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Abstract

We study an Adaptive Window Protocol (AWP) with general increase and decrease profiles in the

presence of window dependent random losses. We derive a steady-state Kolmogorov equation, and then

obtain its solution in analytic form for particular TCP versions proposed for high speed networks, such

as Scalable TCP and HighSpeed TCP. We also relate window evolution under an AWP to workload

process in queueing systems; this observation gives us a wayto compare various AWP protocols.

I. INTRODUCTION

Over the years, the transmission control protocol (TCP) [5]has satisfactorily handled the

majority of reliable data transfers in the Internet. The TCPalgorithm probes the network for

the bandwidth that it can obtain. The sender transmits a bunch (also called as window) of

data packets, which, if successful, are acknowledged by thereceiver. The sender interprets the

successful reception of packets as a sign of available bandwidth, and reacts by transmitting

packets at a higher data rate. When the total input rate to thenetwork exceeds the capacity,

the network reacts by dropping some of the packets. The unsuccessful transmission of packets

causes the sender to reduce its transmission rate. This simple but robust algorithm has performed

quite well in networks with low bandwidth. However, the Internet itself has grown and evolved

during this time. The present versions of TCP were designed when the available bandwidth

in the Internet was significantly smaller than the availablebandwidth today. The low available

bandwidth led to a window increase algorithm which was conservative and not fast enough to

make efficient use of the large available bandwidth.

The inablility of the present versions of TCP to rapidly attain high transmission rates has

resulted in several proposed modifications - examples include HighSpeed TCP [7], Scalable

TCP [6], Westwood+[], CuBIC, and FAST. Data transfer protocols operating in these networks

are expected to maintain a very high window size (i.e., a highdata transmission rate). Most

of the proposals therefore suggest a window increase algorithm which is faster and a decrease

algorithm which is less conservative than the present TCP. Comparative study of such protocols is

an important issue. The analytical models can give insightsinto the behaviour of these protocols.

The study could also include, for example, conditions underwhich two AWPs behave similarly.

Since it is always desirable to use a protocol which is easierto implement and does not have

DRAFT



3

many parameters to be tuned, such a study will provide some guidelines on the TCP version to

employ.

The TCP versions (presently deployed, and the new proposals) can be coarsely classified in

two categories. The classification is based on signals whichare interpreted as congestion. The

“loss-based” algorithms interpret only packet losses as signs of congestion. Examples of TCP

versions in this category are Tahoe, New Reno, SACK (which are presently deployed), Scalable,

and HighSpeed TCP (both of which proposed enhancements). Inaddition to packet losses, the

“delay-based” algorithms also use variations in the round trip delay to estimate the available

bandwidth. TCP Vegas, FAST and Westwood+ are examples of “delay-based” protocols.

In this paper, we aim to study analytically the behaviour of aclass of “loss-based” algorithms.

The “loss-based” algorithms can be described by the increase algorithm (when there are no

packet losses) and the decrease algorithm (which is in response to a packet loss). Therefore, the

building blocks for modelling a “loss-based” algorithm areits increase and decrease algorithms,

and the packet loss characteristics in the network. The packet losses in the network are frequently

modelled as independent of the current transmission rate []. However, at high transmission rates

the probability of a packet loss due to link layer errors (forexample, errors due to imperfections

in the fiber optic cables) is high. Since TCP is unable to distinguish between the various causes

of packet loss and interprets every loss/drop as a sign of congestion, it becomes necessary

to consider a packet loss probability which depends on the present transmission rate. Another

reason for considering window dependent loss rate is the following. The loss process seen by

a TCP sender may have its origin in deliberate marking/dropping owing to some active queue

management (AQM) scheme employed in the network, in congestion losses, or in link errors.

The rate of receiving such a signal will depend on the window process itself (see [8] for related

discussion). Hence in our study, we consider a general state(window) dependent loss rate.

A. Analytical models for ”loss-based” TCP algorithms

In this section we briefly describe the various models that have been used to study the

performance of the TCP algorithm. A detailed literature review is also presented in [8].

Modelling and analyzing a large network with multiple flows is quite involved. The first efforts

in modelling of TCP were directed towards a single connection with a large amount of data to

send [?]. The connection was subject to independent packet losses.A fluid approximation of the
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discrete window process. This resulted in an elegent “inverse square-root“ relation between the

throughput and the packet loss probability. The distribution of the fluid approximation was also

provided. The model did not consider neither time-outs nor areceiver limitation on the sender’s

window size. However, the stochastic modelling of the loss process and the fluid approximation

of the window size process became the basis for other models which incorporated the time-outs

and receiver limitation [8], [?], [?].

The contribution (and organization) of this paper is as follows.

• In Section II, we give a characterization of a general AWP, and identify the various quantities

that determine the performance of such protocols. Kolmogorov equations for the stationary

probability measure are then derived.

• In Section III, we give conditions under which two AWPs have related stationary distribution.

Furthermore, we demonstrate that the window process under amultiplicative decrease

protocol is also related to the workload process in a queueing system with workload

dependent service and arrival rates.

• In Sections IV and V, we solve the Kolmogorov equations to study the performance of

recently proposed TCP modifications (Scalable TCP [6] and HighSpeed TCP [7]). In these

sections, we consider two different forms of loss rates: constant and linear. The analysis

also provides insights into the sensitivity of system performance to the parameters of the

AWP employed.

• In Section VI, we compare simulations results with the results of Sections III, IV and V.

There is a vast amount of literature on TCP modeling, and any attempt to cite even a moderate

part of it would be lengthy enough. For an extensive literature survey on TCP modeling the

reader is refered to [8].

II. THE MODEL

We consider an AWP controlled persistent file transfer over an Internet (bottleneck) link. For

applications using HighSpeed and Scalable TCP, this link will typically be a very high bandwidth-

delay product link. We assume that the connection is long enough to see a stationary regime and

that its throughput performance is governed by the steady state regime (see [4] for justification

of this assumption). Applications using HighSpeed TCP and Scalable TCP typically transfer

very large volume files. Therefore, studying persistent transfers is justified and important in
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such cases. We model the loss process as a Poisson process with a time varying intensity that

depends on the instantaneous window size of the AWP [8]. These losses could be owing to

congestion losses, random link losses or some deliberate packet marking/dropping by the router

buffer using an AQM. As is common in related studies ([1], [3], [4]), we consider the evolution

of window as an infinitely divisible fluid. Details of the model are given below.

Let xt denote the window size of the AWP at time instantt (note that we are not specifying

the initial window sizex0 here, thus assuming a stationary window process). We now give the

description of the window evolution. In the absence of losses, the window increase in time

interval [t, t + ∆] is given by,

xt+∆ = xt + f(xt)∆ + o(∆), (1)

wheref(·) is a function bounded below by some positive quantity. We also assume that there

is a lower bound on the window size, denoted byxmin.

The increase in window cannot continue forever because drops owing to congestion or channel

losses or AQM marking can occur at random instants in time1. Let N(t) be the counting process

corresponding to the loss events, i.e.,N(t) − N(t − u) is the number of losses in time interval

(t−u, t]. In what follows, we assume thatN(t) is a Poisson process with time varying intensity.

