the degree 
to which e.g. connectionist modeling and brain imaging techniques would galvanize bottom-up research 
strategies which begin by answering questions at the implementational and algorithmic levels. Nevertheless, 
Marr’s considerations might still be viewed as a statement of the unique virtues of working from the top down:
Whereas bottom-up strategies face the daunting task of making sense of complex physical structures in the 
brain, top-down approaches allow researchers to view such physical structures in a particular way, as 
contributing to the production of a behavioral or cognitive phenomenon that is itself already quite well-
understood. Of course, bottom-up strategies are likely to have virtues of their own. Thus, cognitive science can
only benefit from a heterogeneous methodological landscape.
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2.2. Developing ideal observers

The computational-level starting point of Bayesian reverse-engineering is the method of 
Bayesian rational analysis, the aim of which is the development of empirically adequate 
ideal observer models. This method is invoked in several related modeling frameworks: 
signal detection theory (Green & Swets 1988), ideal observer analysis (Geisler 1989), pattern
inference theory (Kersten & Schrater 2002), rational analysis (Anderson 1991a), probabilistic
modeling (Oaksford & Chater 2001), and Bayesian modeling (Griffiths, Kemp, & Tenenbaum 
2008). Despite their different names and their use in different domains, these modeling 
frameworks share two important features. First, they all use probability theory as their 
principal mathematical tool. Second, they share the methodological assumption that it is 
useful to compare a cognitive system’s actual behavior in a specific environmental situation 
to optimal (or ideal, or rational) performance in the same situation. Thus, the method of 
Bayesian rational analysis is designed to address two immediate concerns: How to 
mathematically define a cognitive system’s task environment, and how to specify optimal 
performance within that task environment using the concepts and methods of probability 
theory.

Many (though perhaps not all) behavioral or cognitive capacities can be viewed as solutions 
to probabilistic inference tasks in an uncertain environment (Brunswik 1943). For example, 
perceptual capacities can be viewed as solutions to the problem of identifying the state of 
the environment (from among a range of alternatives) that is most likely to have caused a 
particular stimulation. Similarly, action can be viewed as a solution to the problem of 
selecting the behavioral response (relative to other possible responses) that is most likely to 
benefit the agent. Insofar as agents cannot be certain about the actual state of their 
environment, nor about the future consequences of their actions, they should take into 
account the uncertainty inherent in a particular environment.

The best-developed mathematical tool for dealing with inference under uncertainty is 
probability theory. Bayesian rational analysis harnesses this tool to formalize the 
probabilistic structure of a particular environment, and to quantify the uncertainty inherent 
in a given task.3 Although such formalization can be daunting for natural environments, it is 
quite feasible for laboratory environments that fall under the experimenter’s control.4 
Consider a categorization task in a simple laboratory experiment in which white bars of 

3 There are other ways to formalize inference under uncertainty. Because few of these are as well-developed 
and as well-known as standard probability theory, however, they are less widely used in cognitive scientific 
research. 
4 Sometimes, Bayesian rational analysis is reduced to analyzing evolutionarily relevant environments or tasks. 
While this approach has been very successful in behavioral ecology (Davies et al. 2012), in cognitive science it 
is often difficult or impossible to know what the correct ‘natural’ environment or task may be (though a 
notable exception may be natural image statistics: Simoncelli 2003). However, rational analysis has also been 
used very fruitfully in artificial laboratory experiments without any appeal to evolution, and often with very 
little information about the natural environment (Anderson, 1991a). As these applications are conceptually 
simpler, we will focus on such cases here. The particular example considered here, bar-categorization in a 
simplified laboratory environment, is representative of the ones being used in categorization studies that use 
artificial stimuli and define categories as probability distributions (See e.g Ashby & Gott 1988; Fried & Holyoak 
1984).
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varying lengths are displayed over a black background. Participants are tasked with 
reporting, to the best of their ability, whether a bar that is presented belongs to category A 
or to category B. The experimenter fixes the probability that a bar belongs to either 
category at 1/2, and defines bar-length to be normally distributed with a mean of 10cm and 
standard deviation of 1cm in category A, and with a mean of 12cm and standard deviation 
of 1cm in category B (Figure 1A). Formally, the random variable Y denotes the hidden 
category membership with a probability distribution, the prior p(Y):

p(Y=A) = 1/2 and p(Y=B) = 1/2.

The random variable X denotes the length of the presented stimulus with a conditional 
probability distribution, the likelihood p(X|Y):

p(X=x|Y=A) = normal(x; 10cm, 1cm) and p(X=x|Y=B) = normal(x; 12cm, 1cm).

Note that the two category distributions overlap: It is very uncertain to which category an 
11cm-stimulus actually belongs (Figure 1A). Also note that this uncertainty is intrinsic to the 
probabilistic structure of the environment--participants should take it into account when 
solving the task.

Once the task environment has been specified, the second concern for Bayesian rational 
analysis is to specify an optimal solution. Given the prior probability p(Y) and the likelihood 
p(X|Y),  Bayes’ theorem prescribes that the posterior probability of a presented stimulus X 
belonging to category Y is:

p(Y|X) = p(X|Y) . p(Y) / p(X)

Figure 1B shows the posterior probability of stimuli belonging to category A or B as a 
function of their observed length x. The greater the observed length, the more probable it is
that the stimulus belongs to category B (the increasing curve in Figure 1B; the decreasing 
curve is the posterior probability for A). For stimuli of length 11cm, the probability that it 
belongs to either of the two categories is exactly 1/2.

Page 6



Figure 1: The Bar-Categorization Task

Subjects are presented visually with bars of varying lengths. The bars come from two categories A and B, one 
“short” and one “long”. The A-bars are 10cm long on average but exhibit considerable variance: the left 
normal distribution in panel (A). The B-bars bars are 12cm long on average but also exhibit considerable 
variance: the right normal distribution in panel (A). As the two category distributions overlap, stimuli around 
11cm cannot be assigned to one of the two categories with certainty. Panel (B) depicts the posterior 
probability of a bar of a certain length to belong to one of the categories under the assumption of equal prior 
probability. The increasing curve is the posterior probability for category B and the decreasing curve for 
category A. Stimuli of 11cm length are equally probable to belong to either category.

The ideal observer categorizes a bar as an A-bar whenever it is shorter than 11cm. It is categorized as a B-bar 
otherwise. Panel (C) shows the probability of an ideal observer to respond with B to stimuli of varying lengths. 
Contrary to the ideal observer's response the responses of (hypothetical) actual subjects, shown in panel (D), 
are not deterministic: their response probability increases smoothly with stimulus length and exhibits a lot of 
response variation close to the threshold. Frequently, subjects also have a bias and prefer one response over 
the other. In panel (E), for example, a subject's response probability is biased to A-responses.
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Note that the bar-categorization task involves not merely computing a posterior probability,
but also acting in a particular way, i.e. reporting either ‘A’ or ‘B’. In the real world, most 
actions have consequences that should influence whether or not they will actually be 
performed. For example, erroneously classifying a poisonous mushroom as edible will be 
more costly for an organism than erroneously classifying an edible mushroom as poisonous. 
Cost functions codify such relative costs or benefits. In the bar-categorization example, the 
cost function is simple: Because subjects are instructed to make as few mistakes as possible,
mistaking an A for a B and mistaking a B for an A incur equal costs, whereas giving the 
correct answer costs nothing. Bayesian decision theory prescribes that, given a posterior 
probability distribution and a cost function, one should act so as to minimize expected costs.
Which response should be given to a stimulus in the bar-categorization task so that the 
expected number of mistakes is minimized? The answer is intuitive: The optimal stimulus-
response function is to give an A-response whenever the posterior probability of A is higher 
than the posterior probability of B, and a B-response otherwise (Green & Swets 1988). 
Because this is the case whenever a bar is shorter than 11cm, the optimal stimulus-response
function has a decision criterion at this exact value (Figure 1B). If a particular stimulus is 
shorter than this value, the response should be ‘A’; if it is longer, the response should be ‘B’ 
(dotted vertical lines in Figures 1A, 1B). Notably, this stimulus-response function is optimal 
in the sense that it solves a well-defined mathematical optimization problem in the way 
prescribed by Bayesian decision theory. Such optimal stimulus-response functions are often 
called ideal observer models5 (Geisler 1989), and the method of Bayesian rational analysis is 
designed to deliver models of this kind.6 

2.3. Tweaking ideal observers to approximate observed behavior

Ideal observer models specify optimal (or “rational”) solutions to behavioral and cognitive 
tasks, construed as probabilistic inference tasks in uncertain environments. What is the 
relationship between these optimal solutions and actual solutions, i.e. the observable 

5As the name suggests, ideal observer models were originally used in investigations of visual perception 
(Geisler 1989). However, the term ‘ideal observer’ is now also used in contexts that involve other kinds of 
perception, and even action. We will follow along with this common practice.
6 A cautionary note on the term ‘Bayesian’: There is a longstanding debate in philosophy and statistics about 

the meaning of probability (Hacking 1975). At one end of the debate, frequentists take probabilities to be the 
limits of relative frequencies that are objectively measurable by counting. At the other end, subjectivists (often
also called ‘Bayesians’) take probabilities to be expressions of personal beliefs that have to fulfill certain 
rationality conditions. Although statisticians are becoming less dogmatic about this distinction (See e.g. Efron 
2013; Kass 2011), some introductions to the Bayesian approach in cognitive science may lend the impression 
that it is a defining feature of this approach that probabilities are used to model participants’ subjective 
beliefs. Note, however, that nothing in the method of Bayesian rational analysis as it has been presented thus 
far is Bayesian in the subjectivist sense (In fact, the ideal observer in the bar-categorization example gives the 
objectively optimal response in the frequentist sense!). While in philosophy Bayesian epistemology is clearly 
subjectivist, in Bayesian cognitive science it is not. Probably in order to avoid this confusion, some authors who
(according to the present nomenclature) invoke the method of Bayesian rational analysis seem to avoid the 
label ‘Bayesian’ for their approaches (See e.g. Geisler 1989; Kersten & Schrater 2002; Anderson 1991a; 
Oaksford & Chater 2001). That said, even in these research programs, Bayes’ theorem plays a central role, and 
tools from Bayesian statistics and machine learning are routinely invoked to analyze and understand the 
behavior of ideal observers. For this reason, they too should be subsumed under the Bayesian approach in 
cognitive science.
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behavior of real-world cognitive systems? Proponents of the Bayesian approach have 
become (in)famous for claiming that human and animal behavior closely approximates the 
optimal solution of an ideal observer in a wide variety of task environments. An oft-cited 
example is visual-haptic cue combination (Ernst and Banks 2002), but many other kinds of 
behavior and cognition have been similarly described as forms of optimal probabilistic 
inference (For recent reviews see: Berniker & Körding 2011; Pouget et al. 2013; Vilares & 
Körding 2011. See also Section 5.3).7

