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Abstract

When we say “I know why he was late”, we know not only the

fact that he was late, but also an explanation of this fact. We propose
a logical framework of “knowing why” inspired by the existing formal

studies on why-questions, scientific explanation, and justification logic.

We introduce the Ky
i

operator into the language of epistemic logic to
express “agent i knows why ϕ” and propose a Kripke-style semantics of

such expressions in terms of knowing an explanation of ϕ. We obtain

two sound and complete axiomatizations w.r.t. two different model
classes depending on different assumptions about introspection.

Key words: knowing why, why-questions, scientific explanation,

epistemic logic, justification logic, axiomatization

1 Introduction

Ever since the seminal work by Hintikka [21], epistemic logic has grown into

a major subfield of philosophical logic, which has unexpected applications

in other fields such as computer science, AI, and game theory (cf. the hand-

book [11]). Standard epistemic logic focuses on propositional knowledge

expressed by “knowing that ϕ”. However, there are various knowledge ex-

pressions in terms of “knowing whether”, “knowing what”, “knowing how”,

and so on, which have attracted a growing interest in recent years (cf. the

survey [39]).

Among those “knowing-wh”,1 “knowing why” is perhaps the most im-

portant driving force behind our advances in understanding the world and

each other. For example, we may want to know why ([7]):

∗corresponding author
1“Wh” stands for the wh-question words.
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• the window is broken.

• the lump of potassium dissolved.

• he stayed in the café all day.

• cheetahs can run at high speeds.

• blood circulates in the body.

Intuitively, each “knowing why” expression corresponds to an embedded

why-question. To some extent, the process of knowing the world is to an-

swer why-questions about the world [22]. In fact, there is a very general

connection between knowledge and wh-questions discovered by Hinttika in

the framework of quantified epistemic logic [23]. For example, consider the

question Q : “Who murdered Mary?”:

• The presupposition of Q is that the questioner knows that Mary was

murdered by someone, formalized by K∃xM(x,Mary).

• The desideratum of Q is that the questioner knows who murdered

Mary, which is formalized by ∃xKM(x,Mary). The distinction between

the desideratum and the presupposition highlights the difference between

de re and de dicto readings of knowing who.

• One possible answer to Q is “John murdered Mary” formalized as

M(John, Mary). However, telling the questioner this fact may not be

enough to let the questioner know who murdered Mary since he or

she may not have any idea on who John is. Therefore Hintikka also

requires the following extra condition.

• Conclusiveness of the above answer requires that the questioner also

knows who John is (∃xK(John = x)). Conclusive answers realize the

desideratum.

However, Hintikka viewed why-questions, such as Q: “Why ϕ is the case?”,

as a special degenerated case where the presupposition and desideratum are

the same:

• The presupposition of Q is Kϕ;

• The desideratum of Q is Kϕ.

2



Hintikka then developed a different logical theory of why-questions in [24]

using the inquiry model and the interpolation theorem of first-order logic.

However, we do not think why-questions are special if we can quantify over

the possible answers to them. Intuitively, an answer to a question “Why ϕ?”

is an explanation of the fact ϕ. In this paper, we take the view shared by

Koura [26] and Schurz [35]:

• The presupposition of Q is that the questioner knows that there is an

explanation for the fact ϕ: K∃xE(x, ϕ).

• The desideratum ofQ is that the questioner knows why ϕ: ∃xKE(x, ϕ).

Note that if explanations are factive ∃xE(x, ϕ) → ϕ, then the presupposition

K∃xE(x, ϕ) also implies Kϕ in standard quantified (normal) modal logic.

Now we have a preliminary logical form of knowing why in terms of

the desideratum ∃xKE(x, ϕ) of the corresponding why-question. The next

questions are:

1. What are (good) explanations?

2. How can we capture the relation (E above) between an explanation

and a proposition in logic?

The two questions are clearly related. To answer the first one, let us look

back at the examples we mentioned at the beginning of this introduction. In

fact there are different kinds of explanations [7]:

• Causal: The window broke because the stone was thrown at it.

• Nomic:2 The lump of potassium dissolved since as a law of nature

potassium reacts with water to form a soluble hydroxide.

• Psychological: He stayed in the café all day hoping to see her again.

• Darwinian: Cheetahs can run at high speeds because of the selective

advantage this gives them in catching their prey.

• Functional: Blood circulates in order to supply the various parts of the

body with oxygen and nutrients.

2Nomic explanations are explanation in terms of laws of nature.
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In philosophy of science, the emphasis is on scientific explanations to

why questions, which mainly involve Nomic and Causal explanations in the

above categorization [8, 26, 16]. According to Schurz [34] there are three

major paradigms in understanding (scientific) explanations:3

• The nomic expectability approach initiated by Hempel [19], where a

good explanation to ϕ should make the explanandum ϕ predictable or

increases ϕ’s expectability.

• The causality approach (cf. e.g, [32]), where an explanation to ϕ

should give a complete list of causes or relevant factors to ϕ.

• The unification approach (cf. e.g., [25]) where the focus is on the

global feature of explanations in a coherent picture.

Our initial inspiration comes from the deductive-nomological model pro-

posed by Hempel [20] in the first approach mentioned above, which is the

mostly discussed (and criticized) model of explanation. The basic idea is

that an explanation is a derivation of the explanandum from some univer-

sally quantified laws and some singular sentences. Although such a logical

empiricistic approach arouse debates for decades,4 it draws our attention to

the inner structure of explanations and its similarity to derivations in logic.

In this paper, as the first step towards a logic of knowing why, we would like

to stay neutral on different types of explanations and their models, and fo-

cus on the most abstract logical structure of (scientific) explanations. From

a structuralist point of view, we only need to know how explanations com-

pose and interact with each other without saying what they are exactly.

Now, as for the second question, how can we capture the explanatory

relation between explanations and propositions in logic? Our next crucial

inspiration came from Justification Logic proposed by Artemov [4]. Aim-

ing at making up the gap between epistemic logic and the mainstream epi-

stemology where justified true belief is the necessary basis of knowledge,

justification logics are introduced based on the ideas of Logic of Proof (LP)

[1, 2].5 Justification logic introduces formulas in the shape of t : ϕ into

the logical language, read as “t is a justification of ϕ”.6 Therefore, in jus-

tification logic we can talk about knowledge with an explicit justification.

3There are also various dimensions of each paradigm, e.g, probabilistic vs. non-

probabilistic, singular events or laws to be explained.
4See [33, 42] for critical surveys.
5
LP was invented to give an arithmetic semantics to intuitionistic logic under the

Brouwer-Heyting-Kolmogorov provability interpretation.
6Similar ideas also appeared in [6] by van Benthem.

4



Moreover, justifications can be composed using various operations. For ex-

ample, t: (ϕ → ψ) ∧ s:ϕ → (t · s):ψ is an axiom in the standard justification

logic where · is the application operation of two justifications. Note that if

we read t:ϕ as “t is an explanation of the fact ϕ”, then this axiom also makes

sense in general.

On the other hand, conceptually, justifications are quite different from

explanations. For example, the fact that the shadow of a flagpole is x meters

long may justify that the length of the pole is y meters given the specific

time and location on earth. However, the length of the shadow of a flagpole

clearly does not explain why the pole is y meters long, if we are looking

for causal explanations. In general, a justification of ϕ gives a reason to

believing ϕ (though not necessarily true), but an explanation gives a reason

to being ϕ, presupposing the truth of ϕ. In this paper, we only make use

of some technical apparatus of justification logic, and there are quite some

differences in our framework compared to justification logic, which will be

discussed in Section 4.

Putting all the above ideas together, we are almost ready to lay out the

basis of our logic of knowing why. Following [39], we enrich the standard

(multi-agent) epistemic language with a new “knowing why” operator Kyi,
instead of using a quantified modal language. Roughly speaking, Kyiϕ is

essentially ∃tKi(t:ϕ), although we do not allow quantifiers and terms in the

logical language. As in [38, 41], this will help us to control the expressive

power of the logic in hopes of a computationally well-behaved logic. The

semantics is based on the idea of Fitting model for justification logic.

Since the language has both the standard epistemic operator Ki and also

the new “knowing why” modality Kyi, there are lots of interesting things that

can be expressed. For example,

• Kip∧¬Kyip, e.g, I know that Fermat’s last theorem is true but I do not

know why.

• ¬Kyip ∧ KiKyjp, e.g., I do not know why Fermat’s last theorem holds

but I know that Andrew Wiles knows why.

• KiKjp ∧ ¬KyiKjp, e.g., I know that you know that the paper has been

accepted, but I do not know why you know.

• KyiKjp∧Ki¬Kyjp, e.g., I know why you know that the paper has been

rejected, but I am sure you do not know why.

As we will see later, these situations are all satisfiable in our models.7

7According to our semantics to be introduced later, it is also allowed to know why for
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Before going into the technical details, it is helpful to summarize the

aforementioned ideas:

• The language is inspired by the treatments of the logics of “knowing

what”, and “knowing how”, where new modalities of such construc-

tions are introduced, without using the full language of quantified

epistemic logic.