Further, we assume that the instantaneous rate of theN(t) process depends only on the current

window size,xt, of the connection. Letλ(x) be the rate of theN(t) process when the window

size,xt, is x. Each loss results in a window reduction (this is because TCPassumes that each

packet drop/mark corresponds to a congestion event in the network). Under the fluid model, it

is standard to assume that this window reduction is reflectedas an instantaneous jump in thext

process. The assumptions imply thatP{N(t + ∆) − N(t) = 1} = 1 − P{N(t + ∆) − N(t) =

0} = λ(xt)∆+o(∆). Thus, for small∆, if N(t+∆)−N(t) = 1, the window is instantaneously

reduced as

xt+∆ = G(xt) + o(∆), (2)

for some continuous functionG(·) such thatG(x) < x and G(xmin) = xmin. We assume that

G(·) is such that ifx1 < x2 then eitherG(x1) < G(x2) or G(x1) = G(x2) = xmin. The

1Congestion losses occur also when the window size reaches the practical limit of the total round trip pipe size (sum of the

linki bandwidth-delay product and the router buffer). Thisaspect of congestion losses will be addressed later in this section.

For presentation of the basic model, we assume here that there is no upper bound on the values that the window can take.
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assumption of continuity onG(·) implies that the sets(x) = {u ≥ x : G(u) ≤ x} is connected.

Define alsoH(x) = sup{u ≥ x : G(u) ≤ x} = sup s(x); we will also use the notationG−1(x)

to meanH(x). Note here that, unlike [4], we are assuming thatG(·) is a deterministic function.

This is true in new versions of TCP which decrease the window at most once in a round trip

time. Similar modeling assumption for decrease is also madein [8], [1]. The above continuous-

time evolution model can be obtained from a discrete-time evolution using the approach of [8].

For convenience, the approach is outlined in Appendix .

A. Incorporating a Bound on the Window Size

The window evolution process described above does not incorporate any bound on the maxi-

mum allowed window size. In practice, however, there will bean upper boundM on the window

size that the AWP is allowed to use. This bound usually is either the receiver’s advertised

window (which is the maximum number of packets that the receiving entity’s receive buffer can

accommodate) or the total round trip pipe size. The behaviorof the AWP under these two bounds

is very different. In the first case where the window is restricted by the receiver’s advertised

windowM , the window size stays at this value until a loss event takes place. While in the second

case whereM represents the round trip pipe size, reaching this limit results in an instantaneous

congestion loss and the window size is reduced. However, since the loss rate is assumed to be

function of window size alone, it follows that we can study the second case via the first case (for

details, see [4] which also addresses this issue for a constant loss rate). Hence in what follows

we will restrict ourselves to the case whereM represents the window limitation owing to the

receiver’s advertised window.

Assume that the range of the values of the window process is divided into the intervals

between points[Hj(xmin), Hj+1(xmin)] whereHj is j−fold composition ofH(·) with itself and

let H0(xmin)
∆
= xmin. Consider anM such thatM = Hm(xmin) for somem ≥ 1. Note that,

under our choice ofM , Hj(xmin) = Gm−j(M) with G0 ∆
= M and Gi = G(Gi−1). Under the

above definitions,x ∈ [Gi, Gi−1] ⇒ H(x) ∈ [Gi−1, Gi−2]. The case where such anm does not

exist, i.e.,Hm−1 < M < Hm for somem, is not possible since the definition ofG(·) depends

on xmin andM implicitly, and it ensures thatG(Gm−1) = xmin so thatHm = M .

We consider a further modification in the evolution of the window process{xt}; this is shown

in Figure 1. For this modified process, the window size is unbounded. However, whenx > G0,
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Fig. 1

EVOLUTION OF THE TRANSFORMED WINDOW PROCESS{xt}.

we assume that the loss rate is constant and equal toλ(G0) and that the window increase is

linear, i.e.,f(x) = 1 for x > G0. We also assume that if a loss event takes place whenx ≥ G0,

the window is dropped toG1 = G(M) = Hm−1(xmin). The evolution of the modified process

for x < G0 is unchanged, i.e., a loss event occurs with rateλ(xt) and the window is dropped

to G(xt) in case of a loss event whenxt < G0. Thus, the modified process has the following

evolution: the increase profile is given by

xt+∆ = xt + ∆f(xt) + o(∆).

Losses occur according to a Poisson process of rateλ(xt ∧ G0) and the window reduction in

case of a loss event in time interval(t, t + ∆) is

xt+∆ = G(xt ∧ G0).

Remark If the window size is bounded (as the case will be in the rest ofthis paper), so isλ(·).

In this scenario, it is sometimes convenient to assume that the processN(t) is actually derived
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from a standard Poisson processΛ(t) of unit rate so that a jump inΛ(t) results in a jump in

N(t) only with probability λ(xt)
supx λ(x)

.

B. Performance Measure

There can be various performance measures of interest in thecontext of the problem under

consideration. Most prominent of these (and the one most frequently used in literature) is

the expected window size. However, finding only expected window size may not give much

information about the window process itself. An analysis for the performance of an AWP should

also consider the stationary window size distribution. In this paper we are interested in obtaining

the stationary window size distribution of the AWP.

C. The Kolmogorov Equations

Let π(x) be the density function andΠ(x) be the distribution function of the (modified)xt

process (note that we are suppressing the dependence onM here.).

Let, for a fixedt, [t, t + ∆] be a small time interval. When the process is in equilibrium,the

probability of upcrossing levelx during [t, t + ∆] is

P{xt ∈ (x − ∆f(x), x)}P{no loss during[t, t + ∆]} = π(x)∆f(x)(1 − λ(x)∆) + o(∆)

Similarly, the probability of downcrossings is
∫ ∞

u=x
P{xt ∈ (u, u + du)}λ(G0)∆ =

∫ ∞

u=x
π(u)λ(G0)du∆ + o(∆) x ≥ G0,

∫ ∞

u=x
P{xt ∈ (u, u + du)}λ(u ∧ G0)∆ =

∫ ∞

u=x
π(u)λ(u ∧ G0)du∆ + o(∆) G1 < x ≤ G0,

∫ H(x)

u=x
P{xt ∈ (u, u + du)}λ(u)∆ =

∫ H(x)

u=x
π(u)λ(u)du∆ + o(∆) xmin ≤ x < G1.

In the steady state, the probability of up-crossing is equalto that of down-crossing. Thus, letting

∆ → 0, we obtain

f(x)π(x) =























∫ ∞
u=x π(u)λ(G0)du = λ(G0)Πc(x), x ≥ G0,

∫ G0

u=x π(u)λ(u)du + λ(G0)Πc(G0), G1 < x ≤ G0,
∫ H(x)
u=x π(u)λ(u)du, xmin ≤ x < G1.

Using integrating factor method for the Kolmogorov equation for x ≥ G0,

Πc(x) = Πc(G0)e−λ(G0)(x−G0), x ≥ G0.
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The basic idea involved in solving the Kolmogorov equationsobtained above is to use the

knowledge ofλ(·) to obtainπ(x) for x ∈ [G1, G0]. Now, one can findπ(x) for x ∈ [Gi+1, Gi]

from the knowledge ofπ(x) for x ∈ [Gi, Gi−1]. In this process, since we need to integrate over

different regions, integration constants appear naturally. These integration constants are computed

using continuity ofΠ(·) at the boundariesGi. Clearly, the form ofπ(·) will depend on that of

λ(·) and ofH(·).