That said, when an ideal observer model is initially developed, investigators often find 
discrepancies between the model and observed behavioral data (e.g. Rosas et al. 2005; 
Rosas et al. 2007). Although an intuitive reaction may be to deny that the observed behavior
is optimal, an alternative reaction is to argue that the task environment does not present 
itself in the same way to the subject as it does to the investigator. That is, the task that the 
investigator imagined while originally developing the ideal observer model may not be the 
same as the one the subject is actually trying to solve. In order to better capture a particular
body of behavioral data, therefore, the method of Bayesian rational analysis involves 
tweaking the ideal observer model by modifying the underlying assumptions about the task 
(Step 6 in Anderson 1991a; Step 4 in Griffiths et al. 2015. See also: Swets et al. 1961; Tanner 
1961).

Although the term ‘tweak’ may carry negative connotations of post-hoc data fitting (See 
discussion in Section 5), here it is meant to highlight the degrees of freedom that 
researchers may exploit to accommodate the observed behavioral data. Indeed, many 
different tweaks may often be applied to any given ideal observer, and there are no 
generally-accepted standards for determining which tweaks to apply when. Thus, the 
method of Bayesian rational analysis is characterized by a high degree of pragmatism, in 
which different researchers apply different tweaks in accordance with their preferences and
experience (See discussion in Section 4.3). That said, although some tweaks may appear to 
be ad-hoc, they nevertheless yield formal characterizations that are empirically adequate 
and predictively powerful. Because of their diversity and pragmatic utility—and because of 
their role in the eventual outcome of Bayesian reverse-engineering—it is worth considering 
several of these tweaking methods in detail.

2.3.1. The added-limitations tweak

One common way to tweak an ideal observer model so as to accommodate behavioral data 
is to add limitations that reflect those of a real-world cognitive system. Consider again the 
bar-categorization example from above. Figures 1C and 1D show two different psychometric
functions—the probability that a subject responds with category B as a function of stimulus 
size. For the ideal observer, the psychometric function is a step function, as in Figure 1C. 
Although subjects’ responses in categorization experiments do sometimes resemble step 
functions (Ashby & Gott 1988), they usually do not. Instead, the response probability 

7 Strictly speaking, Ernst and Banks (2002) do not use Bayesian arguments when they claim that visual-haptic 
cue combination is statistically optimal. They use neither priors nor cost functions. However, their maximum 
likelihood estimator can be given a Bayesian justification under a specific (improper) prior and various cost 
functions.
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changes smoothly, with greater variability closer to the decision criterion (Figure 1D). One 
reason for this deviation from optimality might be an inability to make fine stimulus 
discriminations. A subject might easily determine that a 12cm bar is longer than 11cm, but 
may be unable to reliably determine whether a 11.1cm bar is longer or shorter than 11cm 
without using a ruler, therefore making mistakes near this boundary. One way to tweak an 
ideal observer model to account for this kind of variability is to add limitations to the ideal 
observer’s discrimination ability: Just like a physical measurement device, a subject’s 
sensory system is limited by noise. This noise may be added to the likelihood, p(X|Y). By 
attributing significant proportions of the noise to physical limitations of the receptors or to 
neuronal firing variability, ideal observer models have become exceedingly useful tools for 
characterizing subjects’ behavior in sensory detection and discrimination tasks (Geisler 
1989; Parker & Newsome 1998; Stüttgen et al. 2011). By applying the added-limitations 
tweak, the observed behavior can be described as being (close to) optimal, under the 
assumption that the relevant cognitive system is subject to specific quantifiable limitations.

2.3.2. The different-environment tweak

Another way in which actual behavior can deviate from that of the ideal observer is that a 
subject's decision criterion might be offset from the optimal decision criterion. In Figure 1E, 
the subject in the bar-categorization task has a response bias toward A. In the task 
environment of the laboratory, categories A and B are equally probable and all mistakes are 
equally costly. Hence, in this environment, biased response behavior is clearly not optimal. 
However, it is conceivable (though not necessarily plausible) that in the real world beyond 
the laboratory, shorter stimuli are more common than longer stimuli and that p(A)>p(B), in 
which case a bias toward A would in fact be appropriate. As subjects are adapted to the real 
world, their behavior might be optimal with regard to natural environments, rather than to 
the laboratory. In this vein, Yang and Purves (2003) measured the distribution of distances 
of objects to an observer in everyday scenes using a laser scanner and found that some well-
known illusions of visual space that occur in the laboratory can be conceptualized as optimal
adaptations to the environment. Ideally, a researcher will specify in advance what the 
natural environment for a particular task is, but in practice there are considerable degrees 
of freedom in deciding which (aspects of an) environment a subject might be adapted to, 
and these degrees of freedom can be exploited to tweak an ideal observer’s behavior so as 
to accommodate a particular body of behavioral data.

2.3.3. The subjective-optimality tweak

Yet another reason for a response bias toward A (as in Fig 1E) might be that the subject 
wrongly assumes that category A is a priori more probable than category B. Under this false 
assumption the observed behavior would be subjectively, albeit not objectively, optimal. 
Hence, the data could be fit by simply tweaking the ideal observer’s prior probabilities 
without demonstrating that these subjective prior probabilities reflect the probabilities in 
the natural environment. But tweaking the prior is not the only way to fit the data: It might 
also be that the subject is not optimizing the cost function imposed on them by the 
experimenter, but a different one. For example, while the experimenter's task is to minimize
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the number of mistakes, subjects might be biased to answer with the left response button 
(in this case, corresponding to category A) just because, due to their left-handedness, this 
response button is easier to access and therefore incurs a lower cost than the right-hand 
response button. In other words, a subject’s behavior might not be optimal with respect to 
the cost function imposed by the experimenter, but optimal only with respect to the 
subject’s own subjective costs. Thus, an improved fit to recorded data can also be achieved 
by tweaking the ideal observer’s cost function so that a left-hand response is less costly than
that of a right-hand response. Many studies have tweaked priors or cost functions in this 
way to achieve a better fit to their data, and some specifically set out to measure subjects’ 
subjective priors and costs so as to eventually integrate these into ideal observer models in 
a variety of task environments (See e.g. Houlsby et al. 2013; Rothkopf & Ballard 2013; 
Sanborn et al. 2010; Stocker & Simoncelli 2006). Notably, the difference to the different-
environment tweak is that no effort is made to demonstrate that the subjective priors and 
cost-functions are in fact adaptations to some natural environment; instead they are 
accepted as being purely subjective, and might in fact not reflect the prior and cost-
functions corresponding to any particular environment.

2.3.4. The suboptimality tweak

The added-limitations, different-environment, and subjective-optimality tweaks allow 
researchers to hold on to the postulate that actual behavior is optimal, albeit with respect 
to different likelihoods, priors, and cost functions than the ones initially assumed by the 
experimenter. In a sense, these three tweaks aim to remove discrepancies between actual 
and optimal behavior by modifying the underlying assumptions about the task environment,
and about the internal limitations of the subject against which optimality is evaluated. 
However, it could also be the case that actual behavior is to a certain degree suboptimal, 
and that this is the reason for the observed discrepancy. Another class of tweaking methods 
changes the ideal observer model so that it becomes suboptimal itself, e.g. by replacing a 
deterministic response with a stochastic one, by using an approximation, or by allowing for 
systematic errors. The difference to the other three tweaks is that no serious effort is made 
to salvage optimality. In fact, sometimes suboptimality tweaks may be nothing more than 
ad-hoc methods to link deterministic model predictions with noisy data. Given that there 
are many potential sources of suboptimality, recent efforts have sought to statistically 
evaluate their relative contributions in real-world cognitive systems (Acerbi et al. 2014). 
While a suboptimal response may not be ideal, it can still be good enough for a cognitive 
system’s purposes in a particular task environment (although spelling out what this means 
can be hard. See: Kwisthout & van Rooij 2013). Most importantly, however, if other 
tweaking methods are unavailable or undesirable, the suboptimality tweak may be the last 
(or best) way to accommodate a particular body of behavioral data.