• The formal treatment of explanations is inspired by the formal account

of justifications in justification logics.

• The semantics of Kyi is inspired by Hintikka’s logical formulation of

the desideratum of Wh-questions: ∃tKi(t:ϕ).

In the rest of the paper, Section 2 lays out the language, semantics and

two proof systems of our knowing why logic; Section 3 proves the com-

pleteness of the two systems, and gives an alternative semantics closer to

the standard justification logic; Section 4 gives a detailed comparison with

various versions of justification logic; Section 5 concludes the paper with

discussions and future directions.

2 A Logic of Knowing Why

Definition 1 (Language ELKy) Given a countable set I of agent names and

a countably infinite set P of basic propositional letters, the language of ELKy

is defined as:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Kyiϕ

where p ∈ P and i ∈ I.

We use standard abbreviations for ⊤, ⊥, ϕ → ψ, ϕ ∨ ψ, and K̂iϕ (the dual

of Kiϕ). Kyiϕ says that agent i knows why ϕ (is the case).

Intuitively, necessitation rule for Kyi should not hold, e.g., although

something is a tautology, you may not know why it is a tautology. Borrowing

the idea from justification logic, we introduce a special set of “self-evident”

tautologies which the agents are assumed to know why. Please see Section

4 for the comparison with constant specifications in justification logic, which

may contain all axioms of the logic.

different reasons (for different people), which can help to model mutual misunderstanding.
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Definition 2 (Tautology Ground Λ) Tautology Ground Λ is a set of proposi-

tional tautologies.

For example, Λ can be the set of all the instances of ϕ∧ψ → ϕ and ϕ∧ψ → ψ.

As we will see later, under such a Λ, Kyi(ϕ ∧ ψ → ϕ) will be valid, which

helps the agents to reason more.

The model of our language ELKy is similar to the Fitting model of

justification logic [13]. Note that we do not have the justification terms in

the logical language, but we do have a set E of explanations as semantic

objects in the models. In this work, we require the accessibility relation to

be equivalence relations to accommodate the S5 epistemic logic.

Definition 3 (ELKy-Model) An ELKy-model M is a tuple

(W,E, {Ri | i ∈ I}, E , V )

where:

• W is a non-empty set of possible worlds.

• E is a non-empty set of explanations satisfying the following conditions:

(a) If s, t ∈ E, then a new explanation (s · t) ∈ E;

(b) A special symbol e is in E.

• Ri ⊆W ×W is an equivalence relation over W .

• E : E × ELKy → 2W is an admissible explanation function satisfying

the following conditions:

(I) E(s, ϕ→ ψ) ∩ E(t, ϕ) ⊆ E(s · t, ψ).

(II) If ϕ ∈ Λ, then E(e, ϕ) =W .

• V : P → 2W is a valuation function.

Note that E does not depend on possible worlds, thus it can be viewed as

a constant domain of explanations closed under an application operator ·
which combines two explanations into one. The special element e in E is

the self-evident explanation, which is uniform for all the self-evident formu-

las in Λ. The admissible explanation function E specifies the set of worlds

where t is an explanation of ϕ. It is possible that some formula has no

explanation at all on some world, and some formula has more than one
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explanation on some world, e.g., one theorem may have different proofs.8

The first condition of E captures the composition of explanations resembling

the reasoning of knowing why by modus ponens, which amounts to the later

axiom Kyi(ϕ→ ψ) → (Kyiϕ→ Kyiψ).

Definition 4 (Semantics)

The satisfaction relation of ELKy formulas on pointed models is as below:

M, w � p ⇐⇒ w ∈ V (p)
M, w � ¬ϕ ⇐⇒ M, w 6� ϕ
M, w � ϕ ∧ ψ ⇐⇒ M, w � ϕ and M, w � ψ

M, w � Kiϕ ⇐⇒ M, v � ϕ for each v such that wRiv.

M, w � Kyiϕ ⇐⇒ (1) ∃t ∈ E, for each v such that wRiv, v ∈ E(t, ϕ);
(2) ∀v ∈W,wRiv, v � ϕ.

Now it is clear that our Kyiϕ is roughly ∃tKi(t:ϕ)∧Kiϕ though there are

subtle details to be discussed in Section 4 when compared to justification

logic. Also note that Kyiϕ → Kiϕ is clearly valid, but Kyi-necessitation is

not since not all valid formulas are explained except those in Λ. Moreover,

things we usually take for granted are not valid either, e.g., Kyiϕ ∧ Kyiψ →
Kyi(ϕ ∧ ψ) is not valid in general: The fact that I have explanations for ϕ

and ψ, respectively, does not mean that I have an explanation for the co-

occurrence of the two, e.g., quantum mechanics and general relativity have

their own explanatory power on microcosm and macrocosm, respectively,

but a “theory of everything” is not obtained by simply putting these two

theories together.

As an example, in the following model (reflexive arrows are omitted),

the formula Kip ∧ ¬Kyip ∧ Kyjp ∧ KiKyjp holds on the middle world.

p
t′:p

p
t:p
s:p

ji
p
s:p

In this paper, we also consider models with special properties. First of all,

we are interested in the models where explanations are always correct, i.e.,

if a proposition has an explanation on a world, then it must be true.

Definition 5 (Factivity Property) An ELKy-model M has the factivity prop-

erty provided that, whenever w ∈ E(t, ϕ), then M, w � ϕ.

8Though as Johan van Benthem pointed out via personal communication, in many cases

there is often a best or shortest explanation for the fact.
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Philosophically this property is also debatable, but as we will see later in

Theorem 10, our logics stay neutral on it.9

Besides factivity, it is also debatable whether knowing why is introspect-

ive, i.e., are the following reasonable? Note that they are not valid without

further conditions on the models.

Kiϕ→ KyiKiϕ, ¬Kiϕ→ Kyi¬Kiϕ,

Kyiϕ→ KyiKyiϕ, ¬Kyiϕ→ Kyi¬Kyiϕ

One may argue that there is always a self-evident explanation to your own

knowledge or ignorance, but another may say it happens a lot that you just

forgot why you know some facts. Things can be even more complicated re-

garding nested Kyi. Your explanation for why ϕ holds may be quite different

from the explanation for why you know why ϕ, e.g., the window is broken

(ϕ) because you know a stone was thrown at it, and you know why ϕ be-

cause someone told you so. On the other hand, if you know why a theorem

holds because of a proof, it seems reasonable to assume that you know why

you know why the theorem holds: you can just verify the proof. The cases

of negative introspection may invoke more debates.

As a first attempt to a logic of knowing why, we want to remain neutral

in the philosophical debate, but would like to make it technically possible to

handle the cases when introspection is considered reasonable. The following

property guarantees that the above introspection axioms are valid.

Definition 6 (Introspection Property) An ELKy-model M has the intro-

spection property provided that, whenever M, w � ϕ and ϕ has the form of

Kiψ or ¬Kiψ or Kyiψ or ¬Kyiψ, then ∃t ∈ E, for each v such that wRiv,

v ∈ E(t, ϕ).

We use C, CF , CI , CFI to denote respectively the model classes of all

ELKy-models, factive models, introspective models, and models with both

properties. Obviously, we have CF ⊆ C, CI ⊆ C, CFI ⊆ CF , and CFI ⊆ CI .

In the following, we write Γ �C ϕ if M, w � Γ implies M, w � ϕ, for any

M ∈ C and any w in M. Similar for CF , CI , CFI .

However, as we will see below, factivity does not affect the valid for-

mulas. For an arbitrary M ∈ C, we can construct a new ELKy-model

MF ∈ CF which has factivtiy. Given M = (W,E, {Ri | i ∈ I}, E , V ), let

MF = (W,E, {Ri | i ∈ I}, EF , V ) where:

EF (t, ϕ) = E(t, ϕ) − {u | M, u 6� ϕ}

9Martin Stokhof suggested an example where one explains to the other why he is the best

candidate for a job, but in fact he is not, and his explanation may base on false premises.
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We will show that M, w and MF , w satisfy the same ELKy formulas, thus

by the above definition of EF , it is clear that MF has factivity.

Lemma 7 For any ELKy-formula ϕ and any w ∈ W , M, w � ϕ if and only

if MF , w � ϕ.

PROOF We can prove it by induction on the structure of formulas. It is

trivial for the atomic, boolean, and Kψ cases since MF only differs from M
in EF . We just need to prove that M, w � Kyiψ iff MF , w � Kyiψ.

⇒ Suppose M, w � Kyiψ. Then ∃t ∈ E, for each v such that wRiv,

v ∈ E(t, ψ) and v � ψ. Thus v 6∈ {u | M, u 6� ψ}. Therefore we have

v ∈ EF (t, ψ). Hence by IH we have MF , w � Kyiψ.

⇐ Suppose MF , w � Kyiψ. Then ∃t ∈ E, for each v such that wRiv,

v ∈ EF (t, ψ) and v � ψ. By the definition of EF , we have v ∈ E(t, ψ).
Hence by IH we get M, w � Kyiψ.

