Skip to main content
Log in

QoS handover management for multimedia LEO satellite networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Low earth orbit (LEO) satellite systems gained considerable interest towards the end of the previous decade by virtue of some of the appealing features that are endowed with, such as low propagation delay and the ability to communicate with handheld terminals. However, after the limited commercial success of the first networks of this kind, future satellite networks are now conceived as complementary rather than competitive to terrestrial networks. In this paper, we focus on one of the most influential factors in system performance, that is, the handover of a call. First, we provide a succinct review of the handover strategies that have been proposed in the literature. Then we propose two different satellite handover techniques for broadband LEO satellite systems that capitalize upon the satellite diversity that a system may provide. The proposed schemes cater for multimedia traffic and are based on the queuing of handover requests. Moreover, a deallocation scheme is also proposed according to which capacity reservation requests are countermanded when the capacity that they strive to reserve is unlikely to be used. Simulation studies further document and confirm the positive characteristics of the proposed handover schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Maral and M. Bousquet, Satellite Communications Systems: Systems, Techniques and Technology 2nd edition, (John Wiley & Sons, 1993).

  2. G. Comparetto and R. Ramirez, Trends in mobile satellite technology, IEEE Computer 51(2) (1997) 44–52.

    Google Scholar 

  3. A. Jamalipour, Low Earth Orbital Satellites for Personal Communication Networks, (Artech House, Boston-London, 1998).

    Google Scholar 

  4. P. Boedhihartono and G. Maral, Evaluation of the guaranteed handover algorithm in satellite constellations requiring mutual visibility, Int. J. Satell. Commun. Network 21(2) (2003) 163–182.

    Article  Google Scholar 

  5. A. Ganz, Y. Gong and B. Li, Performance study of low earth-orbit satellite systems, IEEE Trans. Commun. 42(2/3/4) (1994) 1866–1871.

    Article  Google Scholar 

  6. L. Wood, G. Pavlou and B. Evans, Managing diversity with handover to provide classes of service in satellite constellation networks, in: Proc. of the 19th AIAA International Communications Satellite Systems Conference (ICSSC’O1) (Toulouse, France, 2001).

  7. E. Del Re, R. Fantacci and G. Giambene. Efficient dynamic channel allocation techniques with handover queuing for mobile satellite networks, IEEE J. Select. Areas Commun. 13(2) (1995) 397–405.

    Article  Google Scholar 

  8. E. Del Re, R. Fantacci and G. Giambene, Handover queuing strategies with dynamic and fixed channel allocation techniques in low earth orbit mobile satellite systems, IEEE Trans. Commun. 47(1) (1999) 89–102.

    Article  Google Scholar 

  9. E. Del Re, R. Fantacci and G. Giambene, Different queuing policies for handover requests in low earth orbit mobile satellite systems, IEEE Trans. Veh. Technol. 48(2) (1999) 448–458.

    Article  Google Scholar 

  10. E. Del Re, R. Fantacci and G. Giambene, Characterization of user mobility in low earth orbit mobile satellite systems, Wireless Networks 6(3) (2000) 165–179.

    Article  Google Scholar 

  11. G. Maral, J. Restrepo, E. Del Re, R. Fantacci and G. Giambene, Performance analysis for a guaranteed handover service in an LEO constellation with a “Satellite-Fixed Cell” system, IEEE Trans. Veh. Technol. 47(4) (1998) 1200–1214.

    Article  Google Scholar 

  12. L. Boukhatem, D. Gaïti and G. Pujolle, A channel reservation algorithm for handover issues in LEO satellite systems based on a satellite-fixed cell coverage, in: Proc. of IEEE VTC 2001 (Rhodes, Greece, 6–9 2001).

  13. L. Boukhatem, A.L. Beylot, D. Gaïti and G. Pujolle, TCRA: A time-based channel reservation scheme for handover requests in LEO satellite systems, Int. J. Satell. Commun. Network 21(2) (2003) 227–240.