3. Fundamentalism, Instrumentalism, and Reverse-Engineering

The tweaking methods reviewed in Section 2 are designed to eliminate discrepancies 
between ideal observer models as initially constructed, and the behavioral data being 
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modeled. That is, they allow proponents of the Bayesian approach to provide empirically 
adequate descriptions of a cognitive system’s behavior. Viewed through the lens of Marr’s 
account of explanation in cognitive science, these tweaks are central to an investigator’s 
ability to answer what-questions and why-questions at the computational level of analysis. 
Recall that a what-question can be answered by specifying a mathematical function that 
maps a cognitive system’s inputs onto its outputs. Because ideal observer models map 
stimuli onto responses and can be tweaked to accurately reflect a cognitive system’s 
behavior, they answer what-questions in exactly this way. Recall also that why-questions are
answered by evaluating the “appropriateness” of a cognitive system’s behavior with respect
to the “task at hand” (Marr 1982, p. 24). Although there is no general agreement about 
what exactly such “appropriateness” amounts to (For discussion see: Shagrir 2010), 
proponents of the Bayesian approach construe it in terms of statistical optimality: A 
cognitive system’s behavior is appropriate if it constitutes an optimal (or nearly optimal) 
solution to the relevant task, in the sense prescribed by probability theory. Because ideal 
observer models specify just such a solution, showing that a system’s actual solution can be 
characterized using an ideal observer model amounts to showing that it is in fact 
appropriate in this sense. Thus, why-questions can be answered in a rather intuitive way: 
The system behaves as it does because that way of behaving is (nearly) optimal.

That the method of Bayesian rational analysis is designed to answer what- and why-
questions at the computational level of analysis is widely acknowledged in the literature 
(See e.g. Chater et al. 2006; Danks & Eberhardt 2009; Griffiths et al. 2010; Jones & Love 
2011; Oaksford & Chater 2007). Nevertheless, it remains a matter of significant controversy 
whether, and if so how, answering either or both of these kinds of questions is sufficient for 
the purposes of explaining a cognitive system's behavior. In an influential target article, 
Matthew Jones and Bradley Love (2011) characterize proponents of the Bayesian approach 
as Bayesian Fundamentalists, attributing to them the view that behavior and cognition can 
be explained “at the computational level [...] without recourse to mechanistic (i.e. 
algorithmic or implementational) levels of explanation” (Jones & Love 2011, p. 175). On the 
Fundamentalist construal, the practices described in Section 2 are thought to be sufficient 
for scientific explanation; additional considerations, including considerations at the 
algorithmic and implementational levels of analysis, are “essentially irrelevant to 
understanding cognition” (ibid.). 

Bayesian Fundamentalism has been a convenient foil for critics of the Bayesian approach. 
Jones & Love themselves argue that rejecting the explanatory relevance of the algorithmic 
and implementational levels ”raises the danger of pushing the field of psychology back 
toward the sort of restrictive state experienced during the strict Behaviorist era” (Jones & 
Love 2011, p. 176), in which descriptions of cognitive and neural mechanisms were deemed 
irrelevant to the explanation of behavior. As troublesome as this association with the 
behaviorist program may be, however, Bayesian Fundamentalism is likely to be a straw man.
In the open peer commentary on Jones & Love's target article, Chater et al. argue that 
Bayesian Fundamentalism is "purely a construct of [Jones & Love’s] imagination” (Chater et 

Page 12



al. 2011, p. 194).8 Indeed, although proponents of the Bayesian approach regularly highlight 
the computational-level insights being delivered, it is hard to find explicit rejections of the 
other levels in Marr’s tripartite scheme. Instead, they far more commonly express an 
agnostic attitude toward the algorithmic and implementational levels:

“the very fact that much cognitive processing is naturally interpreted as uncertain 
inference immediately highlights the relevance of probabilistic methods at the 
computational level. This level of analysis is focussed entirely on the nature of the 
problem being solved—there is no commitment concerning how the cognitive 
system actually attempts to solve (or approximately to solve) the problem.” (Chater 
et al. 2006, p. 290. Similar statements also occur in: Anderson 1991a, p. 471; Griffiths
et al. 2010, p. 362)

An alternative to Bayesian Fundamentalism which better accommodates this agnostic 
attitude is Bayesian Instrumentalism (Colombo & Seriès 2012; Danks 2008). Whereas 
Fundamentalists deny that questions at the algorithmic and implementational levels are 
explanatorily relevant, Instrumentalists merely deny that the method of Bayesian rational 
analysis is designed to answer questions at levels below the computational. That is, 
although this method might be suitable for characterizing behavior and cognition as a form 
of (near-) optimal probabilistic inference, its use entails no commitments about underlying 
mechanisms.

Although Bayesian Instrumentalism may be better able to accommodate statements such as
the one by Chater et al., it does not foresee that Bayesian rational analysis is sufficient for 
genuine explanation. In their articulation of the Instrumentalist view, Colombo & Seriès 
(2012, p. 9) argue that ideal observer models are “useful instruments, heuristic devices, or 
tools we employ to predict observable phenomena … or to summarize and systematize 
data”. Although such instruments play an undeniably important role in scientific research, it 
is doubtful that this role is a genuinely explanatory one; describing a phenomenon is not the
same as explaining it, even if the relevant description affords predictive power in actual and 
counterfactual circumstances (Salmon 1989). In a more recent discussion, Colombo & 
Hartmann (2015) consider the additional proposal that Bayesian rational analysis 
contributes to a kind of explanatory unification, because it produces models of a similar 
mathematical structure for a wide variety of behavioral and cognitive phenomena (See e.g. 
Griffiths et al. 2010; Tenenbaum et al. 2011). However, it seems unlikely that such 
unification is any more sufficient for the purposes of cognitive scientific explanation than 
description or prediction: Insofar as such explanations should “reveal aspects of the causal 
structure of the mechanism that produces the phenomenon to be explained” (Colombo & 
Hartmann 2015, p. 15), the purely mathematical unification afforded by the method of 
Bayesian rational analysis has no genuine explanatory force.

These considerations suggest that the ability to answer what-questions in an empirically 
adequate, predictively powerful and potentially unifying way is insufficient for the purposes 

8 Of course, demonstrating that Bayesian Fundamentalism is in fact a straw man requires more than mere 
words. Section 4, in which the strategy of Bayesian reverse-engineering is described in detail, shows that many 
proponents of the Bayesian approach do in fact formulate testable hypotheses not only at the computational 
level of analysis, but also at the algorithmic and implementational levels. On the Fundamentalist construal, this
practice is difficult to accommodate.
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of genuine explanation. But what about the fact that the method of Bayesian rational 
analysis can also be used to answer why-questions? Indeed, many proponents of the 
Bayesian approach have taken this method’s ability to answer why-questions as one of its 
principal selling-points, and have suggested that doing so is tantamount to providing a 
teleological explanation of the relevant behavioral or cognitive phenomenon (See e.g. 
Griffiths et al. 2012a; Oaksford & Chater 2007). Here too, however, there are reasons to be 
skeptical. For instance, Danks (2008) has previously argued that ideal observer models are in
fact insufficient even for teleological explanation, because although they might show that 
some particular behavior is optimal, “there are many other reasons why [it] might occur. 
People might act optimally because of historical accident, or because there are no other 
options, or a number of other reasons” (Danks 2008, p. 62). That is, it is a mistake to take 
literally the claim that a cognitive system behaves as it does because that behavior is 
optimal, as long as it is unclear that this optimality actually played a causal role in 
phylogenetic or ontogenetic development. Given these considerations, it is unclear that the 
answers that are being given to why-questions are sufficient for the purposes of teleological
explanation, let alone explanation of any other kind.

These considerations suggest that, although Bayesian Instrumentalism may well capture 
statements that express an agnostic attitude toward the algorithmic and implementational 
levels, it does not admit of a genuinely explanatory role for the computational-level method 
of Bayesian rational analysis. Of course, from the perspective of Marr’s account of 
explanation in cognitive science, this is not surprising: Although Marr claimed that the 
computational level of analysis is “critically important”, he also argued that all three levels 
are needed to attain “complete understanding”. That said, there is reason to believe that 
Bayesian Instrumentalism provides an inadequate foundation on which to evaluate the 
explanatory credentials of Bayesian cognitive science. Although the Instrumentalist view 
may in fact be appropriate for discussions of Bayesian rational analysis, it is too narrow for 
discussions of the Bayesian approach as a whole. Indeed, proponents of the Bayesian 
approach increasingly go beyond Bayesian rational analysis and the computational-level 
insights it delivers. To wit, although John Anderson echoes Chater et al.’s agnostic attitude 
when he claims that Bayesian rational analysis “provides an explanation at a level of 
abstraction above specific mechanistic proposals”, he goes on to suggest that this method 
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“helps define the issues in developing a mechanistic theory” (Anderson 1991a, p. 471). 
Similarly, Hahn (2014, p. 8) argues that “rational considerations … are, in fact, part of the 
route to identifying mechanism or process-level constraints in the first place”. More 
programmatically, Griffiths et al. (2010, p. 357) promote a “top-down or function-first 
approach”, and Chater et al. (2011, p. 196) advocate a “top-down research strategy” which 
pays attention to insights from “a number of mutually constraining levels of explanation”.9

These statements imply that it is a mistake to lean too heavily on expressions of agnosticism
toward the lower levels of analysis: These expressions concern the limited scope of Bayesian
rational analysis, not the explanatory aspirations of the Bayesian approach as a whole. For 
this reason, the rest of the discussion will focus on showing exactly how proponents of the 
Bayesian approach intend to go beyond the computational level of analysis, and to thereby 
answer questions at the algorithmic and implementational levels. In particular, Section 4 will
outline the research strategy of Bayesian reverse-engineering, a “top-down” approach that 
begins with the computational-level method of Bayesian rational analysis, and from there 
answers questions at the lower levels of Marr’s hierarchy.10 Only by considering how this 
research strategy is used to answer questions at the computational, algorithmic, and 
implementational levels will it be possible to properly evaluate the explanatory credentials 
of Bayesian cognitive science.