✷

Theorem 8 For any set Γ ∪ {ϕ} of formulas, Γ �C ϕ if and only if Γ �CF
ϕ.

PROOF

⇒ Suppose Γ �C ϕ and Γ 6�CF
ϕ. By Γ 6�CF

ϕ, there exists a factive model

N ∈ CF such that N , w � Γ and N , w 6� ϕ for some w in N . Since

CF ⊆ C, we have N ∈ C. Thus Γ 6�C ϕ. Contradiction.

⇐ Suppose Γ �CF
ϕ and Γ 6�C ϕ. Then there exists a model M ∈ C such

that M � Γ and M 6� ϕ. By Lemma 7, we can construct an MF ∈ CF

such that MF � Γ and MF 6� ϕ. Thus Γ 6�CF
ϕ. Contradiction.

✷

Now we consider the introspective models.

Lemma 9 If M is introspective, then so is MF .

PROOF Suppose MF , w � ϕ and ϕ has the form of Kiψ or ¬Kiψ or Kyiψ
or ¬Kyiψ. By Lemma 7, we have M, w � ϕ. Since M has introspection

property, we have that ∃t ∈ E, for each v such that wRiv, v ∈ E(t, ϕ). Since

MF , w � ϕ and Ri is an equivalence relation, we have MF , v � ϕ for each v

such that wRiv. Thus v 6∈ {u | M, u 6� ϕ}. Thus v ∈ EF (t, ϕ). Hence ∃t ∈ E,

for each v such that wRiv, v ∈ EF (t, ϕ). Therefore MF has introspection

property. ✷

It is then easy to show:
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Theorem 10 For any set Γ ∪ {ϕ}, Γ �CI
ϕ if and only if Γ �CFI

ϕ.

Theorems 8 and 10 showed that factivity is neglectable w.r.t. the logic.

In the following, we present two proof systems which differ only on the

introspection axioms of Kyi essentially. In the next section, we will show

their completeness w.r.t. C and CI , respectively.

System SKY

TAUT Classical Propositional Axioms

DISTK Ki(ϕ→ ψ) → (Kiϕ→ Kiψ)

DISTY Kyi(ϕ→ ψ) → (Kyiϕ→ Kyiψ)

T Kiϕ→ ϕ

4 Kiϕ→ KiKiϕ

5 ¬Kiϕ→ Ki¬Kiϕ

PRES Kyiϕ→ Kiϕ

4YK Kyiϕ→ KiKyiϕ

MP Modus Ponens

NECK ⊢ ϕ ⇒ ⊢ Kiϕ

NECKY If ϕ ∈ Λ, then ⊢ Kyiϕ

PRES is the presupposition axiom which says “knowing that” is necessary

for “knowing why”. 4YK is the positive introspection of “knowing why” by

“knowing that”.10 The reader may wonder about the corresponding negat-

ive introspection of 4YK and it is provable in SKY.

Proposition 11 5YK: ¬Kyiϕ→ Ki¬Kyiϕ is provable in SKY.

PROOF

(1) KiKyiϕ→ Kyiϕ T

(2) ¬Kyiϕ→ ¬KiKyiϕ Contraposition (1)

(3) ¬KiKyiϕ→ Ki¬KiKyiϕ 5

(4) Kyiϕ→ KiKyiϕ 4YK

(5) ¬KiKyiϕ→ ¬Kyiϕ Contraposition (4)

(6) Ki(¬KiKyiϕ→ ¬Kyiϕ) NECK(5)

(7) Ki¬KiKyiϕ→ Ki¬Kyiϕ MP(6), DISTK

(8) ¬Kyiϕ→ Ki¬KiKyiϕ MP(2)(3)

(9) ¬Kyiϕ→ Ki¬Kyiϕ MP(7)(8)

✷

Note that the choice of Λ and NECKY in SKY also give us some flexibility in

the logic.

10Note that this is not one of the four introspection axioms of Ky
i

mentioned earlier.
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System SKYI is obtained by replacing 4, 5 and 4YK in SKY by the those

four stronger introspection axioms of Kyi:

4KY Kiϕ→ KyiKiϕ

5KY ¬Kiϕ→ Kyi¬Kiϕ

4Y Kyiϕ→ KyiKyiϕ

5Y ¬Kyiϕ→ Kyi¬Kyiϕ

It is straightforward to show that SKYI is deductively stronger than SKY.

Proposition 12 The following are provable in SKYI

4 Kiϕ→ KiKiϕ

5 ¬Kiϕ→ Ki¬Kiϕ

4YK Kyiϕ→ KiKyiϕ

5YK ¬Kyiϕ→ Ki¬Kyiϕ

3 Soundness and Completeness

Due to Theorems 8 and 10, we only need to prove soundness and complete-

ness w.r.t. C and CI instead of CF and CFI respectively.

Theorem 13 (Soundness) SKY and SKYI are sound for C and CI respect-

ively.

PROOF Since ELKy-models are based on S5 Kripke models, the standard

axioms of system S5 are all valid. So we just need to check the rest. First we

check the non-trivial axioms and rules of SKY on C.

DISTY: Kyi(ϕ→ ψ) → (Kyiϕ→ Kyiψ)
Suppose w � Kyi(ϕ → ψ) and w � Kyiψ. Then by the definition of �,

∃s, t ∈ E, for any v such that wRiv, v ∈ E(s, ϕ → ψ), v ∈ E(t, ϕ),
v � ϕ→ ψ, and v � ϕ. We find v � ψ and v ∈ E(s, ϕ → ψ) ∩ E(t, ϕ).
By the condition (I) of E , we have v ∈ E(s · t, ψ). Hence w � Kyiψ.

PRES: Kyiϕ→ Kiϕ

Suppose w � Kyiϕ. Then for any v such that wRiv, we have v � ϕ.

Thus w � Kiϕ.

4YK: Kyiϕ→ KiKyiϕ
Suppose w � Kyiϕ. Then ∃t ∈ E, for any v such that wRiv, v ∈ E(t, ϕ)
and v � ϕ. Let u ∈ W be arbitrary with wRiu. Since Ri is transitive,

we find that uRiv implies wRiv. Thus u � Kyiϕ. We conclude that

w � KiKyiϕ.

12



NECKY Suppose ϕ ∈ Λ. Since Λ is a set of tautologies, we have ∀w ∈ W ,

w � ϕ. By the condition (II) of E , ∀w ∈W,∃e ∈ E, for any v such that

wRiv, v ∈ E(e, ϕ). Therefore it follows that � Kyiϕ. Hence NECKY is

valid.

Validity of the introspection axioms of SKYI on CI are trivial based on the

introspective property and the fact that Ri is an equivalence relation.

✷

To establish completeness, we build a canonical model for each consistent

set of ELKy formulas. We will first show the completeness of SKY over C,

and the completeness of SKYI over CI is then straightforward.

Let Ω be the set of all maximal SKY-consistent sets of formulas. For any

maximal consistent set (abbr. MCS) Γ, let Γ#
i = {Kyiϕ | Kyiϕ ∈ Γ} ∪ {ϕ |

Kiϕ ∈ Γ}.

Definition 14 (Canonical model for SKY) The canonical model Mc for SKY

is a tuple (W c, Ec, {Rc
i | i ∈ I}, Ec, V c) where:

• Ec is defined in BNF: t ::= e | ϕ | (t · t) where ϕ ∈ ELKy.

• W c = {〈Γ, F, {fi | i ∈ I}〉 | 〈Γ, F 〉 ∈ Ω × P(Ec × ELKy), fi : {ϕ |
Kyiϕ ∈ Γ} → Ec such that F and

#»

f satisfy the conditions below}:

(i) If 〈s, ϕ→ ψ〉, 〈t, ϕ〉 ∈ F , then 〈s · t, ψ〉 ∈ F ;

(ii) If ϕ ∈ Λ, then 〈e, ϕ〉 ∈ F ;

(iii) For any i ∈ I, Kyiϕ ∈ Γ implies 〈fi(ϕ), ϕ〉 ∈ F .

• 〈Γ, F,
#»

f 〉Rc
i 〈∆, G,

#»g 〉 iff (1) Γ#
i ⊆ ∆, and (2) fi = gi.

• Ec:Ec ×ELKy → 2W
c

defined by Ec(t, ϕ) = {〈Γ, F,
#»

f 〉 | 〈t, ϕ〉 ∈ F}.

• V c(p) = {〈Γ, F,
#»

f 〉 | p ∈ Γ}.

In the above we write
#»

f for {fi | i ∈ I}. Essentially, fi is a witness function

picking one t for each formula in {ϕ | Kyiϕ ∈ Γ}. It can be used to construct

the possible worlds for the existence lemma for ¬Kyiϕ. We do need such

witness functions for each i, since i, j can have different explanations for ϕ.