In this paper we will be working with a bounded window process, and when we write

Kolmogorov equations for different protocols, we will not give the detailed equations as done

above. We will ignore the boundary conditions at the upper and lower bounds for sake of

presentation.

III. RELATIONS BETWEEN TWO SYSTEMS OFWINDOW EVOLUTION

We now consider two systems,1 and 2, having their own increase profile, decrease profile

and loss rates denoted byfi(·), Gi(·) andλi(·), respectively,i ∈ {1, 2}. We provide a condition

under which these two systems have related stationary probability distribution. Assuming that

G1(x) = G2(x) = G(x), ∀ x, and that in both the systems the upper bound on the window is

the same (and is equal toM), the Kolmogorov equations for the two systems are

fi(x)πi(x) =
∫ G−1(x)

u=x
λi(u)πi(u)du,

i.e.,

fi(x)

λi(x)

λi(x)πi(x)

E[λi(X)]
=

∫ G−1(x)

u=x

λi(u)πi(u)

E[λi(X)]
du

whereE[λi(X)] =
∫

x λi(x)πi(x)dx is the expected loss rate inith system. It is clear from the

above set of equations that iff1(x)
λ1(x)

= f2(x)
λ2(x)

, ∀x, the functionsλ1(x)π1(x)
E[λ1(X)]

and λ2(x)π2(x)
E[λ2(X)]

, both

being probability density functions integrating to unity,are equal for eachx. Thus,

Theorem 1:If two AWP controlled window evolutions are such that both have same drop

profile and both have the same ratio of increase profile to the loss rate for allx, then

π1(x)

π2(x)
= C

λ2(x)

λ1(x)
= C

f2(x)

f1(x)
,

whereC = E[λ1(X)]
E[λ2(X)]

.

This result is important as it gives us a way to analyse one system using the analysis of the

other related system. We use this result in Section IV-B where we use the observation that an
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AIMD protocol with constant loss rate and an MIMD protocol with linear loss rate satisfy the

requirement of Theorem 1 as for the first (AIMD) systemf(x) = α andλ(x) = λ while for the

second (MIMD) systemf(x) = αx andλ(x) = λx and both have same multiplicative decrease

factor. Since the analysis for the first system is known from [4], we use it to find stationary

distribution for the MIMD protocol with linear loss rate.

In the special case where both the system use multiplicativedecrease profile with a constant

decrease factorβ, we can get some more detailed equivalence between two related systems. This

is done next.

A. A Queueing Model for Multiplicative Decrease Protocols

Consider an AWP with a constant multiplicative decrease factor β. Introduce the transformation

zt = ln M − ln xt. We are assuming thatzt is unbounded, i.e., thatxmin = 0; we can do this

since we can use standard approach ([2, Chapter 14]) to analyse the case wherezt is bounded

by ln M − ln xmin from that wherezt is unbounded. The evolution of the processzt now is

as shown in Figure 2. It is evident from the transformation (as also visualised in the figure),

the multiplicative decrease of the processxt presents itself as aconstantincrease ofln β in

the evolution ofzt process. The evolution ofzt process suggests thatzt can be thought of as

workload process of a queue for which the service requirement of the customers is constant

(− ln β). If the increase profile and loss rate forxt process aref(·) and λ(·), then in thezt

process, the customer arrival rate isλ(Me−zt) and service rate isf(Me−zt )
Me−zt

, both depending on

the workload processzt. Thus we get a queueing system with constant service requirements

and state dependent service rates and arrival rates. This observation leads us to the following

theorem.

Theorem 2:Consider window evolutions in the two systems1 and2 introduced above, both

with same multiplicative decrease profile. Iff1(x)
λ1(x)

= f2(x)
λ2(x)

then the distribution of window size

just before loss instants issamein both the systems.

Proof The logarithmic transformation introduced above maps the two system into queueing

systems with constant service requirements. The proof thenfollows from [9, Theorem 3.3]

which says that for two queueing systems with same service requirement distribution, if the

ratio of the two arrival rates is same as that of their servicerates for any workload, then the

stationary distribution of the workload process seen just before an arrival is same for both the
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THE ORIGINAL WINDOW EVOLUTION (TOP) AND ITS TRANSFORMATION TO THE WORKLOAD PROCESS IN A QUEUE

(BOTTOM).

system. The proof follows from the relation between the lossrate in window process and the

arrival rate in the queueing system and that between the increase profile in the window process

and the service rate in the queueing system. •

Applying this result to the two systems satisfying the abovecondition where the first one is

AIMD with constant loss rate and the second one is MIMD with linear loss rate, we see that

the stationary distribution of the window process just before (and hence just after) loss instants

is same. Thus, the standard AIMD protocol with constant lossrate is same as MIMD protocol

with linear loss rate in the sense that the distribution of the window sizes just before losses are

the samefor the two.

Further, since Theorem 2 is valid for any two AWPs satisfyingthe required conditions, it is

seen that if for one of the AWPs the loss rate is constant, the PASTA property implies that the

stationary (time average) distribution of the window size in the system with constant loss rate

is same as the window size distribution just before losses ineither of the system.

Theorem 3:Consider window evolutions in the two systems1 and2 introduced above, both
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with same multiplicative decrease profile. Iff1(x)
λ1(x)

= f2(x)
λ2(x)

then the time average distribution of

window sizeπi(·) in the two systems is related by

π1(x)

π2(x)
= C

f2(x)

f1(x)
= C

λ2(x)

λ1(x)

whereC =
λ1(M)Πc

1(M)

λ2(M)Πc
2(M)

with Πc
i(·) denoting the complementary distribution function.

Proof Follows from [9, Theorem 3.1] which states that the two queueing systems if the ratio

of the two arrival rates is same as that of their service ratesfor any workload, then the density

corresponding to the time average stationary distributionof the two systems,π1(z) and π2(z)

are such thatπ1(z)r2(z) = Cπ2(z)r1(z) where ri(·) is the service rate in theith system and

C = Π1(0)
Π2(0)

. The proof follows from the relation between the loss rate inwindow process and the

arrival rate in the queueing system and that between the increase profile in the window process

and the service rate in the queueing system. •

Remark It is important to note that the window process with a lower bound of 1 and an upper

bound ofM < ∞ is always ergodic in the case of multiplicative decrease algorithm. This is

because for any bounded loss rate and positive increase profile, the window process{xt} is

irreducible. However, if we assumexmin = 0, then the corresponding unbounded transformed

queueing process need not always be ergodic. Thus, we can notalways use the truncation method

of [2] mentioned above. Hence it becomes necessary to solve the detailed Kolmogorov equations

for each case. This remark is, in particular, relevant for the case where the AWP follows a

multiplicative increase multiplicative decrease algorithm and the loss rate is constant. For this

case the transformed processzt is just the workload process of an M/D/1 queue. However we

can not use this approach forλ > − ln β owing to the above mentioned reason.

Remark The processzt
∆
= M −xt always represents the workload process in a queue with state

dependent arrival rate, service rate and service requirement.

Remark The results of this section indicate that if the losses come from an AQM scheme, then

there are many AWP-AQM pairs (i.e.,f(·) and λ(·)) which have the same drop profile (G(·))

and have similar performance (in the sense of Theorem 1). Moreover, if the decrease profile

is fixed to be a multiplicative one, we see that all these AWP-AQM pairs havesamewindow

distribution before drop instants (Theorem 2).