4. Bayesian reverse-engineering as heuristic search

4.1. Bayesian reverse-engineering

In general, reverse-engineering strategies in cognitive science begin by developing 
computational-level models of the phenomena being explained, and proceed by inferring 
the likely composition and organization of the relevant mechanism(s) at the algorithmic and 
implementational levels.11 That is, these strategies aim to descend what Daniel Dennett 
(1987, p. 227) has called a “triumphant cascade through Marr’s levels”. Bayesian reverse-
engineering is a research strategy of this kind, the starting point of which is a (tweaked) 
ideal observer model of the phenomenon being explained. Although the preceding 

9 Some previous discussions of Bayesian Instrumentalism similarly acknowledge the need to go beyond the 

computational level of analysis. In particular, whereas Danks (2008) criticizes the explanatory value of Bayesian
rational analysis insofar as it is confined to the computational level of analysis, he proposes a solution in which 
considerations of rationality and optimality are also deployed at lower levels. Similarly, upon Colombo & 
Hartmann’s (2015) critique of the explanatory force of (mathematical) unification at the computational level, 
they propose to consider “what sorts of constraints can Bayesian unification place on causal-mechanical 
explanation” (Colombo & Hartmann 2015, p. 15). The latter proposal in particular is very much in line with the 
reverse-engineering view outlined below. That said, whereas Colombo & Hartmann do well to identify 
constraints that are approximately equivalent to the push-down and unification heuristics outlined in Section 
4, that section will show that the constraints that are in fact imposed on the lower levels are far more 
numerous, heterogeneous, and unprincipled than previous commentators appear to have recognized.
10 Notably, Tenenbaum et al. (2011, p. 1279), Chater et al. (2011, p. 196), and Frank (2013, p. 417) each 
describe their own approach as an exercise in “reverse-engineering the mind”.
11 Milkowski (2013b) provides an alternative account of reverse-engineering in cognitive science which is 
distinct, but not incompatible with the one sketched here.
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discussion already suggests that proponents of the Bayesian approach mean to invoke this 
research strategy, many important details remain unspecified: When and how can an ideal 
observer be used to infer the structure and function of psychological processes and 
neurobiological mechanisms? How can answers to what-questions and why-questions at the
computational level be used to answer how-questions and where-questions at the 
algorithmic and implementational levels? 

A helpful backdrop against which to illuminate the principles of Bayesian reverse-
engineering is Herbert Simon’s account of scientific discovery (Simon et al. 1981)—the 
process by which scientists develop, evaluate, and refine theories, models, and 
explanations. On Simon’s account, scientific discovery is a form of problem solving in which 
investigators are tasked with searching a hypothesis space of possible solutions. Over this 
backdrop, Bayesian reverse-engineering can be viewed as a multi-step scientific-discovery 
problem that is solved by searching three distinct hypothesis spaces—one for each level of 
analysis (Figure 2). Developing and systematically tweaking an ideal observer model in the 
ways discussed in Section 2 is the first step, revealing one way to analyze a cognitive 
system’s behavior at the computational level of analysis. The second step is to select one 
algorithm from a space of possible algorithms for computing or approximating the ideal 
observer’s behavior. Finally, the third step is to choose one implementation from a space of 
possible implementations of the chosen algorithm. Unlike the first step, the second and 
third steps of Bayesian reverse-engineering are rarely discussed in the literature (But see: 
Zednik & Jäkel 2014).
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Figure 2: Bayesian reverse-engineering.

Boxes represent search spaces at each of Marr's three levels: computational (CL), algorithmic (AL), and 
implementational (IL). The starting point for Bayesian reverse-engineering is the method of Bayesian rational 
analysis, the aim of which is to develop and an ideal observer model, and to tweak it so as to capture a 
particular body of behavioral data. Different ways to tweak the ideal observer correspond to different points 
on the CL-space. Given an empirically-adequate ideal observer model, strategies such as the tools-to-theories 
and push-down heuristics (see below) are invoked to select an algorithm from within the AL-space. As before, 
different strategies are likely to select different points within the space. Given a particular algorithm, other 
heuristic strategies such as the possible-implementations heuristic are used to select a possible 
implementation of that algorithm in neural hardware.

There is reason to worry that suitable algorithmic- and implementational-level solutions will 
be hard to identify. A general obstacle to scientific discovery as conceived by Simon is the 
fact that many problems have large hypothesis spaces that cannot be searched 
exhaustively. In the context of Bayesian reverse-engineering, this obstacle is manifested in 
the fact that any number of algorithms can often be used to compute a particular function, 
and that each one of these algorithms might be implemented in many different ways. 
Whereas investigations at the algorithmic and implementational levels must show how and 
where the brain computes a particular stimulus-response function, there are many ways in 
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which this might be the case (See also: Anderson 1978). For this reason, Bayesian reverse-
engineers are tasked with exploring exceedingly large hypothesis-spaces at both the 
algorithmic and implementational levels of analysis.

In order to overcome the obstacle posed by large hypothesis-spaces, Simon appeals to the 
use of heuristic strategies that allow researchers to limit their search to particular regions or
points within a particular space. Much as the method of Bayesian rational analysis is 
characterized by the use of tweaking methods to explore the computational-level search 
space, the research strategy of Bayesian reverse-engineering is characterized by the use of 
heuristic strategies that facilitate the search for algorithms and implementations. Therefore,
in order to understand how Bayesian reverse-engineering works, as well as to evaluate its 
likelihood of explanatory success, it is necessary to consider some of these strategies in 
detail.

4.2. Heuristic strategies for descending the Marrian cascade

4.2.1. The push-down heuristic

One of the most widely-used heuristics for Bayesian reverse-engineering might be called the
push-down heuristic (cf. Griffiths et al. 2012b; 2015). Bayesian reverse-engineers invoke this 
strategy whenever they “push” a particular ideal observer’s mathematical structure from 
the computational level onto the algorithmic level of analysis. In order to understand exactly
what this “pushing” amounts to, and therefore, which algorithmic-level hypotheses are 
likely to be selected, it is necessary to distinguish between implicit and explicit ways of 
characterizing an ideal observer’s mathematical structure. Consider again the ideal observer
model for the bar-categorization task, which categorizes A-bars and B-bars in an optimal 
way. To characterize this ideal observer implicitly is just to state that it is the function, i.e. 
the stimulus-response mapping, that minimizes the expected number of mistakes. In 
contrast, to characterize the ideal observer explicitly is to specify an algorithm that 
computes this function. The implicit characterization is important for understanding the 
problem that the ideal observer is supposed to solve, thereby answering a why-question at 
the computational level. However, it is also necessary to answer the what-question: In order
to explicitly characterize the behavior of the ideal observer, it is also necessary to specify an 
algorithm for computing it.

Notably, a single generic algorithm can be used to explicitly characterize many different 
ideal observers: Compute posterior probabilities using Bayes’ theorem, use these to 
compute the expected cost for all possible actions, and from those choose the action that 
minimizes the expected cost. While this generic algorithm stands out as a particularly 
common way of explicitly characterizing ideal observers, there are many others. For 
example, in the case of the bar-categorization task, the very same ideal observer model (i.e. 
the very same optimal stimulus-response function) can also be computed by an algorithm 
that applies a simple rule: Output ‘A’ if the input is shorter than 11cm, and ‘B’ otherwise. 
Although this algorithm merely applies a simple decision criterion, it behaves as if it applies 
Bayes’ theorem, computes posterior probabilities and expected costs, and chooses an 
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optimal action according to the principles of Bayesian decision theory. The input-output 
behavior of the two algorithms is indistinguishable. Because at the computational level it 
only matters what is computed and not how, both algorithms explicitly characterize the 
same ideal observer.

The algorithms that are used by investigators to explicitly characterize an ideal observer (at 
the computational level of analysis) should not be confused with those that are used by the 
brain (viewed at the algorithmic level of analysis) in the production of behavior. 
Nevertheless, the push-down heuristic serves well to select specific algorithmic-level 
hypotheses by “pushing” the former onto the latter: Bayesian reverse-engineers invoke this 
heuristic whenever they consider an algorithm that was previously used to explicitly 
characterize an ideal observer model of a cognitive or behavioral phenomenon as a possible 
description of the underlying processes that contribute to this phenomenon (See also: 
Colombo & Hartmann 2015; Colombo & Seriès 2012; Griffiths et al. 2012b; 2015).

The push-down heuristic is most clearly invoked in recent discussions of the Bayesian 
Coding Hypothesis, in which the generic algorithm for characterizing an ideal observer is 
“pushed” onto the algorithmic level. To wit, the Bayesian Coding Hypothesis is an 
algorithmic-level hypothesis which claims that “the brain represents information 
probabilistically, by coding and computing with probability density functions or 
approximations to probability density functions” (Knill & Pouget 2004, p. 713). Notably, this 
hypothesis is often supplemented with complementary proposals at the implementational 
level. For example, recent studies have sought to identify the location of probabilistic 
representations in the brain (Vilares et al. 2012), and to identify the neural traces of 
Bayesian computation (Berkes et al. 2011; Ma et al. 2006; Ostwald et al. 2012). In this way, 
the generic algorithm for characterizing ideal observers at the computational level quite 
directly guides investigations at the algorithmic and implementational levels.