In the definition of Rc
i , we need to make sure the selected witnesses are the

same for i. We include ϕ ∈ ELKy as building blocks in Ec for technical

convenience, as it will become more clear below when we construct the

successors. The component F in each world is used to encode the informa-

tion of Ec locally, also for the technical convenience to define the canonical
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relations. Note that merely maximal consistent sets are not enough in con-

structing the canonical model, as in the case of the logic of knowing what

in [40, 41].

Now we need to show that the canonical model is well-defined:

• Ec satisfies conditions (I) and (II) in the definition of ELKy-models.

• Rc
i is an equivalence relation.

• W c is not empty. Actually, we will prove a stronger one: for any Γ ∈ Ω,

there exist F and
#»

f such that 〈Γ, F,
#»

f 〉 ∈W c.

Proposition 15 Ec satisfies the conditions (I) and (II) of ELKy-models.

PROOF

(1) Suppose 〈Γ, F,
#»

f 〉 ∈ Ec(s, ϕ→ ψ)∩Ec(t, ϕ). By the definition of Ec, we

have 〈s, ϕ→ ψ〉, 〈t, ϕ〉 ∈ F . By the condition (i) of F in the definition of

W c, we have 〈s · t, ψ〉 ∈ F . Hence it follows that 〈Γ, F,
#»

f 〉 ∈ Ec(s · t, ψ).
Therefore Ec(s, ϕ→ ψ) ∩ Ec(t, ϕ) ⊆ Ec(s · t, ψ).

(2) Suppose ϕ ∈ Λ. For an arbitrary 〈Γ, F,
#»

f 〉 ∈W c, by condition (ii) in the

definition of W c, we have 〈e, ϕ〉 ∈ F . By the definition of Ec, we have

〈Γ, F,
#»

f 〉 ∈ Ec(e, ϕ). Hence Ec(e, ϕ) =W c.

✷

Before proceeding further, we prove the following handy proposition.

Proposition 16 If 〈Γ, F,
#»

f 〉Rc
i 〈∆, G,

#»g 〉, then (1) Kyiϕ ∈ Γ iff Kyiϕ ∈ ∆ and

(2) Kiϕ ∈ Γ iff Kiϕ ∈ ∆.

PROOF

(1) Suppose Kyiϕ ∈ Γ. By the definition of Rc
i , we have Kyiϕ ∈ ∆.

Suppose Kyiϕ ∈ ∆ and Kyiϕ 6∈ Γ. By the property of MCS, we have

¬Kyiϕ ∈ Γ. By the provable 5YK (¬Kyiϕ→ Ki¬Kyiϕ) and the property

of MCS, we have Ki¬Kyiϕ ∈ Γ. By the definition of Rc
i , we have

¬Kyiϕ ∈ ∆. Contradiction.

(2) Suppose Kiϕ ∈ Γ. By axiom 4 and the property of MCS, we have

KiKiϕ ∈ Γ. By the definition of Rc
i , we have Kiϕ ∈ ∆.

Suppose Kiϕ ∈ ∆ and Kiϕ 6∈ Γ. By the property of MCS, we have

¬Kiϕ ∈ Γ. By axiom 5 we have Ki¬Kiϕ ∈ Γ. Then we have ¬Kiϕ ∈ ∆
by the definition of Rc

i . Contradiction.
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✷

Proposition 17 Rc
i is an equivalence relation.

PROOF We just need to prove Rc
i is reflexive, transitive, and symmetric.

(1) Rc
i is reflexive: For all Kiψ ∈ Γ, by axiom T we have ψ ∈ Γ. Hence we

have 〈Γ, F,
#»

f 〉Rc
i 〈Γ, F,

#»

f 〉 by the definition of Rc
i .

(2) Rc
i is transitive: Suppose 〈Γ, F,

#»

f 〉Rc
i 〈∆, G,

#»g 〉 and 〈∆, G, #»g 〉Rc
i 〈Θ,H,

#»

h 〉.
Suppose Kyiϕ,Kiψ ∈ Γ. By the definition of Rc

i , we have fi = gi = hi.

By Proposition 16, we have Kyiϕ,Kiψ ∈ ∆. By the definition of Rc
i we

get Kyiϕ,ψ ∈ Θ. Therefore 〈Γ, F,
#»

f 〉Rc
i 〈Θ,H,

#»

h 〉.

(3) Rc
i is symmetric: Suppose 〈Γ, F,

#»

f 〉Rc
i 〈∆, G,

#»g 〉. Then we have fi = gi.

Suppose Kyiϕ,Kiψ ∈ ∆. By proposition 16, we have Kyiϕ ∈ Γ and

Kiψ ∈ Γ. By axiom T, ψ ∈ Γ, thus 〈∆, G, #»g 〉Rc
i 〈Γ, F,

#»

f 〉.

✷

In order to establish that for any Γ ∈ Ω, there exist F and
#»

f such that

〈Γ, F,
#»

f 〉 ∈W c, we define the following construction.

Definition 18 Given any Γ ∈ Ω, construct FΓ and
#»

f Γ as follows:

• FΓ
0 = {〈ϕ,ϕ〉 | ∃i ∈ I,Kyiϕ ∈ Γ} ∪ {〈e, ϕ〉 | ϕ ∈ Λ}

• FΓ
n+1 = FΓ

n ∪ {〈s · t, ψ〉 | 〈s, ϕ→ ψ〉 ∈ FΓ
n , 〈t, ϕ〉 ∈ FΓ

n for some ϕ}

• FΓ =
⋃

n∈N F
Γ
n .

• ∀i ∈ I, fΓi : {ϕ | Kyiϕ ∈ Γ} → Ec, fΓi (ϕ) = ϕ.

By the construction of FΓ
n (n ∈ N), {FΓ

n | n ∈ N} is monotonic. i.e., ∀m,n ∈
N , if m 6 n, then FΓ

m ⊆ FΓ
n .

Proposition 19 For any Γ ∈ Ω, 〈Γ, FΓ,
#»

f Γ〉 ∈W c.

PROOF To prove 〈Γ, FΓ,
#»

f Γ〉 ∈W c, we just need to show that FΓ satisfies

conditions (i)-(iii) in the definition of W c.

• Suppose 〈s, ϕ → ψ〉, 〈t, ϕ〉 ∈ FΓ. By monotonicity of {FΓ
n | n ∈ N},

there exists k ∈ N such that 〈s, ϕ → ψ〉, 〈t, ϕ〉 ∈ FΓ
k . Thus we have

〈s·t, ψ〉 ∈ FΓ
k+1 by the construction of FΓ

k (k ∈ N). Hence 〈s·t, ψ〉 ∈ FΓ,

thus FΓ satisfies condition (i).
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• Suppose ϕ ∈ Λ. By the construction of FΓ
0 , we have 〈e, ϕ〉 ∈ FΓ

0 .

Hence we get 〈e, ϕ〉 ∈ FΓ. Thus F satisfies condition (ii).

• Suppose Kyiϕ ∈ Γ. Then we have 〈ϕ,ϕ〉 ∈ FΓ by the construction

of FΓ
0 and FΓ. Since Kyiϕ ∈ Γ, by the construction of fΓi , we have

ϕ ∈ dom(fΓi ) and fΓi (ϕ) = ϕ. Thus we have 〈fΓi (ϕ), ϕ〉 ∈ FΓ. Hence,

we have that FΓ and
#»

f Γ satisfy condition (iii).

✷

This completes the proof that Mc is well-defined. Now we can establish the

existence lemmas for Ki and Kyi.

Lemma 20 (Ki Existence Lemma) For any 〈Γ, F,
#»

f 〉 ∈ W c, if K̂iϕ ∈ Γ,

then there exists a 〈∆, G, #»g 〉 ∈W c such that 〈Γ, F,
#»

f 〉Rc
i 〈∆, G,

#»g 〉 and ϕ ∈ ∆.

PROOF Suppose K̂iϕ ∈ Γ. We will construct a 〈∆, G, #»g 〉 such that

〈Γ, F,
#»

f 〉Rc〈∆, G, #»g 〉 and ϕ ∈ ∆.

Let ∆− be {ϕ} ∪ {Kyiψ | Kyiψ ∈ Γ} ∪ {χ | Kiχ ∈ Γ}. Then ∆− is consistent.

Suppose not, then there are Kyiψ1, · · · ,Kyiψm, χ1, · · · , χn ∈ ∆− such that

⊢SKY Kyiψ1 ∧ · · · ∧ Kyiψm ∧ χ1 ∧ · · · ∧ χn → ¬ϕ.

Then

⊢SKY Ki(Kyiψ1 ∧ · · · ∧ Kyiψm ∧ χ1 ∧ · · · ∧ χn) → Ki¬ϕ.

Since

⊢SKY (KiKyiψ1 ∧ · · · ∧ KiKyiψm ∧ Kiχ1 ∧ · · · ∧ Kiχn) →

Ki(Kyiψ1 ∧ · · · ∧ Kyiψm ∧ χ1 ∧ · · · ∧ χn),

by propositional resoning,

⊢SKY (KiKyiψ1 ∧ · · · ∧ KiKyiψm ∧Kiχ1 ∧ · · · ∧ Kiχn) → Ki¬ϕ.