Having made the relation between the evolution of the windowprocess of the AWP and the

workload process in a queueing system, we now proceed to solve the Kolmogorov equations
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considering specific forms of theλ(·) and H(·) functions. As remarked above, analysing the

queueing system does not provide us with the stationary distribution for all the possible values

of the involved parameters. This makes it necessary to solvethe Kolmogorov equations for each

instance of the problem.

Till now the development did not consider exact form of loss rate λ(·) and AWP. In the

following sections we consider specific forms ofλ(·) to find the stationary window size distri-

bution and work out the solution of Kolmogorov equation for several available TCP versions.

We first analyse, under constant and linear loss rates, Scalable TCP [6] which represents a class

of MIMD protocols; this is done in Section IV. We then consider the situation of constant and

linearly increasing loss rates for HighSpeed TCP [7] in Section V.

We remark here that a linear loss rate,λ(x) = λx is suitable for the cases where, like NewReno

version of TCP, only one window reduction takes place irrespective of the number of losses in a

round-trip time and each packet is dropped with a fixed probability. Since high speed networks

are expected to have most of the losses coming from link layerlosses, assuming a fixed packet

drop probability (which may also include congestion losses) is reasonable, and important.

IV. MIMD P ROTOCOLS WITHBOUNDED WINDOW (SCALABLE TCP)

For the case of MIMD protocols, Scalable TCP being an important example of such protocols,

the window evolution is described as follows. In case of no loss in interval[t, t+∆], the window

increases to

xt+∆ = (xt + αxt∆ + o(∆)) ∧ M, (3)

for someα > 0 and an upper boundM on the window size. In case of a loss in interval[t, t+∆],

the window decreases to

xt+∆ = (βxt) ∨ 1 + o(∆),

where1 > β > 0 is the multiplicative decrease constant. The natural lowerbound ofxt ≥ 1

packet applies.

A. Constant Loss Rate

It is clear now that the transformationxt 7→ log xt

α

∆
= yt results in the process{yt} having

linear increase profile. The transformed window after a lossevent in interval[t, t + ∆] is given
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by

yt+∆ = (yt − θ)+ + o(∆),

whereθ
∆
= − log(β)

α
> 0. The transformed process{yt} can in itself be viewed as window evolution

under another AWP for which,ymin = 0 andH(y) = y+θ. Clearly, one can obtain the stationary

distribution for the original process{xt} from that of{yt}, hence it is enough to solve for the

stationary distribution of the process{yt} in order to get that for the process{xt}. Hence, in

the rest of this subsection we will work only with the process{yt}. As will be seen next, the

Kolmogorov equations for this process have some special structure which makes it easier to

solve.

Now, from the construction of the (virtually) bounded process of Section II,G0 = M = mθ

andGl = (m − l)θ, G(u) = (u − θ)+. This system has simple up and down crossing rates for

0 ≤ y ≤ (m − 1)θ,

π(y) = λ
∫ y+θ

u=y
π(u)du,

Π′(y) = λ(Π(y + θ) − Π(y)),

whereπ(·) andΠ(·) are the density and distribution functions respectively for the {yt} process.

Defining, for convenience,Πk(y) = Π(kθ + y) for 0 ≤ y ≤ θ, we have

Proposition 1: For 0 ≤ k ≤ m − 1 and0 ≤ x ≤ θ,

Πc
k(x) =

m−k−1
∑

j=0

Πc
k+j(0)

(λx)j

j!
.

Proof: See Appendix . •

Proposition 2: The constantsΠc
k(0) are given by

Πc
m−1(0) = [(am−1 − φ1(m − 1)) +

m−3
∑

s=1

(−1)s
m−2
∑

l=s

φs(l)(a
m−l−1 − φ1(m − l − 1)) +

(−1)m−2(a − b)φm−2(m − 2)]−1

and for0 ≤ k ≤ m − 2,

Πc
k(0) = Πc

m−1(0)[(am−k−1 − φ1(m − k − 1)) + (−1)m−k−2(a − b)φm−k−2(m − k − 2)

+
m−k−3

∑

s=1

(−1)s
m−k−2

∑

l=s

φs(l)(a
m−k−l−1 − φ1(m − k − l − 1))].
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with a = eλθ andφj(l) defined recursively as,φ0(0) = 0 and

φj+1(l) =
l−j
∑

s=1

φ1(s)φj(l − s), j ≥ 1.

Proof: See Appendix . •

Remark For the above case wherexmin = 1, the evolution of processlog M
α

− log xt

α
= log M

α
− yt

corresponds to the workload process of an M/D/1 queue with a bounded workload capacity of
log M

α
and service requirement ofθ for each customer. This is a system similar to that of [10]

with a difference that the model of [10] assumes that the customer that can make the workload

to exceed a certain fixed threshold is lost. While in our case such a customer is not completely

lost but is admitted with a service that makes the workload process equal to the threshold. Thus

the above result is of independent interest in queueing theory.

Remark We can also easily incorporate another value of0 < xmin 6= 1 in the above analysis.

As mentioned in Section III-A, if we assume thatxmin = 0, the transformationlog M
α

− log xt

α

corresponds to the workload process of a classical M/D/1 queue. For this case the moments and

the stationary window size distribution are well known.

1) MIMD with Unbounded Window: A D/M/1 Queue:Assuming thatM = ∞, i.e., there

is no bound on the window size, we can not use the results from above directly in this case.

Another approach to obtain the stationary distributionΠ(·) is to look at the process{yn, n ≥ 0}

embedded just after the loss instants of the transformed process with linear increase profile,{yt}.

Let {an, n ≥ 0} denote the time between two successive losses. Then,{yn} is a continuous state

space Markov chain which is given by the recursive equation

yn+1 = (yn + an − θ)+. (4)

We note that the loss processan is exponentially distributed with rateλ. Equation 4 is the

same as the recursive equation for the workload in aD/M/1 queue with interarrival timeθ and

mean service time1
λ
. The steady state distribution ofy, P (yn ≤ y) can be obtained as [11]

P (yn > y) = (1 −
s1

λ
)e−s1y, (5)

wheres1 is the root of the equations + λ = λes/θ in Re(s) < 0. The stability condition for the

workload process of this D/M/1 queue (and, equivalently, for the window size process{yt}) is

θ > 1
λ
.
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In order to obtain the distribution at a random arrival instant, we note that the window size

just before loss instant,y−
n+1, is given by

y−
n+1 = yn + an.

Sinceans are exponentially distributed with parameterλ,

P (y−
n+1 > y) = λ

∫ ∞

0
P (yn > y − a)e−λada

= λ
∫ ∞

y
e−λada + λ

∫ y

0
P (yn > y − a)e−λada

= e−λy + λ(1 −
s1

λ
)e−s1y

∫ y

0
e−(λ−s1)ada

= e−s1y.

Using PASTA property, the window size distribution at a random time is the same as that seen

by the loss arrivals. Sincey = log x
α

, the window distribution at any random time is

P (xt > x) = x−
s1
α (6)

Remark This approach can also be used for bounded window process when loss rate is large

enough so that the bound is attained with negligible probability.