Although the push-down heuristic is often used to motivate the Bayesian Coding 
Hypothesis, it can also motivate the consideration of alternative hypotheses. Indeed, which 
particular hypothesis is selected depends on the particular way in which ideal observers are 
characterized at the computational level; different explicit characterizations will lead, by 
way of the push-down heuristic, to the formulation of different algorithmic-level 
hypotheses. Remember that in the bar-categorization example there were at least two ways
in which to explicitly characterize the ideal observer. Given a characterization in terms of 
the generic algorithm, the push-down heuristic highlights the Bayesian Coding Hypothesis. 
In contrast, given a characterization in terms of an algorithm that merely checks whether 
the length of the stimulus is greater than a certain decision criterion (11cm), the push-down 
heuristic highlights what might be called the Decision Criterion Hypothesis: Subjects 
compare the perceived stimulus length against a particular criterion. Unlike the Bayesian 
Coding Hypothesis, the Decision Criterion Hypothesis does not postulate that subjects 
actually represent probabilities or compute over them using Bayes’ theorem.12 In this sense, 

12 In fact, the idea of a decision criterion for solving probabilistic categorization tasks has inspired the 
development of several learning algorithms that are all inconsistent with the Bayesian Coding Hypothesis, 
because they do not depend on the representation of probability distributions (Dorfman & Biderman 1971; 
Kac 1969; Stüttgen et al. 2013; Thomas 1973). 
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what “comes out” at the algorithmic level when applying the push-down heuristic depends 
greatly on what “goes in” at the computational level.13

The fact that different computational-level analyses lead to the consideration of different 
algorithmic-level hypotheses suggests that it is very important to be clear about what the 
push-down heuristic allows Bayesian reverse-engineers to do. By applying this heuristic, 
Bayesian reverse-engineers are able to formulate some particular algorithmic-level 
hypothesis, and to seek evidence for or against that hypothesis through additional 
behavioral and neuroscientific investigation.14 But the push-down heuristic cannot itself 
provide evidence for any particular hypothesis over an empirically equivalent alternative. 
Because every ideal observer model can be explicitly characterized in many different ways, 
and because each way of characterizing will, via the push-down heuristic, lead to the 
consideration of different algorithmic-level hypotheses, there is no way of knowing a priori 
which one of these hypotheses is most likely to be true. Notably, although this fact has 
already been recognized by many (See e.g. Griffiths et al. 2010, p. 362; Clark 2013, p. 191; 
Colombo & Seriès 2012, p. 10-11), it has not been recognized by all:

“Recent psychophysical experiments indicate that humans perform near-optimal 
Bayesian inference in a wide variety of tasks, ranging from cue integration to 
decision making to motor control. This implies that neurons both represent 
probability distributions and combine those distributions according to a close 
approximation to Bayes’ rule.” (Ma et al. 2006, p. 1, emphasis added)

The view expressed in this statement—what might be called Bayesian Realism (Colombo & 
Seriès 2012)—posits that an ideal observer model’s empirical adequacy constitutes 
empirical evidence for the claim that the algorithm used to explicitly characterize this model
is actually implemented in the brain. This view is untenable, however: Many different 
algorithms can be used to compute the very same ideal observer, each one of which would 
recommend, by way of the push-down heuristic, a different algorithmic-level analysis (See 
also: Maloney & Mamassian 2009). In summary, although the push-down heuristic can be 

13 Notably, what “comes out” at the algorithmic level might itself also feed back on what “goes in” at the 

computational level. Specifically, the intention to later invoke the push-down heuristic may already influence 
the selection of the computational-level tweaks discussed in Section 2.3: Investigators might tweak an ideal 
observer in one way rather than another just because that way suggests, via the push-down heuristic, certain 
candidates at the algorithmic level. In particular, it seems very natural to use the added-limitations tweak 
together with the push-down heuristic because the limitations can be set up to map directly onto 
hypothesized mechanisms. In so doing, investigators change what the ideal observer does and simultaneously 
select a corresponding hypothesis about how the relevant mechanism works. Importantly, although the push-
down heuristic thus establishes an intimate link between the computational and algorithmic levels, this does 
not mean that there exists a level “between the computational and the algorithmic” (Griffiths et al. 2015). On 
the questions-based interpretation of Marr’s framework outlined in Section 2, appeals to in-between levels are
confusing: The computational level of analysis concerns what- and why-questions; the algorithmic level 
concerns how-questions; what kinds of questions occupy the space in between? (See also: Zednik, 
forthcoming)
14 For example, if investigators seek to test the Bayesian Coding Hypothesis they will often manipulate the 
basic building blocks of the generic algorithm, namely likelihoods, priors, and cost functions, and attempt to 
predict a subject’s performance under these manipulations (e.g. Battaglia et al. 2013; Houlsby et al. 2013; 
Maloney & Mamassian 2009). They may also search for neural correlates of likelihoods, priors, and cost 
functions (e.g. Berkes et al. 2011; Vilares et al. 2012). Other hypotheses will be tested differently.
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used by Bayesian reverse-engineers to formulate specific algorithmic-level hypotheses, it 
does not license the inference that any particular hypothesis is actually true.

4.2.2. The tools-to-theories heuristic

Whereas the push-down heuristic encourages Bayesian reverse-engineers to co-opt 
algorithms from the computational level, other heuristics encourage them to introduce 
algorithms from completely different domains of inquiry. One such heuristic has elsewhere 
been called the tools-to-theories heuristic (Gigerenzer 1991). In general, researchers 
invoking this heuristic assume that the mechanism responsible for some phenomenon 
resembles an instrument, tool, or analytic technique that has previously been used to 
measure, study, or describe that phenomenon. Historically, signal detection theory and 
ideal observer analysis—two early progenitors of Bayesian rational analysis—were strongly 
influenced by engineering solutions to detection-problems in radar and sonar technology, as
well as by progress in statistical signal processing (Swets 2010). These tools were then 
adapted to measure, study, and describe human behavior in sensory detection tasks (Green 
& Swets 1988). More recently, the tools-to-theories heuristic is most clearly invoked by 
Bayesian reverse-engineers who seek inspiration from technological developments in 
artificial intelligence, machine learning, and statistics. Indeed, they have argued that “new 
computational methods for efficient Bayesian inference and learning [in statistics and 
machine learning] have substantially expanded the range of possible hypotheses concerning
representations and algorithms in human inference and learning” (Chater et al. 2011, p. 
195), and that “the best algorithms for approximating probabilistic inference in computer 
science and statistics” can often be considered “candidate models of cognitive and neural 
processes” (Griffiths et al. 2012b, p. 264).

Consider a recent example due to Sanborn et al. (2010). They compare the relative merits of
three distinct algorithms—Gibbs sampling, particle filtering, and an iterative algorithm—for 
supplementing John Anderson’s Bayesian rational analysis of categorization (Anderson 
1991b). Whereas the iterative algorithm is an adaptation of “a type of iterative algorithm 
that has appeared in the artificial intelligence literature” (Anderson 1991b, p. 412), the 
Gibbs sampling and particle filtering algorithms both belong to the class of Monte Carlo 
algorithms developed in machine learning to approximate Bayesian inference (Andrieu et al.
2003). By comparing the relative performance of these three algorithms in a wide range of 
experimental paradigms, Sanborn et al. collect considerable evidence, most notably in the 
form of order effects, to support the hypothesis that human categorization is performed 
using a particle filtering algorithm.15 Thus, although this algorithm was originally developed 
as a tool in machine learning and statistics, the tools-to-theories heuristic has allowed 

15 As these three algorithms only approximate the ideal observer, selecting them as algorithmic-level 

hypotheses simultaneously invokes the suboptimality tweak at the computational-level. Each of the three 
different approximations makes a concrete proposal for answering the how-question at the algorithmic level. 
But since they do not compute exactly the same function, they also show a difference in the observable 
behavior and therefore each answers the what-question at the computational level slightly differently (e.g. by 
showing different order effects). It is, however, still the case that they answer the why-question at the 
computational level in the same way, because they are all considered approximations to the untweaked ideal 
observer (But see: Kwisthout & van Rooij 2013).
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Bayesian reverse-engineers to demonstrate that a reasonably adapted variant also happens 
to be a good description of the psychological processes that contribute to human 
categorization.16

Recall that the outcome of the push-down heuristic depends on the particular way in which 
an ideal observer is characterized explicitly. In much the same way, the tools-to-theories 
heuristic highlights many different (and possibly incompatible) algorithmic-level hypotheses,
depending on which areas of artificial intelligence, machine learning, and statistics are 
actually being considered. Indeed, neither one of these heuristics is meant to suggest that 
any single algorithmic-level hypothesis is in fact true. Rather, they are both designed to 
facilitate the formulation of such hypotheses, and to thereby make possible their eventual 
(dis)confirmation through subsequent psychological or neuroscientific research. 

4.2.3. The unification heuristic

Although many heuristic strategies drive Bayesian reverse-engineering by facilitating the 
formulation of candidate hypotheses, other strategies are used to choose between existing 
alternatives. For example, many Bayesian reverse-engineers invoke the unification heuristic, 
which highlights those algorithmic-level hypotheses that seem most likely to complement 
not only the ideal observer model for a single behavioral or cognitive phenomenon, but also 
the ideal observer models for other phenomena. Notably, this heuristic strategy appears to 
have contributed to the influence of the Bayesian Coding Hypothesis. Whereas the Bayesian 
Coding Hypothesis is very general and potentially applies to many different task 
environments beyond the one of the familiar bar-categorization example, the Decision 
Criterion Hypothesis works well only in that particular task environment—it will be 
suboptimal, or not at all applicable, in most others. The general applicability of the Bayesian 
Coding Hypothesis might be viewed as a reason to prefer it over the Decision Criterion 
Hypothesis, because it has the potential to unify many different phenomena under a 
common algorithmic theme (See also: Colombo & Hartmann 2015; Ma et al. 2006). Indeed, 
it seems likely that whereas many proponents of the Bayesian Coding Hypothesis 
inadvertently commit themselves to the strong but untenable position of Bayesian Realism, 
they actually mean to do nothing else than combine the push-down and unification 
heuristics in an effort to reverse-engineer the mind.