By Kyiψj ∈ Γ and axiom 4YK, we have KiKyiψj ∈ Γ. Since Kiχj ∈ Γ, it

follows that Ki¬ϕ ∈ Γ, i.e., ¬K̂iϕ ∈ Γ. But this is impossible: Γ is an MCS

containing K̂iϕ. We conclude that ∆− is consistent.

Let ∆ be any MCS containing ∆−, such extensions exist by a Lindenbaum-

like argument. It follows that for any Kyiϕ, Kyiϕ ∈ Γ iff Kyiϕ ∈ ∆:

• Suppose Kyiϕ ∈ Γ. By the construction of ∆, we have Kyiϕ ∈ ∆.
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• Suppose Kyiϕ ∈ ∆ and Kyiϕ 6∈ Γ. By the property of MCS, we have

¬Kyiϕ ∈ Γ. By Proposition 11, we have Ki¬Kyiϕ ∈ Γ. By the con-

struction of ∆, we have ¬Kyiϕ ∈ ∆. Contradiction.

In the following, we construct G and #»g to form a world 〈∆, G, #»g 〉 in W c.

Based on the above result, we can simply let gi = fi. We just need to

construct gj for j 6= i. Formally, let:

• G0 = F ∪ {〈ϕ,ϕ〉 | Kyjϕ ∈ ∆ for some j 6= i}

• Gn+1 = Gn ∪ {〈s · t, ψ〉 | 〈s, ϕ→ ψ〉, 〈t, ϕ〉 ∈ Gn}

• G =
⋃

n∈NGn

gj(ϕ) =

{
fj(ϕ) j = i,

ϕ j 6= i.

Since F ⊆ G and G is closed under implication, conditions (i) and (ii) are

obvious. For condition (iii), if Kyiϕ ∈ ∆, then Kyiϕ ∈ Γ. Thus

〈gi(ϕ), ϕ〉 = 〈fi(ϕ), ϕ〉 ∈ F ⊆ G.

Condition (iii) also holds if Kyjϕ ∈ ∆ for j 6= i by definition of G0. It fol-

lows that 〈∆, G, #»g 〉 ∈W c. By the construction of 〈∆, G, #»g 〉, we have ϕ ∈ ∆,

Γ#
i ⊆ ∆, and fi = gi. Therefore there exists a state 〈∆, G, #»g 〉 ∈ W c such

that 〈Γ, F,
#»

f 〉Rc
i 〈∆, G,

#»g 〉 and ϕ ∈ ∆. ✷

To refute Kyiψ semantically, for each explanation t for ψ at the current

world, we need to construct an accessible world where t is not an explana-

tion for ψ. This leads to the following lemma.

Lemma 21 (Kyi Existence Lemma) For any 〈Γ, F,
#»

f 〉 ∈ W c, if Kyiψ 6∈ Γ
then for any 〈t, ψ〉 ∈ F , there exists 〈∆, G, #»g 〉 ∈ W c such that 〈t, ψ〉 6∈ G and

〈Γ, F,
#»

f 〉Rc
i 〈∆, G,

#»g 〉.

PROOF Suppose Kyiψ 6∈ Γ, 〈Γ, F,
#»

f 〉 ∈ W c, and 〈t, ψ〉 ∈ F . We con-

struct 〈∆, G, #»g 〉 as follows:

• ∆ = Γ

• Ψ = {〈s, ϕ〉 | 〈s, ϕ〉 ∈ F and Kyiϕ 6∈ Γ}

• Ψ′ = {〈t · s, ϕ〉 | 〈s, ϕ〉 ∈ Ψ}
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• G0 = (F\Ψ) ∪Ψ′

• Gn+1 = Gn ∪ {〈r · s, ϕ2〉 | 〈r, ϕ1 → ϕ2〉, 〈s, ϕ1〉 ∈ Gn}

• G =
⋃

n∈NGn

• For each j ∈ I, gj : {ϕ | Kyjϕ ∈ ∆} → Ec is defined as:

gj(ϕ) =

{
fj(ϕ), 〈fj(ϕ), ϕ〉 6∈ Ψ

t · fj(ϕ), 〈fj(ϕ), ϕ〉 ∈ Ψ

Throughout this proof we write |s| > |t| to express that t is proper subterm

of s. From the construction of G, it is clear that for any 〈s, ϕ〉 ∈ Ψ′, we have

|s| > |t|. We can show that for any Kyiϕ 6∈ Γ, if 〈s, ϕ〉 ∈ G0 then 〈s, ϕ〉 ∈
Ψ′. Towards contradiction, suppose that Kyiϕ 6∈ Γ and 〈s, ϕ〉 ∈ F\Ψ, then

〈s, ϕ〉 ∈ F , thus 〈s, ϕ〉 ∈ Ψ by the definition of Ψ, contradiction. It follows:

For any Kyiϕ 6∈ Γ, if 〈s, ϕ〉 ∈ G0 for some s, then |s| > |t|. (1)

Thus in particular

〈t, ψ〉 is not in G0. (2)

The idea behind the construction of G is to first replace any current

explanation for ψ with something longer, and then take the closure w.r.t.

implication. Note that for technical convenience, we treat all ϕ such that

Kyiϕ 6∈ Γ in the basic step together.

Now we prove the following claims.

Claim 1 〈∆, G, #»g 〉 ∈ W c. i.e., G satisfies the conditions in the definition of

W c.

(i) Suppose 〈r, ϕ1 → ϕ2〉, 〈s, ϕ1〉 ∈ G. By the construction of G, there

exists n ∈ N such that 〈r, ϕ1 → ϕ2〉, 〈s, ϕ1〉 ∈ Gn. By the construction

of Gn+1, we have 〈r · s, ϕ2〉 ∈ Gn+1. Thus 〈r · s, ϕ2〉 ∈ G.

(ii) Suppose ϕ ∈ Λ. Then 〈e, ϕ〉 ∈ F . Since ϕ is a tautology, by NECKY

and the property of MCS, we have Kyiϕ ∈ Γ. Thus 〈e, ϕ〉 6∈ Ψ. Thus

〈e, ϕ〉 ∈ G0. Hence 〈e, ϕ〉 ∈ G.

(iii) Suppose Kyjϕ ∈ ∆ (j ∈ I). By ∆ = Γ, we get Kyjϕ ∈ Γ. Thus

〈fj(ϕ), ϕ〉 ∈ F . We have two cases:

• 〈fj(ϕ), ϕ〉 6∈ Ψ: Thus gj(ϕ) = fj(ϕ). Thus we have 〈gj(ϕ), ϕ〉 ∈ F

and 〈gj(ϕ), ϕ〉 6∈ Ψ. Thus 〈gj(ϕ), ϕ〉 ∈ G0. Hence 〈gj(ϕ), ϕ〉 ∈ G.
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• 〈fj(ϕ), ϕ〉 ∈ Ψ: Thus gj(ϕ) = t · fj(ϕ) and 〈gj(ϕ), ϕ〉 ∈ Ψ′. Thus

we have 〈gj(ϕ), ϕ〉 ∈ G0. Hence 〈gj(ϕ), ϕ〉 ∈ G.

Claim 2 〈Γ, F,
#»

f 〉Rc
i 〈∆, G,

#»g 〉
To prove this claim, we just need to check two conditions:

(i) Since ∆ = Γ, obviously, we have Γ#
i ⊆ ∆.

(ii) Since ∆ = Γ, we have {ϕ | Kyiϕ ∈ Γ} = {ϕ | Kyiϕ ∈ ∆}, i.e.,

dom(gi)=dom(fi). For any ϕ ∈ {ϕ | Kyiϕ ∈ ∆}, since 〈fi(ϕ), ϕ〉 6∈ Ψ,

by the definition of gi, we have gi(ϕ) = fi(ϕ). Hence gi = fi.

To prove 〈t, ψ〉 6∈ G, we first prove the following useful claim:

Claim 3 If Kyiϕ 6∈ Γ and 〈s, ϕ〉 ∈ Gn+1\Gn, then |s| > |t|.
Suppose Kyiϕ 6∈ Γ. Do induction on n:

• n = 0. Suppose 〈s, ϕ〉 ∈ G1\G0. Then there exists s1, s2, and χ such

that s = s1 · s2, 〈s1, χ → ϕ〉, 〈s2, χ〉 ∈ G0. We have two cases:

– 〈s1, χ → ϕ〉 ∈ Ψ′ or 〈s2, χ〉 ∈ Ψ′: Thus |s1| > |t| or |s2| > |t|.
Thus |s| > |t|.

– 〈s1, χ → ϕ〉 6∈ Ψ′ and 〈s2, χ〉 6∈ Ψ′: Since 〈s1, χ → ϕ〉, 〈s2, χ〉 ∈
G0, thus 〈s1, χ → ϕ〉, 〈s2, χ〉 ∈ F\Ψ. Thus Kyi(χ → ϕ),Kyiχ ∈ Γ.

Thus Kyiϕ ∈ Γ by axiom DISTY. Contradiction.