B. MIMD Protocols with Linear Loss Rates

For the case of MIMD protocols, the window evolution is described as follows. In case of no

loss in interval[t, t + ∆], the window increases to (assuming no upper bound on window size)

xt+∆ = xt + αxt∆ + o(∆), (7)

for someα > 0. In case of a loss in interval[t, t + ∆], the window decreases to

xt+∆ = (βxt) ∨ 1 + o(∆),

where1 > β > 0 is the multiplicative decrease constant. The natural lowerbound ofxt ≥ 1

packet applies.

The window is bounded below by a constraint ofxmin packet. The window evolution under

such scenario is depicted in Figure 3. The figure shows that the window starts evolving from an

initial value of 1 packet. There are some multiplicative decrease of window owing to random

losses. The vertical axis is shown to be divided into variousintervalsIk
∆
= (β−k, β−k−1]. Here
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Fig. 3

WINDOW EVOLUTION UNDER MIMD PROTOCOL LIKESCALABLE TCPWITH A LOWER BOUND ON WINDOW SIZE.

β < 1 is the multiplicative decrease factor. The significance of these regions is that if a loss

event occurs when the window size is in intervalIk+1 then the reduced window is in regionIk.

The upper bound onx is M = β−m for somem.

For this case the following Kolmogorov equations can be obtained for x < β−m+1,

π(x)αx =
∫ u= x

β

u=x
π(u)λudu,

whereα is as in Equation 7. Denote now, by an abuse of notation,λ = λ
α
. The above Kolmogorov

equation is then

π(x)x =
∫ u= x

β

u=x
π(u)λudu.

Proposition 3: The steady state probability density function of the windowsize under linear

loss rate is given by, ifx ∈ Im−k, k ≥ 2,

π(x) = MPM

k
∑

i=1

c
(k)
i

λ

xβi−1
e

λx

βi−1 .

Herec
(k)
i are some constants obtained by normalisingπ(·) to get a probability measure andPM

is the probability mass atM .

Proof: See Appendix for expressions forPM and c
(k)
i . •

One is often interested in finding the moments of the window process. This can be obtained

easily without need to compute the coefficientsc
(k)
i as follows. We assume here thatxmin = 0

and M = ∞; this is expected to approximate the case when the upper and lower bounds are
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not attained frequently. The Kolmogorov equation obtainedabove is multiplied byxj−1, j ≥ 0

to obtain

π(x)xj = xj−1
∫ u= x

β

u=x
π(u)λudu

⇒
∫ ∞

x=0
π(x)xjdx =

∫ ∞

x=0
xj−1

∫ u= x
β

u=x
π(u)λududx

E[X]j =
∫ ∞

u=0

∫ u

x=βu
xj−1dxπ(u)λudu

⇒ E[X] =
1

−λ ln(β)

E[X]j+1 =
j

λ(1 − βj)
E[X]j =

j!

λjΠj
i=1(1 − βi)

E[X], j ≥ 1,

thus we get all the moments of the window size distribution. We see from the above that the

tail of the window size distribution is exponentially decaying and that all the moments exist.

V. H IGHSPEED TCP

HighSpeed TCP (HSTCP, [7]) updates the window in a round-trip time according to the

following rules: In case of no loss in a round-trip time during which the window size wasw, the

window is incremented by a window dependent quantity, denoteda(w), so that the new window

size isw + a(w), and in case of a packet drop on a round-trip time, the window is decremented

by a window dependent factorb(w) so that the new window size is(1 − b(w))w. The window

size is bounded by two valueswl andwh and

a(w) =
2w2b(w)p(w)

2 − b(w)
,

b(w) =
log( w

wl
)

log(wh

wl
)
(bh − bl) + bl,

p(w) = exp





log( w
wl

)

log(wh

wl
)
log(

ph

pl

) + log(pl)



 ,

wherebh = b(wh), bl = b(wl), pl = p(wl) andph = p(wh) are design parameters.

It is suggested in [7] to setwl = 31 andpl = 1.5
w2

l

. Note that

p(w) = νwµ (8)

where

µ =
log(ph

pl
)

log(wh

wl
)

(9)

DRAFT



19

and

ν =
pl

wµ
l

, b(w) = A log(w) + B

A =
bh − bl

log(wh

wl
)
, B = bl − A log(wl).

Sincebh < bl, A < 0 and sincewh ≥ wl, ph ≤ pl ⇒ µ < 0. We observe that, ifR represents

the round-trip time, then

w(t + R) = w(t) + a(w(t)) = w(t) +
2w2+µb(w)ν

2 − b(w)
. (10)

This equation shows the importance of parameterµ in understanding the behavior of HSTCP.

For example,

• µ = −2 implies that HSTCP is similar to the standard AIMD algorithmof TCP where in

each round-trip time, the window is incremented by a small value (in this case2b(w)ν
2−b(w)

≈

νb(w)).

• µ > −2 gives us a protocol whose window increment increases with the window, for

example, takingµ = −1 implies that HSTCP is similar to Scalable TCP in behavior since

now the increment is approximately linear in window size.

This observation suggests need for care in tuning the HSTCP parameters. It also implies the

possibility of existence of a choice ofµ ∈ (−2,−1) which is neither as aggressive as Scalable

TCP nor conservative as standard TCP. Now we analyse HSTCP assuming thatA ≈ 0 so that

the decrease factor is constant. Since the form of functionb(w) is a design choice (see [7]), this

form of b(w) can be chosen for simplicity of implementation. Further, for this choice ofb(w)

we can find the stationary window size distribution for the protocol for different values ofµ

using the following method.

A. Constant Loss Rate

First observe that forb(w) = B, the increase profile of the protocol isf(w) = 2νBw2+µ

2−B
and

assuming a constant loss rateλ(w) = λ, the Kolmogorov equations are

π(w)
2νBw2+µ

2 − B
=

∫ w
B

u=w
λπ(u)du

which is rewritten as

2νBw2+µ

λ(2 − B)
π(w) =

∫ w
B

u=w
π(u)du. (11)
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We now introduce a transformation, similar in spirit to whatwas done in Section IV-A. This

requires splitting the possible values ofµ into various regions and using separate transforms in

each of these:

• µ < −1: Define the process{yt} whose value at instantt is

yt =
λ(B − 2)

2νB(1 + µ)w1+µ
t

where, sinceµ < −1, the process{yt} is also non-negative. Now, the Kolmogorov equation

for the transformed process{yt} is

π̃(y) =
∫

y

B−(1+µ)

u=y
π̃(u)du.

• µ = −1: corresponds to Scalable TCP, a case we have already studied.

• µ > −1: Define the process{yt} whose value at instantt is

yt =
λ(2 − B)

2νB(1 + µ)w1+µ
t

where, sinceµ > −1, the process{yt} is also non-negative. Now, the Kolmogorov equation

for the transformed process{yt} is

π̃(y) =
∫ y

u=yB(1+µ)
π̃(u)du.

A further transformation ofy 7→ z = yB1+µ gives another protocol for which the Kol-

mogorov equation is

B1+µπ̂(y) =
∫ yB−(1+µ)

u=y
π̂(u)du.