4.2.4. The plausible-algorithms heuristic

It might be worried that none of the heuristic strategies considered thus far are sensitive to 
traditional psychological considerations. For example, known limitations in working memory
or attention that have been studied extensively by cognitive psychologists play no role in 
the selection of algorithms by way of the push-down, tools-to-theories, and unification 
heuristics. Nevertheless, Bayesian reverse-engineers rarely apply these heuristics blindly. 
For example, Sanborn et al. (2010) consider Monte Carlo sampling algorithms not only 
because they are useful tools for approximating optimal Bayesian inference, but also 

16 Another class of algorithms used for the same purpose, variational inference (Beal 2003), has proven 

similarly useful for the purposes of Bayesian reverse-engineering (e.g. Friston 2008; Sanborn & Silva 2013).
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because they have certain properties, like working incrementally and giving rise to order 
effects, that make them psychologically plausible candidates. The plausible-algorithms 
heuristic is invoked whenever available knowledge about cognitive processes is used to 
guide the selection of candidate hypotheses from the algorithmic-level search space.17

Although the plausible-algorithms heuristic is often combined with other heuristics (e.g. 
push-down or tools-to-theories), it can also be used on its own. For example, exemplar 
models are a class of well-established algorithms for categorization that have been tested 
extensively in the literature (See e.g. Nosofsky 1986; Kruschke 1992). As these models can 
also be used to estimate probability distributions (Ashby & Alfonso-Reese 1995), they have 
recently been proposed as plausible algorithms for tasks in which human behavior can be 
described as a form of optimal probabilistic inference (Shi et al. 2010). In this way, 
algorithms that are known to be plausible in other psychological domains can be co-opted 
for use in the Bayesian context.18 Although these algorithms may not explicitly invoke Bayes’
theorem or probability distributions, they can be invoked by proponents of the Bayesian 
approach insofar as they serve to compute or approximate an empirically adequate ideal 
observer.

4.2.5. The possible-implementations heuristic

The push-down, unification, tools-to-theories, and plausible-algorithms heuristics allow 
Bayesian reverse-engineers to descend from the computational to the algorithmic level of 
analysis. Other strategies are used to descend further down the Marrian cascade. Consider 
what might be called the possible-implementations heuristic. Researchers invoke this 
strategy whenever they consider known principles of brain function or organization to 
generate hypotheses about possible implementations for a particular algorithm. Although 
little may be known about the mechanisms responsible for a specific behavioral or cognitive 
phenomenon, much is known about the general ways in which structures in the brain 
compute (See e.g. Dayan & Abbott 2001). This knowledge can be exploited to formulate 
hypotheses about how the brain might implement a particular algorithm. For example, it is 
relatively easy to come up with neurally-plausible proposals for how the brain might 
represent probability distributions as posited by the Bayesian Coding Hypothesis: The firing 
rate of a single neuron could directly code log-probabilities; a population of neurons with 
differing tuning curves may code a probability distribution by a basis function expansion; or 
the activity of pools of neurons might represent samples from a distribution (Pouget et al. 

17 Psychological considerations may also  already enter at the computational level through the added-
limitations tweak discussed in Section 2.3.1. Take the bar-categorization example: Adding noise to the stimulus
representation of the decision-criterion algorithm is plausible because it is known that subjects’ discrimination 
ability is limited.
18 Although Bayesian reverse-engineering is a “top-down” research strategy in the sense discussed previously, 

regular use of the plausible-algorithms heuristic shows how it might be combined with “bottom-up” 
approaches that start with cognitive or neural principles. In particular, one might seek to determine exactly 
how an established cognitive architecture (such as ACT-R) could bring about an ideal observer’s optimal 
performance (Cooper & Peebles 2015; Thomson & Lebiere 2013). In general, being a proponent of top-down 
research strategies does not entail a rejection of bottom-up strategies. In this context, it is also worthwhile to 
remember that the same John Anderson who developed rational analysis also developed the ACT-R 
architecture and that the ‘R’ stands for ‘rational’.
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2013). Similarly, depending on how probabilities are represented, different neural 
implementations of Bayesian updating suggest themselves; computing posterior 
probabilities might be as straightforward as summing the activities of presynaptic neurons 
in a single postsynaptic neuron (Ma et al. 2006).

Although Bayesian reverse-engineers have invoked the possible-implementations heuristic 
mostly to search the implementational-level search space below the Bayesian Coding 
Hypothesis, it can also be applied to other algorithmic-level hypotheses, e.g. the Decision 
Criterion Hypothesis. Notably, the possible-implementations heuristic can be applied to any 
algorithmic-level hypothesis, and it does not matter which heuristics were used to select 
this algorithm in the first place. Although such top-down proposals for the possible 
implementation of a specific algorithm remain highly speculative, they can still be used to 
focus neuroscientific research on specific regions of the implementational-level search 
space. A particularly vivid example is the recent proposal that spontaneous neural activity in
the absence of sensory stimulation can be interpreted as a neural signature of Monte Carlo 
sampling (Berkes et al. 2011; Fiser et al. 2010).19

4.3. Will Bayesian reverse-engineering succeed?

Bayesian reverse-engineers are likely to deploy many additional heuristic strategies beyond 
the ones reviewed here. Moreover, as was already the case for the computational-level 
tweaking methods discussed in Section 2, there are no generally-accepted standards for 
determining how and when to apply particular heuristic strategies for the purposes of 
descending the Marrian cascade. Whereas some earlier discussions may lend the impression
that there is a single tried-and-true “recipe” for Bayesian cognitive science (See e.g. 
Anderson 1991a; Griffiths et al. 2015), Bayesian reverse-engineering is in fact a highly 
pragmatic research strategy, the course of which depends on researchers’ individual 
background and preferences. Nevertheless, it is worthwhile to consider its likelihood of 
explanatory success--that is, the likelihood that Bayesian reverse-engineering will yield 
approximately true (or well-confirmed) hypotheses at the algorithmic and implementational
levels of analysis.

The explanatory success of Bayesian reverse-engineering is likely to depend on another 
aspect of Simon’s account of scientific discovery: the sense in which heuristics for scientific 
discovery are highly efficient, but also fallible and systematically biased (Simon 1996. See 
also: Wimsatt 1985). As has already been suggested above, most of the heuristics that 
contribute to Bayesian reverse-engineering serve to formulate testable hypotheses, but not 
to directly support the claim that any one of these hypotheses is actually true. Although it 
might be worried that these heuristics therefore do little to solve reverse-engineering 

19 Just like the relation between the computational and the algorithmic level (See footnotes 13 and 18), the 

relation between algorithmic and implementational level is also not completely “top down”. Hypotheses at the
algorithmic level are often chosen because they are easy to map onto neural structures and processes. In the 
case of Monte Carlo sampling the algorithm definitely preceded the possible implementation (Fiser et al. 
2010). However, in the case of log-probabilities the ease with which Bayesian updating could be implemented 
in neurons is very likely to have influenced the choice of representation at the algorithmic level (Ma et al. 
2006).
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problems in cognitive science, it is important to consider the difficulties involved in 
formulating testable hypotheses in everyday scientific practice. Coming up with such 
hypotheses is extremely difficult, and scientists rarely, if ever, possess a complete, well-
articulated list of hypotheses from which they are merely tasked with choosing the best. For
this reason, at least as much time and effort goes into the process of formulating testable 
hypotheses as goes into the process of choosing between them. Although some of the 
heuristics that drive Bayesian reverse-engineering may do little with respect to the latter, 
they do greatly facilitate the former; they are catalysts for inspiration, and in this sense 
make an invaluable contribution to scientific discovery.

At the same time, the reliance on heuristics bears uncertainties and even risks. All of the 
heuristics introduced above are fallible: Nothing guarantees that the hypotheses highlighted
by the push-down, tools-to-theories, unification, plausible-algorithms, possible-
implementations, or any other heuristic strategy are actually true. How then is the use of 
such heuristics an improvement over random guesswork? The importance of this question is
amplified if one considers the efficiency outlined just above: If a particular heuristic leads to 
the formulation of many false hypotheses, it is likely to do more harm than good, because it 
will lead to the disproportionate consumption of time and scientific resources. In what 
sense are the heuristic strategies that drive Bayesian reverse-engineering not just efficient, 
but efficient guides to truth?

This question can be answered by considering the third feature of heuristic strategies: their 
systematic bias. Most heuristics do not highlight solutions at random, but systematically, by 
selecting only those solutions that exhibit a particular set of characteristics. The extent to 
which a heuristic strategy is an efficient guide to truth may depend on the nature of its bias, 
i.e. the kinds of considerations that are invoked to select individual solutions. The heuristics 
that drive Bayesian reverse-engineering fall into two broad categories: Those whose 
systematic bias is theoretical, i.e. that invoke considerations rooted in the principles of a 
particular background theory,20 and those whose systematic bias is pragmatic, i.e. that 
invoke considerations rooted in the particular set of tools and concepts at a researcher's 
disposal, as well as in the social structures and institutions in which that researcher is 
embedded.

The plausible-algorithms and possible-implementations heuristics both exhibit a theoretical 
bias: They are designed to select just those algorithmic- and implementational-level 
hypotheses that accord with the established principles of psychology and neuroscience. 
Insofar as these principles are at least approximately true, the plausible-algorithms and 
plausible-implementations heuristics can be viewed as reasonable guides to truth; their 
potential to lead researchers astray is no worse than the fallibility of the background theory 
whose principles they exploit.

20 For example, the assumption that many biological systems are modular (and thus, that scientific discovery 
problems in biology should be solved by focusing on modular solutions) might be justified by appealing to the 
principle from evolutionary theory that modular systems are more robust, and thus more likely to survive and 
reproduce, as compared to non-modular systems (Simon 1996).
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In contrast, most of the other heuristic strategies outlined above exhibit a distinctively 
pragmatic bias. Rather than select algorithmic- and implementational-level hypotheses by 
considering a relevant background theory, heuristics such as push-down and tools-to-
theories appeal to the pragmatic context in which Bayesian reverse-engineering unfolds: 
The mathematical and computational tools, concepts, and methods of probability theory 
and Bayesian decision theory, as well as the social structures and institutions in which 
researchers working on the nature of probabilistic inference are embedded. As has already 
been demonstrated above, the push-down heuristic highlights just those algorithmic-level 
hypotheses that reflect some particular way of characterizing an ideal observer model at the
computational level of analysis. Had this characterization been different, either because it 
invoked a different algorithm to explicitly characterize the ideal observer, or indeed, 
because it invoked a wholly different body of mathematical concepts and tools, the push-
down heuristic would have selected a different algorithmic-level hypothesis. In a similarly 
pragmatic way, the tools-to-theories heuristic works by selecting just those algorithmic-level
hypotheses that correspond to available algorithms in artificial intelligence, machine 
learning, and statistics. Insofar as investigators working in these disciplines have for years 
been programming machines to solve the same (or similar) kinds of problems that are being 
solved by human beings, it is not surprising that Bayesian reverse-engineers find inspiration 
in these researchers’ methods and results.21 As a consequence, the nature and strength of 
the interdisciplinary collaborations in which any particular Bayesian reverse-engineer is 
engaged is likely to greatly influence the outcome and productivity of his or her own 
research.