• n > 0. Suppose 〈s, ϕ〉 ∈ Gn+1\Gn. Then there exist s1, s2, χ such that

s = s1 · s2 and 〈s1, χ → ϕ〉, 〈s2, χ〉 ∈ Gn. Moreover, we find that

Kyi(χ→ ϕ) 6∈ Γ or Kyiχ 6∈ Γ

since Kyiϕ 6∈ Γ and Γ is an MCS. We also have

〈s1, χ → ϕ〉 6∈ Gn−1 or 〈s2, χ〉 6∈ Gn−1

since otherwise 〈s, ϕ〉 ∈ Gn by the definition of Gn. Then we have

〈s1, χ→ ϕ〉 ∈ Gn\Gn−1 or 〈s2, χ〉 ∈ Gn\Gn−1.

We have the following cases:

– Kyi(χ → ϕ) 6∈ Γ and 〈s1, χ → ϕ〉 ∈ Gn\Gn−1. By IH, we have

|s1| > |t|. Hence |s| > |t|.

– Kyiχ 6∈ Γ and 〈s2, χ〉 ∈ Gn\Gn−1. By IH, we have |s2| > |t|.
Hence |s| > |t|.

19



– Kyi(χ → ϕ) 6∈ Γ and 〈s1, χ → ϕ〉 ∈ Gn−1. If 〈s1, χ → ϕ〉 ∈ G0,

then we have |s1| > |t| by (1); If 〈s1, χ → ϕ〉 6∈ G0, then there

exists 0 < k < n such that 〈s1, χ → ϕ〉 ∈ Gk\Gk−1. Thus by IH

we have |s1| > |t|. Thus |s| > |t|.

– Kyiχ 6∈ Γ and 〈s2, χ〉 ∈ Gn−1. Similar to the above.

Claim 4 〈t, ψ〉 6∈ G.

According to the construction of G, we just need to show that for all

n ∈ N, 〈t, ψ〉 6∈ Gn. By (2), we already know 〈t, ψ〉 6∈ G0. Based on Claim 3,

〈t, ψ〉 cannot be added in any Gn for n ≥ 1. We conclude 〈t, ψ〉 6∈ G. ✷

Finally we are ready to prove the truth lemma.

Lemma 22 (Truth Lemma) For all ϕ, 〈Γ, F,
#»

f 〉 � ϕ if and only if ϕ ∈ Γ.

PROOF This is established by standard induction on the complexity of ϕ.

The atomic cases and the boolean cases are standard. The case when ϕ =
Kiψ is also routine based on Lemma 20.

Consider the case that ϕ is Kyiψ for some ψ.

⇐ If Kyiψ ∈ Γ, then for any 〈∆, G, #»g 〉 such that 〈Γ, F,
#»

f 〉Rc
i 〈∆, G,

#»g 〉, we

have then Kyiψ ∈ ∆ by the definition of Rc
i . Since ⊢SKY Kyiψ → ψ

(by T and PRES), we have ψ ∈ ∆. By IH, we have 〈∆, G, #»g 〉 � ψ. Since

Kyiψ ∈ Γ and Kyiψ ∈ ∆, we have 〈fi(ψ), ψ〉 ∈ F and 〈gi(ψ), ψ〉 ∈ G.

By the definition of Rc
i , we have fi = gi. Thus there exists gi(ψ) =

fi(ψ) ∈ Ec such that 〈∆, G, #»g 〉 ∈ Ec(gi(ψ), ψ). Therefore we conclude

〈Γ, F,
#»

f 〉 � Kyiψ.

⇒ Suppose Kyiψ 6∈ Γ. We have two cases as follows:

– Kiψ 6∈ Γ: then by Lemma 20 and the semantics, 〈Γ, F,
#»

f 〉 6� Kyiψ.

– Kψ ∈ Γ: We also have two cases:

∗ 〈t, ψ〉 6∈ F for all t ∈ E. By the semantics, 〈Γ, F,
#»

f 〉 6� Kyiψ.

∗ There exists t ∈ E such that 〈t, ψ〉 ∈ F . By Lemma 21, there

exists 〈∆, G, #»g 〉 ∈W c with 〈t, ψ〉 6∈ G and 〈Γ, F,
#»

f 〉Rc
i 〈∆, G,

#»g 〉.

Hence we have 〈Γ, F,
#»

f 〉 2 Kyiψ.

✷

Theorem 23 (Completeness of SKY over C) Σ �C ϕ implies Σ ⊢SKY ϕ.
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PROOF Suppose Σ �C ϕ. Towards a contradiction, suppose Σ 6⊢SKY ϕ.

Then Σ∪{¬ϕ} is consistent. Extend Σ∪{¬ϕ} to a maximal consistent set Γ.

By Proposition 19, there exist F and
#»

f such that 〈Γ, F,
#»

f 〉 ∈W c. By Lemma

22, we have 〈Γ, F,
#»

f 〉 � Σ ∪ {¬ϕ}, thus Σ ∪ {¬ϕ} is satisfiable, thus Σ �C ϕ

is false. Contradiction. ✷

By Theorem 8 and Theorem 23, we have the following corollary.

Corollary 24 (Completeness of SKY over CF ) Σ �CF
ϕ implies Σ ⊢SKY ϕ.

Now let us look at the completeness of SKYI. The crucial observation is

that we can use the same canonical model definition except now we let Ω be

the set of all maximal SKYI-consistent set of ELKy formulas. The similar

propositions follow due to Proposition 12. The only extra thing is to check

whether the new canonical model has the introspection property.

Proposition 25 Mc has introspection property.

PROOF Suppose 〈Γ, F,
#»

f 〉 � ϕ and ϕ has the form of Kiψ or ¬Kiψ or

Kyiψ or ¬Kyiψ. By Lemma 22, we have ϕ ∈ Γ. By the axioms 4KY-5Y

and the properties of MCS, we have Kyiϕ ∈ Γ. By Lemma 22, we have

〈Γ, F,
#»

f 〉 � Kyiϕ. Thus ∃r ∈ Ec, 〈∆, G, #»g 〉 ∈ Ec(r, ϕ) for each 〈∆, G, #»g 〉
such that 〈Γ, F,

#»

f 〉Rc
i 〈∆, G,

#»g 〉. ✷

Based on the above proposition and Theorem 10 we have:

Theorem 26 (Completeness of SKYI over CI and CFI)

If Σ �CI
ϕ, then Σ ⊢SKYI ϕ. If Σ �CFI

ϕ, then Σ ⊢SKYI ϕ.

4 Comparison with justification logic

In this section, we compare our framework with justification logic. We first

explain our deviations from the standard justification logic, and then give

an alternative semantics of our logic SKY, which is technically closer to the

standard setting of justification logic.

4.1 Similarities and differences

The language of the most classic justification logic LP (i.e., JT4 in [4])

includes both formulas ϕ and justification terms t:
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ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | t:ϕ
t ::= x | c | (t · t) | (t+ t) | !t

The possible-world semantics of justification logic is based on the Fitting

model 〈S,R, E , V 〉 where 〈S,R, V 〉 is a single-agent Kripke model and E is an

evidence function assigning justification terms t to formulas on each world,

just as in our setting. The formula t:ϕ has the following semantics (cf. e.g.,

[15]):

M, w 
 t:ϕ ⇐⇒ (a) w ∈ E(t, ϕ);
(b) v 
 ϕ for all v such that wRv.

Compared to our semantics for Kyiϕ, note that (a) only requires that t is

a justification of ϕ on the current world w. The Fitting models for LP are

assumed to have further conditions:11

(1) E(s, ϕ→ ψ) ∩ E(t, ϕ) ⊆ E(s · t, ψ)

(2) E(t, ϕ) ∪ E(s, ϕ) ⊆ E(s+ t, ϕ)

(3) E(t, ϕ) ⊆ E(!t, t:ϕ)

(4) Monotonicity: w ∈ E(t, ϕ) and wRv implies v ∈ E(t, ϕ).

(5) R is reflexive and transitive.

Note that we also require (1) and (5) above and include · as an operation on

explanations in E semantically. On the other hand, we leave out (2)(3)(4)

and the operations + and ! for specific considerations in our setting. For the

case of +, consider the following model where ϕ has two possible explana-

tions and agent i cannot distinguish them (thus ¬Kyiϕ holds).

t:ϕ i s:ϕ

If we impose condition (2) then s+ t is a uniform explanation of ϕ on both

worlds, which makes Kyiϕ true. More generally, for any finite model where

ϕ has some explanations on each world, Kyiϕ will always be true under

condition (2), which is counterintuitive in our setting. Conceptually, the

explanation should be precise, you cannot explain a theorem by saying one

11The “S5 version” of justification logic JT45 also adds another condition about negative

introspection: E(t, ϕ) ⊆ E(?t,¬(t : ϕ)), and requires strong evidence, where ? is a new

operation for justification terms in the language, cf. [4]. To simplify the discussion, we focus

on LP here.
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of all the possible proofs up to a certain length works. Knowing there is a

proof does not mean you know why the theorem holds.