The end process thus obtained can be thought of as window evolution under standard AIMD

algorithm of TCP where the increase profile,f(·) and the multiplicative decrease factor are

• f(x) = 1 and multiplicative decrease factor isB−(1+µ) < B < 1 whenµ < −1,

• f(x) = B1+µ and multiplicative decrease factor isB(1+µ) < 1 when0 > µ > −1,

and the loss rate seen by the process is constant, of unit rate, independent of the process. The

closed form solution for the standard TCP controlled windowevolution with constant loss rate

is known from [4] as this corresponds to the case of AIMD protocol with constant loss rate.
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B. Linear Loss Rate

We now consider the case where the loss rate seen by the windowprocess depends linearly

on the process, i.e.,λ(w) = λw. The Kolmogorov equations for this system are

π(w)
2νBw2+µ

2 − B
=

∫ w
B

u=w
λuπ(u)du

Defining another probability measurẽπ(w) by the transformation

π̃(w) =
wπ(w)

λE[W ]

on lines similar to that of Section III, we see that the above Kolmogorov equation becomes

2νBw1+µ

(2 − B)
π̃(w) =

∫ w
B

u=w
π̃(u)du.

Which is of the form of Equation 11 with1 + µ replacing2 + µ. Thus the method used to

solve Kolmogorov equations 11 can be employed here as well; in particular, the above system

of equations can be transformed to the one satisfied by standard AIMD protocol and results

from [4] can be invoked.

Remark The analysis of this section assumes that the multiplicative decrease factor is constant,

equal toB. Though this assumption restricts the range of parameter choices we can make in

order to tune HSTCP, the analysis gives important insights into dynamics of HSTCP controlled

window evolution, for example, the importance of parameterµ. An approximation similar to

ours has also been used in [13] to study router buffer behaviour under HSTCP controlled data

transfer.

VI. NUMERICAL RESULTS

We obtained time average density of the window process fromns-2[14] simulations for AIMD

protocol with constant loss rate and MIMD protocol with linear loss rate. The multiplicative

decrease factorβ = 0.5 for both the protocols and the loss rate,λa, for AIMD protocol was

set to either0.005 or 0.008. The MIMD protocol had an increase profile offm(x) = 1.01x as

in Scalable TCP while the AIMD protocol hadfa(x) = 1. The loss rate for MIMD protocol

was λ(x) = λmx where λm was chosen so that the conditions of Theorem 1 were satisfied.

This requirement is satisfied ifλm = 0.01λa, i.e., λm = 0.00005 or 0.00008. Figure 4 gives the

function πm(x) for MIMD and Cfa(x)πa(x)
fm(x)

whereC is λmEm[X]
λa

with Em[X] being the expected
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window size for MIMD protocol obtained from simulation. Theresults are as predicted by

Theorem 1, i.e.,πm(x) = λmEm[X]
λa

, ∀x. For the same experimental setup, we also obtained

the distribution of window sizes just before losses. The results are plotted in Figure 5 which

shows that, in agreement with Theorem 2, this distribution is same for the two systems. Now, we

compute the numerical values from our analysis of Section IV-B and compare it with simulation

results of Figure 4 for MIMD with linear loss rate. Figure 6 gives the comparison between

analysis and simulations. Since the density function is already plotted in Figure 4, here we plot

the (E[Xn])
1
n vs. n for 1 ≤ n ≤ 10. The analysis and simulations are seen to match well for

smaller values ofn (≤ 6); the small discrepancy for large values ofn could be owing to finite

simulation run-length.

Figure 7 gives complementary distribution function of the stationary window process for

HSTCP assuming that the multiplicative decrease factorb(w) is fixed to a constant valueB.

Recall the parametersA, B, µ and ν of Section V. We fixA = 0, B = 0.125 and ν so that
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2Bν
2−B

= 0.01 so that the case ofµ = −1 corresponds to the Scalable TCP [6]. The plot shows

results for values of the parameterµ = −0.9,−1.0,−1.2. In order to do this, we varied the

parameterspl and ph accordingly. The figure also gives numerical results from the analysis of

Section V. It is observed from the figure that one can approximate any increase function only

by varying µ while keeping the multiplicative drop factorb(w) constant. This simplifies the

algorithm as now there are not many independent design choices and, moreover, the analysis of

Section V combined with that of [4] provides closed form result for the stationary distribution.

We also note that the distribution is very sensitive to the value of the parameterµ.

VII. CONCLUSION

We considered a general congestion control protocol with a state dependent loss probability.

The Kolmogorov equations satisfied by the window evolution under this general setting were

obtained. These equations were solved for specific TCP implementations of Scalable TCP

and HighSpeed TCP under constant and linear loss rate assumptions. Various transformations
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introduced provided us with many equivalence relations. Most significant being that of the

relation between window evolution and the workload processin a finite capacity queueing

system with state dependent service and arrival rates and a state dependent deterministic service

requirement.

We have assumed that the loss rate,λ(·), is a given function. This may be the case in the

applications using AQM schemes and where congestion lossesare rare. This may also be the

case when using very high speed links so that the packet losses in a round trip time are due to

link layer losses. However, when most of the losses are owingto congestion losses, it appears

to be more realistic that the form ofλ(·) will itself be determined by the AWP. Also, it is

possible that, like in model of [12], the loss processλ(·) may itself be a stochastic process.

These considerations are topic of further research.

In the analysis of HSTCP we have chosen a multiplicative decrease algorithm with window

independent decrease factor. We now aim at using some approximations for the evolution of the

window process using the drop profile suggested in [7]. It is also important to study an optimal
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choice of the parameterµ that controls the behaviour of HSTCP.

APPENDIX

Consider an application using a general Adaptive Winodw Protocol. The evolution of the

window size{xt, t ≥ 0} at the end of the round trip times (RTT) is as follows:

x(t + RTT ) = (x(t) + I(x(t)))I{L(x(t))=0} + (x(t) + Il(x(t)) − D(x(t) + r(x(t))))I{L(x(t))=1}.

Here,

• RTT is the round trip time (assumed to be constant, corresponding to its average value).

• L(x) is a {0, 1} valued random variable which is0 is there is no loss in an RTT starting

with a window size ofx and takes value of1 when there is a loss in an RTT starting with

window size ofx. It is assumed that some form of the distribution ofL(·) is given to us.

An example of distribution ofL(·) is thatP (L(x) = 1) = 1 − P (L(x) = 0) = p̂x as used

in [8].
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• I(x) is the amount by which the window size increases in event of noloss in an RTT

starting with a window size ofx. For the congestion avoidance phase of standard TCP,

I(x) = 1. In this work we are assuming thatI(x) << x. Note that this assumption need

not be valid in general, for example in case of slow start phase of standard TCP,I(x) = x.

However, in the protocols studied in this paper, this is indeed true.

• D(x) is the amount by which the window is reduced in case of an eventof a loss when

window size isx. Note thatD(x) is not the window reduction in event of a loss in an

RTT starting with a window of x. For the congestion avoidance phase of standard TCP,

D(x) = 0.5x.

• r(x) is such thatx + r(x) ≤ x + I(x) is the window size at the instant of detection of loss

event. In general,r(x) will be a random variable over the interval[0, I(x)].

• Il(x) is the increasein window size due to positive acknowledgements in an RTT. Note

that Il(x) is a random variable over the interval[0, I(x)]. Il(x) = I(x) in the event of no

loss.