Interestingly, similarly pragmatic research strategies have worked well in the past. Although 
the use of reverse-engineering principles is only recently being applied in the modern 
Bayesian context, these principles are far from new in cognitive science as a whole (See e.g. 
Dennett 1994; Milkowski 2013b). Indeed, many of the same heuristics that drive Bayesian 
reverse-engineering may also play a role in other flavors of reverse-engineering, 
contextualized by other mathematical concepts and tools (See e.g. Jäkel et al. 2009).22 For 
this reason, the current excitement surrounding Bayesian reverse-engineering may have less
to do with the novelty of the basic research strategy itself, and more to do with the 
impression that recent mathematical and technological advances in Bayesian methods can 
now be used to study behavior and cognition. In fact, whereas classical ideal observer 

21 This point is widely recognized in the literature. For example, Tenenbaum et al. (2011, p. 1279) argue that 
“What has come to be known as the ‘Bayesian’ or ‘probabilistic’ approach to reverse-engineering the mind has
been heavily influenced by the engineering successes of Bayesian artificial intelligence and machine learning 
over the past two decades”. In recognition of this influence, many introductions to Bayesian rational analysis 
and Bayesian reverse-engineering focus explicitly on the presentation of specific mathematical methods, 
computational tools, and on the interdisciplinary utility of Bayesian statistical inference (See e.g. Griffiths et al. 
2008). 
22 As has already been suggested, the novelty of Bayesian reverse-engineering lies not in the basic 
methodological principles being invoked, but only in  the novel use of specific mathematical concepts and 
methods. Specifically, Bayesian reverse-engineering is uniquely “Bayesian” in exactly two ways. First, its 
starting point is the method of Bayesian rational analysis, which aims to describe different kinds of behavior 
and cognition as solutions to problems of probabilistic inference. Second, the solutions Bayesian reverse-
engineers are most likely to discover are those that reflect the solutions being found in the interdisciplinary 
research community of Bayesian artificial intelligence, machine learning, and statistics. 
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analysis—the earliest progenitors of modern Bayesian reverse-engineering—as used in 
signal detection theory is among the most successful methods in all of psychology and 
cognitive neuroscience, it was mostly limited to the exploration of relatively simple 
detection and discrimination tasks. Insofar as Bayesian reverse-engineering invokes many of
the same methodological principles but additionally exploits recent technological 
developments for solving ever more complex inference problems, it is easy to think that the 
early successes of ideal observer analysis and signal detection theory may now be replicated
in increasingly higher domains.

Whereas there is reason to be optimistic, therefore, it is important not to confuse 
methodological promise with genuine theoretical progress (See also: Jones & Love 2011). 
Indeed, many important theoretical questions remain unanswered: Which general principles
govern the functioning of the mind and brain? Which architectural features do they exhibit? 
As a research strategy, the principles of Bayesian reverse-engineering do not themselves 
prescribe answers to these questions; Bayesian reverse-engineering is not itself an 
explanation of the mind and brain, but a methodological framework for developing 
explanations. Although it is possible that this strategy will eventually lead to a unified 
conception of the “Bayesian brain” in the sense that the mechanisms underlying a wide 
variety of behavioral and cognitive phenomena exhibit similar structural and functional 
properties (as is suggested by e.g. proponents of the Bayesian Coding Hypothesis), it seems 
more likely that the diversity of methods and tools in Bayesian artificial intelligence, 
machine learning, and statistics will contribute to a theoretical conception of the mind and 
brain as a heterogeneous collection of processes and mechanisms.23 Given that it is hard to 
predict which particular tools and concepts will influence Bayesian reverse-engineering in 
the future, the outcome of this research strategy can only be known by letting it run its 
course.

5. Of straw men and red herrings

This presentation of Bayesian reverse-engineering provides an overview of the tweaks and 
heuristics that are used to answer questions at all three levels of analysis, as well as a 
preliminary evaluation of the chances that this research strategy will eventually succeed. In 
order to support this evaluation, however, it is also necessary to consider a series of 
principled worries. As has already been indicated in Section 3, critics have challenged the 
explanatory credentials of the Bayesian approach. Because discussions of this approach 
traditionally focus on the computational-level method of Bayesian rational analysis, 
however, it is unclear to what extent these challenges should also be worrisome to Bayesian
reverse-engineers who aim to answer questions all three levels of analysis. Indeed, it 

23 For example, whereas category learning might best be described using particle filters at the algorithmic level 
(Sanborn et al. 2010), perceptual decision-making might be better described with a decision criterion (Stüttgen
et al. 2013), categorical perception with an exemplar model (Shi et al. 2010), and theory learning as stochastic 
search (Ullman et al. 2012). Even though in each of these domains the method of Bayesian rational analysis 
was used at the computational level (and in this sense, contributing to a sense of mathematical unification: 
Colombo & Hartmann 2015), the resulting algorithmic-level models developed by Bayesian reverse-engineers 
are strikingly different, and possibly even incompatible.
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appears that, by focusing on the wider context of Bayesian reverse-engineering, the 
challenges can be met.

5.1. Lacking mechanisms

One of the most influential critiques of Bayesian cognitive science is Jones & Love’s (2011) 
discussion of Bayesian Fundamentalism, already introduced in Section 3. Recall that Jones & 
Love worry that the Bayesian approach denies the explanatory relevance of the algorithmic 
and implementational levels; Bayesian Fundamentalism “eschews mechanism” (Jones & 
Love 2011, p. 173), and comes dangerously close to behaviorism. Whereas it was already 
claimed in Section 3 that Bayesian Fundamentalism is a straw man, Section 4 substantiates 
this claim: Far from denying the explanatory relevance of the algorithmic and 
implementational levels, Bayesian reverse-engineers are very much willing and able to 
explore levels below the computational.

There is a kernel of truth in Jones & Love’s worry, however. Although Section 3 
demonstrates that there is a stated desire to descend the Marrian cascade, and although 
Section 4 shows how this desire may eventually be satisfied, there continues to be a relative
paucity of success stories. Although sophisticated multi-level explanations are available in 
domains such as visual perception (Geisler 1989; Kersten et al. 2004), perceptual decision 
making (Gold & Shadlen 2007; Stüttgen et al. 2011), and category learning (Anderson 1991a;
Sanborn et al. 2010), there are relatively few examples in other (and especially higher) 
cognitive domains. That said, even in these higher domains, the desire to pursue a reverse-
engineering strategy is apparent and increasingly explicit (See e.g. Frank 2013; Griffiths et al.
2012b; Griffiths et al. 2015; Tenenbaum et al. 2011). On the one hand, therefore, it seems 
fair to urge that the critics be patient. On the other hand, however, the pragmatic nature of 
Bayesian reverse-engineering makes it difficult to predict its success.

5.2. Lacking falsifiability

Whereas Jones & Love challenge the Bayesian approach’s willingness to go beyond the 
computational level, other critics question its adequacy at the computational level itself. 
Recall that this level concerns questions about what a cognitive system is doing, as well as 
questions about why. Bowers & Davis’ (2012a; 2012b) concern lies primarily with the 
former. As has already been discussed in Sections 2 and 3, proponents of the Bayesian 
approach answer what-questions by developing and tweaking ideal observers to capture a 
particular body of behavioral data. Although Bowers & Davis agree that ideal observers can 
be used to describe “almost any pattern of results” (Bowers & Davis 2012a, p. 394), they 
worry that not all descriptions are equally explanatory. Indeed, there is an intuitive sense in 
which answering a question about what a cognitive system is doing is not just a matter of 
capturing the relevant behavioral data, but also a matter of identifying the task a particular 
cognitive system is actually solving, even if the systems’ behavior may be characterized in an
empirically adequate way as a solution to several different tasks. Because the method of 
Bayesian rational analysis involves the use of tweaks, and because there are no general 
guidelines for determining which tweaks to apply when, different investigators are prone to 
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answering the same what-question differently,24 with no principled way of determining 
which answer is actually correct. On the basis of these considerations, Bowers & Davis 
conclude that Bayesian rational analysis is little more than a method for developing 
unfalsifiable “just-so stories” (Bowers & Davis 2012a, p. 410).

Bowers & Davis’ worry is troublesome only insofar as there is no way to distinguish good 
tweaks from bad ones. However, the discussion of Bayesian reverse-engineering in Section 4
suggests that there actually might be such a way. As discussed above, differently-tweaked 
ideal observers may lead to the formulation of different algorithmic and implementational-
level hypotheses, e.g. by way of the push-down heuristic in which the mathematical 
structure of a particular ideal observer is “pushed down” onto a lower level. Hypotheses at 
these lower levels are readily falsifiable, by way of the customary evidential criteria of 
psychology and neuroscience. That is, behavioral experiments and e.g. neuroimaging studies
that can be used to determine which algorithms actually contribute to the production of 
behavior and cognition, and how these algorithms are actually implemented. Insofar as 
some tweaks may lead to more readily confirmable lower-level hypotheses than others, 
these tweaks may also be favored over alternatives with an equal degree of empirical 
adequacy at the computational level. In this sense, falsifiability at the computational level 
might be “inherited” from falsifiability at the algorithmic and implementational levels.