Operation ! and conditions (3) and (4) are relevant to the validity of

the axiom t : ϕ → !t: (t:ϕ) in the justification logic LP, which is used to

realize axiom 4 in modal logic. Intuitively, ! is the proof checker and !t
will always be a justification of t : ϕ.12 Although we do not have t : ϕ in

the language, it may sound reasonable to include ! and require E(t, ϕ) ⊆
E(!t,Kyiϕ). However, t being an explanation for ϕ does not entail that t

can be transformed uniformly into an explanation for Kyiϕ. For example,

the window is broken since someone threw a rock at it, but there can be

different explanations for an agent to know why the window is broken: she

saw it, or someone told her about it, and so on.

The technically motivated condition (4) in justification logic requires

that any accessible possible world has more explanations than the actual

world, which is not reasonable in our setting: an undesired consequence of

condition (4) would be w ∈ E(t, ϕ) and w � Kiϕ imply w � Kyiϕ.

There are justification logics available with both ✷ϕ and t:ϕ, see, e.g., [5,

27]. Justification terms are used to represent explicit knowledge whereas

the ✷-operator is used for implicit knowledge. Hence these logics feature

the principle

t:ϕ→ ✷ϕ, (3)

which is based on the idea that one may implicitly know more than what

is explicitly justified. Note that in the presence of the !-operation, the prin-

ciple (3) implies

t:ϕ→ ✷t:ϕ. (4)

Indeed, by (3) we have !t: (t:ϕ) → ✷(t:ϕ), which together with the axiom

t:ϕ→ !t: (t:ϕ) yields (4). The formulas (3) and (4) correspond in our setting

to the axioms Kyiϕ→ Kiϕ and Kyiϕ→ KiKyiϕ, respectively.

In some versions of multi-agent justification logic, e.g. [9, 31], the evid-

ence function E is agent-dependent (or, equivalently, each agent has her

own justifications), and correspondingly the formula t:iϕ is introduced into

the language to express that t is a justification of ϕ for i. However, in our

models, we use a uniform function E for all agents since we think the ex-

planatory relation between explanations and formulas is also part of the

possible worlds, just like basic propositional facts, which are interpreted by

a valuation function independent from the agents.

12In the multi-agent setting, !i was introduced to capture the proof check done by each

agent [43].
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Justification logics are parameterized by a constant specification (CS),

a collection of c: ϕ formulas where c is a justification constant and ϕ is an

axiom of the justification logic. It controls which axioms the logic provides

justifications for, i.e. which axioms an agent may use in her justified reas-

oning process. A justification logic model meets the requirement of a given

CS if W = E(c, ϕ) for all c : ϕ ∈ CS. In contrast, we include only tauto-

logies (but not all axioms) in our tautology ground Λ. For example, if we

had (Kiϕ → ϕ) ∈ Λ, then we could derive Kyi(Kiϕ → ϕ) by NECKY, which

would imply KyiKiϕ → Kyiϕ by DISTY. That, however, would be a strange

consequence: e.g., I know why I know that the window is broken implies

that I know why it is broken.

The table below highlights the similarities between our axioms (or de-

rivable theorems in SKY and SKYI) and axioms in (variants of) justification

logic when viewing t:ϕ as Kyiϕ:

Justification Logic Our work

t: (ϕ → ψ) → s:ϕ→ (t · s):ψ Kyi(ϕ→ ψ) → (Kyiϕ→ Kyiψ)
t:ϕ→ (s + t):ϕ Kyiϕ→ Kyiϕ

t:ϕ→ ϕ Kyiϕ→ ϕ

t:ϕ→!t: (t:ϕ) Kyiϕ→ KyiKyiϕ
¬t:ϕ→?t: (¬t:ϕ) ¬Kyiϕ→ Kyi¬Kyiϕ
t:ϕ→ ✷ϕ [5] Kyiϕ→ Kiϕ

t:ϕ→ ✷t:ϕ [5] Kyiϕ→ KiKyiϕ
¬t:ϕ→ ✷¬t:ϕ [5] ¬Kyiϕ→ Ki¬Kyiϕ

To close this comparison, note that Fitting proposed a quantified justi-

fication logic in [14], and discussed briefly in the end what can expressed

if the language also includes the normal knowledge operator. Since Kyi im-

plicitly includes quantification over explanations, our language can then be

viewed as a fragment of this quantified justification logic extended with K.

4.2 An alternative semantics

The similarities between our work and justification logic make it technic-

ally possible to give a more standard justification logic semantics to ELKy-

formulas. In the following we evaluate formulas over multi-agent Fitting

models, see, e.g., [9, 31], where each agent has her own accessibility rela-

tion and evidence function.13 The interpretation of agent i knows why ϕ is

13The alternative semantics does not work if we just have only one evidence function.
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given as agent i knows that ϕ and has some justification of ϕ, that is knowing

why translates to having a justification.

Definition 27 (JL-Model) A JL-model M is a tuple

(W,E, {Ri | i ∈ I}, {Ei | i ∈ I}, V )

where:

• W is a non-empty set of possible worlds.

• E is a non-empty set of explanations satisfying the following conditions:

(a) If s, t ∈ E, then a new explanation (s · t) ∈ E;

(b) A special symbol e is in E.

• Ri ⊆W ×W is an equivalence relation over W .

• Ei : E × ELKy → 2W is an admissible evidence function satisfying the

following conditions:

(I) Ei(s, ϕ→ ψ) ∩ Ei(t, ϕ) ⊆ Ei(s · t, ψ).

(II) If ϕ ∈ Λ, then Ei(e, ϕ) =W .

(III) Monotonicity: w ∈ Ei(t, ϕ) and wRiv implies v ∈ Ei(t, ϕ).

• V : P → 2W is a valuation function.

Remark 28 Note that by imposing monotonicity on S5 models, all i-indistinguishable

worlds have the same justifications for the same formula, i.e., if wRiv then

w ∈ Ei(t, ϕ) iff v ∈ Ei(t, ϕ).

Definition 29 (Semantics)

The satisfaction relation of ELKy-formulas on pointed JL-models is as below:

M, w �J p ⇐⇒ w ∈ V (p)
M, w �J ¬ϕ ⇐⇒ M, w 6�J ϕ

M, w �J ϕ ∧ ψ ⇐⇒ M, w �J ϕ and M, w �J ψ

M, w �J Kiϕ ⇐⇒ M, v �J ϕ for each v such that wRiv.

M, w �J Kyiϕ ⇐⇒ (1) ∃t ∈ E such that w ∈ Ei(t, ϕ);
(2) ∀v ∈W,wRiv implies M, v �J ϕ.

Compared to our semantics, the crucial difference in the above semantics of

Kyiϕ is that it only requires that t is a justification on the current world w.
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Theorem 30 (Soundness) SKY is sound for JL-models.

PROOF Since JL-models are based on S5 Kripke models, the standard

axioms of system S5 are all valid. So we just need to check the rest.

DISTY: Kyi(ϕ→ ψ) → (Kyiϕ→ Kyiψ)
Suppose w �J Kyi(ϕ → ψ) and w �J Kyiϕ. By soundness of DISTK, we

obtain ∀v ∈ W,wRiv implies M, v �J ψ. Further, by the definition of

�J, there exist s, t ∈ E with w ∈ Ei(s, ϕ → ψ) and w ∈ Ei(t, ϕ). By

the closure conditions on admissible evidence functions we get w ∈
Ei(s · t, ψ). Hence w �J Kyiψ.

PRES: Kyiϕ→ Kiϕ

Follows immediately from the definition of �J.

4YK: Kyiϕ→ KiKyiϕ
Suppose w �J Kyiϕ and let v ∈ W be arbitrary with wRiv. By transit-

ivity of Ri we find that ∀u ∈W,vRiu implies M, u �J ϕ. Further there

exists t with w ∈ Ei(t, ϕ) and monotonicity of Ei yields v ∈ Ei(t, ϕ). We

obtain v �J Kyiϕ and conclude w �J KiKyiϕ.

NECKY Suppose ϕ ∈ Λ. By condition (II) on Ei, we get w ∈ Ei(e, ϕ) for any w.

Since Λ is a set of tautologies, we also have that wRiv implies v �J ϕ.

Hence Kyiϕ is valid.

✷

To establish completeness of SKY with respect to JL-models, we show

how to transform a given ELKy-model into an equivalent JL-model. Then

completeness for JL-models is a consequence of completeness for ELKy-

models.

Definition 31 (Corresponding JL-model) Given an ELKy-model

M = (W,E, {Ri | i ∈ I}, E , V )

we define the corresponding JL-model MJ as

(W,E, {Ri | i ∈ I}, {EJ

i | i ∈ I}, V )

where

EJ

i (t, ϕ) := {w | ∀v ∈W, wRiv implies v ∈ E(t, ϕ)}.
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The above definition indeed yields a JL-model. Moreover, any given ELKy-

model M and its corresponding JL-model MJ satisfy the same formulas.

We have the following two lemmas.