To avoid consideration of randomness inr(x) andIl(x), we have neglectedr(x) completely in

the evolution (see [8] which also makes such an implicit assumption in the evolution equation).

This can also be justified using our assumption thatI(x) << x. We will also assume that

Il(x) ≈ I(x). This is true in the situation when not many packets are lost in an RTT. Hence we

get the following approximation for the window evolution over RTTs,

x(t + RTT ) = (x(t) + I(x(t)))(1 − I{L(x(t))=1}) + (x(t) + I(x(t)) − D(x(t)))I{L(x(t))=1}.

This evolution equation coincides with the approximation of [8] when we assumeI(x) = 1 and

D(x) = 0.5x. We then obtain,

x(t + RTT ) − x(t) = I(x(t)) + D(x(t))I{L(x(t))=1}.

Normalizing time by RTT, and observing thatI{L(x(t))=1} is a {0, 1} valued random variable,

we Following the approach of [8], we approximate the distribution of L(x(t)) by that ofdN(t),

where {N(t), t ≥ 0} is a Poisson Process with a time varying stochastic rate function that

depends on the value of the window sizex(t). We get the stochastic differential equation

dx(t) = I(x(t))dt + D(x(t))dN(t).
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It is seen that the Kolmogorov equation can be written as, fork ≤ m − 2:

Π′
k(y) = λ(Πk+1(y) − Πk(y))

d

dy
Πk(y)eλy = λeλyΠk+1(y)

eλyΠk(y) = λ
∫ y

u1=0+
eλu1Πk+1(u1)du1 + Πk(0)

= λ
∫ y

u1=0+
eλu1Πk+1(u1)du1 + Πk(0)

= λ
∫ y

u1=0+

[

λ
∫ u1

u2=0+
eλu2Πk+2(u2)du2 + Πk+1(0)

]

du1 + Πk(0)

= λ
∫ y

u1=0+

[

λ
∫ u1

u2=0+

[

λ
∫ u2

u3=0+
eλu3Πk+3(u3)du3 + Πk+2(0)

]

du2 + Πk+1(0)
]

du1

+Πk(0)

= λi
∫ y

u1=0+

∫ u1

u2=0+
. . .

∫ ui−1

ui=0+
eλuiΠk+i(ui)dui . . . du2du1 +

i−1
∑

j=0

Πk+j(0)
(λy)j

j!
for k + i ≤ m − 1.

In particular, fori = m − k − 1, we get

eλyΠk(y) = λm−k−1
∫ y

u1=0+

∫ u1

u2=0+
. . .

∫ um−k−2

um−k−1=0+
eλum−k−1Πm−1(um−k−1)dum−k−1 . . . du2du1

+
m−k−2

∑

j=0

Πk+j(0)
(λy)j

j!
. (12)

For (m − 1)θ ≤ y, the up and down crossing rates are equated as follows:

Π′(y) = λ
∫ ∞

u=y+
π(u)du

Π′(y) = λ(1 − Π(y))

Π′
m−1(y) = λ(1 − Πm−1(y))

d

dy
Πm−1(y)eλy = λeλy

Πm−1(y)eλy =
∫ y

u=0
λeλudu + Πm−1(0)

= eλy − 1 + Πm−1(0).

DRAFT



28

Substituting this in Equation 12, we get,

eλyΠk(y) = λm−k−1
∫ y

u1=0+

∫ u1

u2=0+
. . .

∫ um−k−2

um−k−1=0+
eλum−k−1dum−k−1 . . . du2du1

+
m−k−1

∑

j=0

Πk+j(0)
(λy)j

j!
−

(λy)m−k−1

(m − k − 1)!

= eλy −
m−k−1

∑

j=0

(1 − Πk+j(0))
(λy)j

j!
. (13)

Now, noting thatΠk(0) = Πk−1(θ) and thatΠ(0) = Π0(0) = 0, and integrating the above, we

get a value ofΠ((m − 1)θ). Π(0) = Π0(0) = 0 because in any visit to this point, the window

instantaneously attains a positive value with probability1 because of constant window increase

rate and since otherwise we would require uncountably many Poisson instants occurring in a

continuum of time.

The original system of MIMD can be obtained by the reverse transformation. Proposition 1

thus follows. •

We know from Equation 13 that

eλyΠc
k(y) =

m−k−1
∑

j=0

Πc
k+j(0)

(λy)j

j!
, k ≤ m − 2.

Let Fk
∆
= Πc

k(0). From continuity ofΠ(·), it follows that

Fk+1 = 1 − Πk+1(0) = 1 − Πk(θ).

Thus,

eλθFk+1 =
m−k−1

∑

j=0

Fk+j
(λθ)j

j!

⇒ Fk = aFk+1 −
m−k−1

∑

j=1

Fk+j
bj

j!
, k ≤ m − 2,

whereb = λθ anda = eb. The above relation can be applied again to get

Fk = aFk+1 −
m−k−1

∑

j=1

Fk+j
bj

j!

= a2Fk+2 − a
m−k−2

∑

j=1

Fk+1+j
bj

j!
−

m−k−1
∑

j=1

Fk+j
bj

j!

= alFk+l −
l−1
∑

s=0

as
m−k−1−s

∑

j=1

Fk+s+j
bj

j!
, l ≤ m − k − 1, (k + l − 1 ≤ m − 2)
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= am−k−1Fm−1 −
m−k−2

∑

s=0

as
m−k−1−s

∑

j=1

Fk+s+j
bj

j!

= am−k−1Fm−1 −
m−k−1

∑

l=1

Fk+l

l
∑

j=1

al (
b
a
)j

j!

= am−k−1Fm−1 −
m−k−1

∑

l=1

Fk+lφ1(l)

= (am−k−1 − φ1(m − k − 1))Fm−1 −
m−k−2

∑

l=1

Fk+lφ1(l), (14)

whereφ1(l)
∆
=

∑l
j=1 al

b
a

j

j!
is independent ofk. Note thatφ1(1) = b, implying Fm−2 = Fm−1(a−

b). Using Equation 14 again, we get, fork ≤ m − 3,

Fk = (am−k−1 − φ1(m − k − 1))Fm−1 −
m−k−2

∑

l=1

φ1(l)[(a
m−k−l−1 − φ1(m − k − l − 1))Fm−1 −

m−k−l−2
∑

s=1

Fk+l+sφ1(s)]

= Fm−1[(a
m−k−1 − φ1(m − k − 1)) −

m−k−2
∑

l=1

φ1(l)(a
m−k−l−1 − φ1(m − k − l − 1))] +

m−k−2
∑

l=1

φ1(l)
m−k−l−2

∑

s=1

Fk+l+sφ1(s)

= Fm−1[(a
m−k−1 − φ1(m − k − 1)) −

m−k−2
∑

l=1

φ1(l)(a
m−k−l−1 − φ1(m − k − l − 1))] +

m−k−3
∑

l=1

φ1(l)
m−k−l−2

∑

s=1

Fk+l+sφ1(s)

= Fm−1[(a
m−k−1 − φ1(m − k − 1)) −

m−k−2
∑

l=1

φ1(l)(a
m−k−l−1 − φ1(m − k − l − 1))] +

m−k−2
∑

l=2

Fk+l

l−1
∑

s=1

φ1(l − s)φ1(s)