The general lesson to draw here is that it is a mistake to evaluate the explanatory viability of
the Bayesian approach, as Bowers & Davis as well as many others have done, by considering
only the computational-level method of Bayesian rational analysis. As the discussion of 
Bayesian Instrumentalism has already shown, there are reasons to doubt that this method is
sufficient for genuine explanation. Nevertheless, because the method of Bayesian rational-
analysis is merely the starting point of Bayesian reverse-engineering, it may in fact yield full-
fledged scientific explanations that answer questions at all three levels of analysis. Thus, the
explanatory credentials of Bayesian cognitive science cannot be determined merely by 
considering the development and tweaking of ideal observers at the computational level; it 
is also important to consider the algorithmic- and implementational-level hypotheses that 
are generated through the application of heuristic strategies. Very much in line with the 
conception of scientific explanation advanced by Marr, properly evaluating the explanatory 
credentials of the Bayesian approach involves issues at all three levels of analysis, rather 
than one. 

5.3. Lacking rationality

Worries have also arisen about why-questions. Recall that the method of Bayesian rational 
analysis can be used to answer why-questions by showing that a cognitive system’s behavior
is “appropriate” insofar as it matches, or approximates, the optimal or rational behavior of 
some ideal observer. One worry about the explanatory value of such optimality-
demonstrations has already been discussed in Section 3: It is unclear to what extent the fact

24 For example, if a subject engaged in the bar-categorization task exhibits a sloping psychometric function 
instead of the optimal threshold function, one researcher might prefer an added-limitations tweak, whereas 
another applies a suboptimality tweak. Both tweaks allow researchers to capture the same psychometric 
function by positing very different ideal observers.
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that a behavior is optimal actually played a role in phylogenetic or ontogenetic development
(Danks 2008). Another worry has recently been articulated by Marcus & Davis (2013; 2015. 
See also: Bowers & Davis 2012a). On the face of it, an optimality-demonstration appears to 
be a substantial empirical discovery: A biological organism engages its task environment in 
accordance with a particular body of arbitrary formal rules, such as the rules of probability 
theory (See e.g. Griffiths & Tenenbaum 2006; Oaksford & Chater 2001). Indeed, the growing
appeal of Bayesian cognitive science stems at least in part from the sense in which 
optimality-demonstrations of this kind contrast with demonstrations of apparently sub-
optimal (or irrational) behavior (See e.g. Tversky & Kahneman 1974). To return to the bar-
categorization example from before, whereas a subject's failure to correctly distinguish A-
bars from B-bars would be traditionally interpreted as a failure of human rationality, the 
tweaks outlined in Section 2 allow proponents of the Bayesian approach to modify priors, 
likelihoods, or cost functions so as to show that the subject does in fact behave rationally, 
albeit with regard to these modifications. That said, the significance of such optimality-
demonstrations appears greatly diminished by the proliferation and unprincipled application
of tweaks: If the specification of the task environment can be tweaked seemingly at will so 
as to demonstrate that almost any behavior is optimal or rational (But see: Ellsberg 1961; 
Savage 1972), an optimality-demonstration appears to have lost its normative force (Bowers
& Davis 2012a; Marcus & Davis 2013; 2015).

Troublingly, proponents of the Bayesian approach often provide conflicting assessments of 
the intended normative force of their claims. On the one hand, many important 
contributions defend the claim that human or animal behavior is genuinely optimal (e.g. 
Ernst & Banks 2002; Körding & Wolpert 2004), and position themselves against the view 
that judgment and reasoning are biased and error-prone (e.g. Griffiths & Tenenbaum 2006; 
Oaksford & Chater 2001). Furthermore, attempts have been made to explain away apparent
deviations from optimality by arguing that suboptimal algorithms are in fact “rational under 
resource constraints” (Gershman et al. 2015; Griffiths et al. 2015; Vul et al. 2014; cf. Love 
2015). In contrast, other recent discussions appear to weaken the normative force of 
optimality-demonstrations by admitting that, for example, “an optimal analysis is not the 
optimal analysis for a task” (Goodman et al. 2015, p. 539, emphasis in the original), or that it
“[is rarely the goal of Bayesian modeling] to show that people perform optimally at 
particular tasks” (Griffiths et al. 2012a, p. 412; See also: Frank 2013, footnote 2 and p. 419f).
Given these conflicting (and admittedly intransparent) assessments by influential 
proponents of the Bayesian approach, it is understandable that the critics remain 
unsatisfied (See: Bowers & Davis 2012b; Marcus & Davis 2015).

The discussion of Bayesian reverse-engineering in Section 4 allows for a very different 
perspective on these difficulties: Much confusion can be avoided by recognizing that the 
issue of rationality is in fact a red herring. Proponents of Bayesian reverse-engineering do 
not need to claim that human or animal behavior is rational in any deep sense, nor do they 
need to justify appeals to rationality by e.g. invoking evolution. Indeed, tweaks such as the 
sub-optimality tweak do not assume that cognitive system’s are optimal, and the heuristics 
that are used to explore lower levels of analysis do not make use of rationality 
considerations at all. Instead, ideal observer models merely provide “a point of reference” 
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(Peterson & Beach 1967, p. 29) and a “convenient base from which to explore the complex 
operation of a real organism” (Swets et al. 1961, p. 311, see also Tanner 1961). That is, the 
notion of rationality need not be used to provide a sui generis kind of teleological 
explanation (Oaksford & Chater 2007; Griffiths et al. 2012a. But cf. Danks 2008; Danks & 
Eberhardt 2009), but merely to navigate the space of computational-level hypotheses and 
to guide subsequent investigations at the algorithmic and implementational levels in a way 
that might even reveal suboptimal processes and mechanisms (See e.g. Acerbi et al. 2014; 
Kruschke 2006; Stüttgen et al. 2013; Sanborn & Silva 2013). For reverse-engineering 
purposes, whether or not a particular behavioral or cognitive phenomenon is thought to be 
rational or not is secondary to the ability to uncover the mechanisms responsible for that 
phenomenon. Disagreements about the explanatory import of optimality-demonstrations, 
considered in isolation of the wider context of Bayesian reverse-engineering, are moot.

But although considerations of rationality only have heuristic value in the context of 
Bayesian reverse-engineering, there is no doubt that they are of substantial interest in other
contexts. The question of whether humans are in fact rational agents bears on many central 
debates in evolutionary psychology, education, economics, jurisprudence, politics, and 
ethics, among others. Given the potential impact psychological investigations of human 
rationality may have on these debates, it is unsurprising that the apparent optimality-
demonstrations of Bayesian cognitive science have received so much attention, and equally 
unsurprising that Bayesian cognitive scientists themselves often highlight the role of 
rationality in their works. Nevertheless, as this discussion shows, while questions about 
rationality are important and interesting in many domains of inquiry, they are a distraction 
for cognitive scientists interested in reverse-engineering the mind through the “top-down” 
discovery of mechanisms.

6. Conclusion

As it is characterized here, Bayesian reverse-engineering is a highly pragmatic research 
strategy. By developing ideal observer models and tweaking them in a variety of different 
ways, proponents of Bayesian rational analysis describe behavior and cognition at the 
computational level as a form of near-optimal probabilistic inference. In turn, heuristic 
search strategies—many of which exploit the pragmatic context defined by a particular body
of tools and concepts, but also social structures and institutions—can be used to formulate 
testable hypotheses at the algorithmic and implementational levels. The widespread use of 
these strategies shows that proponents of the Bayesian approach are concerned with far 
more than just the computational level of analysis, and that they are in fact willing and able 
to discover and describe processes and mechanisms at the algorithmic and 
implementational levels.

This account of Bayesian reverse-engineering serves to alleviate several worries that have 
recently arisen about the explanatory credentials of Bayesian cognitive science. While many 
of these worries appear to be detrimental when directed at the computational-level method
of Bayesian rational analysis, they dissolve when considered in the wider context of 
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Bayesian reverse-engineering. First and foremost, Bayesian reverse-engineers are not 
Bayesian Fundamentalists, but readily seek to address all three levels of analysis. Second, 
answers given to questions at the computational level are falsifiable insofar as they facilitate
the formulation of testable answers to questions at the algorithmic and implementational 
levels. Third, at the lower levels it matters little to what extent these answers invoke the 
notions of ‘optimality’ or ‘rationality’—these notions are used to descend the Marrian 
cascade, rather than to normatively assess real-world behavior. Fourth and finally, it is 
important not to confuse the research strategy of Bayesian reverse-engineering for a 
theoretical framework that advances a specific set of empirical hypotheses about the nature
of mind and brain. Indeed, which particular theoretical commitments are actually held by 
individual Bayesian reverse-engineers is likely to depend on the particular tweaking and 
heuristic strategies they employ, their experience with and preference for distinct 
mathematical and computational concepts and tools, and the degree to which they interact 
with colleagues from disciplines such as artificial intelligence, machine learning, and 
statistics.

Because it alleviates these worries and provides the methods and tools necessary for 
developing three-level explanations, Bayesian reverse-engineering is a viable and productive
research strategy for cognitive science. That said, it is also a research strategy that is likely to
undergo continuous evolution, depending on future technological advances in mathematical
and engineering disciplines, as well as on theoretical progress in cognitive psychology and 
neuroscience. As such, much work remains to be done to determine how best to combine 
computational-level, algorithmic-level, and implementational-level insights so as to develop 
integrated three-level explanations of behavior and cognition. As has been shown above, 
although many different tweaking and heuristic strategies can be used for this purpose,  
their success is far from guaranteed. For this reason, the explanatory success of Bayesian 
reverse-engineering can only properly be evaluated by letting this research strategy run its 
course.
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