Lemma 32 Let M be an ELKy-model, then MJ is a JL-model.

PROOF We have to verify the conditions on EJ:

(I) Suppose w ∈ EJ
i (s, ϕ → ψ) ∩ EJ

i (t, ϕ). Thus for each v ∈ W , wRiv

implies

v ∈ E(s, ϕ→ ψ) ∩ E(t, ϕ)

and hence also v ∈ E(s · t, ψ). By the definition of EJ
i we conclude

w ∈ EJ
i (s · t, ψ).

(II) If ϕ ∈ Λ, then E(e, ϕ) =W and hence also EJ
i (e, ϕ) =W .

(III) Assume w ∈ EJ
i (t, ϕ) and wRiv. Let u be arbitrary with vRiu. Since

Ri is transitive, we get wRiu. Thus by the definition of EJ
i we find

u ∈ E(t, ϕ). We conclude v ∈ EJ
i (t, ϕ).

✷

Lemma 33 Let M = (W,E, {Ri | i ∈ I}, E , V ) be an ELKy-model. For each

w ∈W and each formula ϕ,

M, w � ϕ if and only if MJ, w �
J ϕ.

PROOF By induction on ϕ.

Case ϕ is of the form Kyiψ. Observe that by the definition of EJ
i we have

that

∃t ∈ E, for each v such that wRiv, v ∈ E(t, ψ)

if and only if

∃t ∈ E with w ∈ EJ

i (t, ψ).

Hence M, w � Kyiψ if and only if MJ, w �J Kyiψ.

All other cases are trivial. ✷

Remark 34 The above result also holds if we consider S4-based ELKy-models

and JL-models, i.e., when the relations Ri are only reflexive and transitive.

Corollary 35 (Completeness) SKY is strongly complete for JL-models.
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PROOF Suppose Γ 6⊢ ϕ. By completeness with respect to ELKy-models,

there is an ELKy-model M with a world w such that M, w � Γ but M, w 1

ϕ. By the previous two lemmas, we find a JL-model MJ such that MJ, w �J

Γ but MJ, w 6�J ϕ. ✷

We consider the above results about JL-models to be merely technical

observations. From a conceptual point of view, as we mentioned, mono-

tonicity in JL-models is not very reasonable in our setting. JL-models are

in fact rather weak for our purpose. This can be seen from the fact that

a lot of information is lost in the translation from ELKy-models to JL-

model, in particular ELKy-models only store known explanations but all

other possible explanations are dropped. Hence JL-model cannot really

talk about the difference between ∃xKE(x, ϕ) and K∃xE(x, ϕ), which is es-

sential for our analysis of knowing why. Moreover, this JL-like semantics

cannot handle conditional knowledge-why, as will be introduced formally

in the next section. For example, it is reasonable to have a situation where

I don’t know why ϕ right now, but I know why ϕ given the information

ψ, since the extra information of ψ may rule out some possibilities such

that there is a uniform explanation on the remaining possibilities. Due to

Remark 28, this is not possible in a monotonic S5 (or S4) JL-model with

monotonicity.

5 Conclusions and Future work

In this paper, we present an attempt to formalize the logic of knowing why.

In the language we have both the standard knowing that operator Ki and the

new knowing why operator Kyi. A semantics based on Fitting-like models

for justification logic is given, which interprets knowing why ϕ as there exists

an explanation such that I know it is one explanation for ϕ. We gave two

proof systems, one weaker and one stronger depending on the choice of

introspection axioms, and showed their completeness over various model

classes.

Note that, in the logic of knowing value [40, 41], there is one and only

one value for each constant. However, there can be different explanations

for the same fact in our setting. This difference also leads to some technical

complications in the completeness proof: to negate Kyiϕ, it is not enough

to just construct another world. Instead, for each explanation t of ϕ at the

current world, we need to construct one world to refute it.

As the title shows, it is by no means the logic of knowing why. Besides
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the introspection axioms, there are a lot to be discussed.14 For example,

although DISTY looks reasonable in a setting focusing on deductive explan-

ations, it may cause troubles if causal explanations or other types of ex-

planations are considered. Recall our example about the flagpole and its

shadow. It is reasonable to assume that I know why the shadow is y meters

long (Kyip), and I also know why that the shadow is y meters implies the

pole is x meters long (Kyi(p → q)). However, it does not entail that I know

why the pole is x meters long (Kyiq) if we are looking for causal explanation

(or functional explanation). One way to go around is to replace the mater-

ial implication by some other relevant (causal) conditional, then Kyi(p → q)
may not hold in this setting anymore.

It seems that we often do not have clear semantic intuition about non-

trivial expressions of knowing why. One reason is that there may be differ-

ent readings of the same statement of knowing why ϕ regarding different

aspects of ϕ and different types of desired explanations. For example, “I

know why Frank went to Beijing on Monday” may have different meanings

depending on the contrast the speaker wants to emphasize [16]:

• I know why Frank, not Mary, went to Beijing on Monday.

• I know why Frank went to Beijing, not Shanghai, on Monday.

• I know why Frank went to Beijing on Monday, not on Tuesday.

Following [26], we may partially handle this by adding contrast formulas,

e.g., turn Kyiϕ into Kyi(ϕ ∧ ¬ψ ∧ ¬χ ∧ . . . ) depending on the emphasis.

However, we cannot handle the changes of types of explanations depending

on the contrast.

Another future direction is to study the inner structure of explanations

further. Hintikka’s early work [24] may turn out to be helpful, where explan-

ations can be of the form of universally quantified formulas, which connects

better with the existing theories of scientific explanations in philosophy of

science.15 Moreover, we may be interested in saying whether an explanation

is true. The factivity that we proposed did not fully capture that.

A promising future study is about group notions of knowing why. For

example, how do we define everyone knows why ϕ? Simply having a con-

junction of Kyiϕ for each i may not be enough, since people can have dif-

ferent explanations for ϕ. The case of commonly knowing why ϕ is more

interesting. For example, we may have different definitions:

14We may also discuss whether Ky
i
ϕ → Ky

i
Kiϕ is reasonable.

15There are also modal logic approaches to handle scientific explanations cf. e.g, [37, 36].
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• It is (standard) common knowledge that everyone knows why ϕ w.r.t.

the same explanation.

• Everyone knows why . . . everyone knows why ϕ.

In contrast to standard epistemic logic, such definitions can be quite differ-

ent from each other. Since each iteration of Kyi may ask for a new explan-

ation, we then have a much richer spectrum of such common knowledge

notions, e.g., for the second definition, we may ask the agents to have ex-

actly the same explanation for each level of “iteration of everyone knows

why”. It will be interesting to compare such notions with justified common

knowledge [3, 9].

Of course, we can also consider the dynamics of knowing why, similar

to the dynamics in justification logic [10, 28, 30, 31]. Clearly, public an-

nouncements can change knowledge-why. However, in contrast to public

announcement logic [29], adding public announcement will increase the

expressive power of the logic, e.g., [q]Kyip can distinguish the following two

pointed models (the left-hand-side worlds as designated), which cannot be

distinguished by formulas in ELKy (a simple inductive proof on the struc-

ture of the formula suffices):

p, q
s:p

i p
t:p

p, q
s:p

i

i

p
t:p

p, q
r:p

In particular, [q]Kyip is not equivalent to q → Kyi(q → p). To handle public

announcements, we can follow the idea in [40] and generalize the knowing

why operator to a conditional one to express that the agent i knows why ϕ

given the condition ψ (Kyi(ψ,ϕ)):

M, w � Kyi(ψ,ϕ) ⇐⇒ ∃t ∈ E, for each v such that wRiv and M, v � ψ:

(1) v ∈ E(t, ϕ) and (2) M, v � ϕ.

Kyi(ψ,ϕ) is similar to [ψ]Kyiϕ, and may be used to encode the announce-

ments under further restrictions on models. We leave the axiomatization of

this more expressive language to further work.

On the other hand, there can be other natural dynamics, e.g., publicly

announcing why, which is similar to public inspection introduced in [17]

in the setting of knowing values. A deeper connection between knowing
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why and dynamic epistemic logic is possible based on the observation that

we do update according to events because we know why they happened

(the preconditions). It is suggested by Olivier Roy that there is also a close

connection with forward induction in games, where it is crucial to guess

why someone did an apparently irrational move.

Finally, our work is also related to explicit knowledge, which aims to avoid

logical omniscience. In fact, knowledge with justification or explanation can

be viewed as a type of explicit knowledge. One important approach to define

explicit knowledge is by using awareness: ϕ is a piece of explicit knowledge

of i (Xiϕ) if i is aware of ϕ (Aiϕ) and i implicitly knows that ϕ (Kiϕ),
where awareness is often defined syntactically (cf. [12]). Accordingly, the

axioms are also changed, e.g., the K axiom now becomes Xi(ϕ → ψ) ∧
Xiϕ ∧ Aiψ → Xiψ. Other approaches to explicit knowledge uses idea of

algorithmic knowledge [18]. We may explore the concrete connection in the

future.
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