= Fm−1[(a
m−k−1 − φ1(m − k − 1)) −

m−k−2
∑

l=1

φ1(l)(a
m−k−l−1 − φ1(m − k − l − 1))] +

m−k−2
∑

l=2

Fk+lφ2(l)

= Fm−1[(a
m−k−1 − φ1(m − k − 1)) −

m−k−2
∑

l=1

φ1(l)(a
m−k−l−1 − φ1(m − k − l − 1))] +

m−k−2
∑

l=2

φ2(l)[(a
m−k−l−1 − φ1(m − k − l − 1))Fm−1 −

m−k−l−2
∑

s=1

Fk+l+sφ1(s)]
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= Fm−1[(a
m−k−1 − φ1(m − k − 1)) −

m−k−2
∑

l=1

φ1(l)(a
m−k−l−1 − φ1(m − k − l − 1)) +

m−k−2
∑

l=2

φ2(l)(a
m−k−l−1 − φ1(m − k − l − 1))] −

m−k−2
∑

l=2

φ2(l)
m−k−l−2

∑

s=1

Fk+l+sφ1(s)

= Fm−1[(a
m−k−1 − φ1(m − k − 1)) −

m−k−2
∑

l=1

φ1(l)(a
m−k−l−1 − φ1(m − k − l − 1)) +

m−k−2
∑

l=2

φ2(l)(a
m−k−l−1 − φ1(m − k − l − 1))] −

m−k−3
∑

l=2

φ2(l)
m−k−l−2

∑

s=1

Fk+l+sφ1(s)

= Fm−1[(a
m−k−1 − φ1(m − k − 1)) −

m−k−2
∑

l=1

φ1(l)(a
m−k−l−1 − φ1(m − k − l − 1)) +

m−k−2
∑

l=2

φ2(l)(a
m−k−l−1 − φ1(m − k − l − 1))] −

m−k−2
∑

l=3

Fk+l

l−2
∑

s=1

φ2(l − s)φ1(s)

= Fm−1[(a
m−k−1 − φ1(m − k − 1)) −

m−k−2
∑

l=1

φ1(l)(a
m−k−l−1 − φ1(m − k − l − 1)) +

m−k−2
∑

l=2

φ2(l)(a
m−k−l−1 − φ1(m − k − l − 1))] −

m−k−2
∑

l=3

Fk+lφ3(l)

= Fm−1[(a
m−k−1 − φ1(m − k − 1)) +

j
∑

s=1

(−1)s
m−k−2

∑

l=s

φs(l)(a
m−k−l−1 − φ1(m − k − l − 1))] +

(−1)j+1
m−k−2

∑

l=j+1

Fk+lφj+1(l), j + 1 ≤ m − k − 2

= Fm−1[(a
m−k−1 − φ1(m − k − 1)) +

m−k−3
∑

s=1

(−1)s
m−k−2

∑

l=s

φs(l)(a
m−k−l−1 − φ1(m − k − l − 1))] +

(−1)m−k−2Fm−2φm−k−2(m − k − 2)

⇒ Fk = Fm−1[(a
m−k−1 − φ1(m − k − 1)) +

m−k−3
∑

s=1

(−1)s
m−k−2

∑

l=s

φs(l)(a
m−k−l−1 − φ1(m − k − l − 1)) +

(−1)m−k−2(a − b)φm−k−2(m − k − 2)].

Here,

φj+1(l) =
l−j
∑

s=1

φj(l − s)φ1(s), j ≥ 1.

The above expression forFk is valid for k ≤ m− 2 if we defineφ0(0) = 0. Now, sinceF0 = 1,

we see that

1 = Fm−1[(a
m−1 − φ1(m − 1)) +

m−3
∑

s=1

(−1)s
m−2
∑

l=s

φs(l)(a
m−l−1 − φ1(m − l − 1)) +

(−1)m−2(a − b)φm−2(m − 2)]
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Fm−1 = [(am−1 − φ1(m − 1)) +
m−3
∑

s=1

(−1)s
m−2
∑

l=s

φs(l)(a
m−l−1 − φ1(m − l − 1)) +

(−1)m−2(a − b)φm−2(m − 2)]−1.

This proves Proposition 2. •

For x ∈ Im−k, k ≥ 2, We get the following Kolmogorov equation

π(x)x =











∫

x
β

u=x π(u)λudu x ∈ Im−k, k ≥ 2,
∫ M−
u=x π(u)λudu + PMλM x ∈ Im−1.

Let E[X] =
∫ M
x=1 π(x)xdx + PMM . Dividing both sides of the above Kolmogorov equation by

E[X] and definingπ̃(x) = xπ(x)
E[X]

and P̃M = PMM
E[X]

, we get

π̃(x) =











∫

x
β

u=x π̃(u)λdu x ∈ Im−k, k ≥ 2,
∫ M−
u=x π̃(u)λdu + P̃Mλ x ∈ Im−1.

This is the Kolmogorov equation for AIMD protocol under constant loss rate analysed in [4].

The difference is that here the slope of linear increase is unity instead of the parameterα in [4].

We know from [4] that the solution to above Kolmogorov equations is (the complementary

distribution function)

π̃(x) = P̃M

k
∑

i=1

c
(k)
i λ

βi−1
e
−x λ

βi−1 ,

where

c
(k)
i+1 =

c
(k−1)
i

1 − β−i

and

c
(k)
1 = eλMβk−1

[
k−1
∑

i=1

c
(k−1)
i e−λMβk−i

−
k

∑

i=2

c
(k)
i e−λMβk−i

]

and

P̃M = [
m

∑

i=1

c
(k)
i e−λMβk−i

]−1.

Hence, forx ∈ Im−k,

π(x) = P̃ME[X]
k

∑

i=1

c
(k)
i λ

βi−1

e
−x λ

βi−1

x
,
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and

Πc(x) =
∫ M−

u=x
π(u)du + PM

=
∫ Mβk−1

u=x
π(u)du + Πc(Mβk−1)

= P̃ME[X]
k

∑

i=1

c
(k)
i λ

βi−1

∫ Mβk−1

u=x

e
−x λ

βi−1

x
dx + Πc(Mβk−1)

= P̃ME[X]
k

∑

i=1

c
(k)
i λ

βi−1
Γ(0,

xλ

βi−1
,
Mλ

βi−k
) + Πc(Mβk−1)

Πc(Mβk) = P̃ME[X]
k

∑

i=1

c
(k)
i λ

βi−1
Γ(

Mλ

βi−1−k
,
Mλ

βi−k
) + Πc(Mβk−1).

Where Γ(0, a, b) =
∫ b
t=a

e−t

t
dt is the difference of the upper incomplete Gamma functions,

Γ(0, a, b) = Γ(0, a) − Γ(0, b) whereΓ(0, a) =
∫ ∞
t=a

e−t

t
dt. Now,

Πc(Mβ) = P̃ME[X]c
(1)
1 λΓ(0, Mλβ, Mλ) + PM

= P̃ME[X]c
(1)
1 λΓ(0, Mλβ, Mλ) + P̃M

E[X]

M
.

Thus we findΠc(Mβk), k ≥ 1 in terms ofE[X] since we know the other quantities in the

above expressions. Now, sinceΠc(1) = Πc(Mβm) = 1, we get the value ofE[X], henceπ(·)

for all values ofx. Proposition 3 thus follows.
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