    Article  Google Scholar 

  14. I. Mertzanis, R. Tafazolli and B.G. Evans, Connection admission control strategy and routing considerations in multimedia (non-GEO) satellite networks, in: Proc. of IEEE VTC 1997 (Phoenix, AZ, USA, 1997) pp. 431–435.

  15. Z. Wang and T. Mathiopoulos, Analysis and performance evaluation of dynamic channel reservation techniques for LEO mobile satellite systems. in: Proc. of IEEE VTC 2001 (Rhodes, Greece, 6–9 2001).

  16. E. Papapetrou and F.-N. Pavlidou, QoS handover management in LEO/MEO satellite systems. Wireless Personal Communications 24(2) (2003) 89–204.

    Article  Google Scholar 

  17. E. Papapetrou, E. Stathopoulou and F.-N. Pavlidou, Supporting QoS over handovers in LEO satellite systems. in: Proc. of IST Mobile & Wireless Telecommunications Summit 2002 (Thessaloniki, Greece, 2002) pp. 388–393.

  18. E. Papapetrou and F.-N. Pavlidou, Analytic study of doppler-based handover management in LEO satellite systems, IEEE Trans. Aerosp. Electron. Syst. 41(3) (2005) 830–839.

    Article  Google Scholar 

  19. E. Papapetrou, S. Karapantazis, G. Dimitriadis and F.-N. Pavlidou, Satellite handover techniques for LEO networks, Int. J. Satell. Commun. Network 22(2) (2004) 231–245.

    Article  Google Scholar 

  20. E. Papapetrou, S. Karapantazis and F.-N. Pavlidou, Handover policies in LEO systems with satellite diversity, in: Proc. of the First International Conference on Advanced Satellite Mobile Systems—ASMS 2003 (Frascati, Italy, 2003).

  21. S. Karapantazis and F.-N. Pavlidou, Design issues and QoS handover management for broadband LEO satellite systems, IEE Proc. Commun. 152(6) (2005) 1006–1014.

    Article  Google Scholar 

  22. S. Cho, Adaptive dynamic channel allocation scheme for spotbeam handover in LEO satellite networks, in: Proc. of IEEE VTC 2000 (Boston, USA, 2000), pp. 1925–1929.

  23. S. Cho, I.F. Akyildiz, M.D. Bender and H. Uzunalioğlu, A new spotbeam handover management technique for LEO satellite networks, in: Proc. of IEEE GLOBECOM 2000 (San Francisco, USA, 2000) vol. 2, pp. 1156–1160.

  24. S. Cho, I.F. Akyildiz, M.D. Bender and H. Uzunalioğlu, A new connection admission control for spotbeam handover in LEO satellite networks, Wireless Networks 8(4) (2002) 403–415.

    Article  Google Scholar 

  25. S. Kalyanasundaram, E.K.P. Chong and N.B. Shroff, An efficient scheme to reduce handoff dropping in LEO satellite systems, Wireless Networks 7(1) (2001) 75–85.

    Article  Google Scholar 

  26. M. El-Kadi, S. Olariu and P. Todorova, Predictive resource allocation in multimedia satellite networks, in: Proc. of IEEE GLOBECOM 2001 (San Antonio, Texas, USA, 2001) vol. 4, pp. 2735–2739.

  27. H.N. Nguyen, S. Olariu and P. Todorova, A novel mobility model and resource reservation strategy for multimedia LEO satellite networks, in: Proc. of Wireless Communication and Networking Conference (WCNC’02) (Orlando, Florida, USA, 2002).

  28. P. Todorova, S. Olariu and H.N. Nguyen, A two-cell-lookahead call admission and handoff management scheme for multimedia LEO satellite networks, in: Proc. of the 36th Annual Hawaii International Conference on System Sciences (HICSS-36) (Big Island of Hawaii, USA, 2003).

  29. S. Olariu, S.R.A. Rizvi, R. Shirhatti and P. Todorova, Q-Win–A new admission and handoff management scheme for multimedia LEO satellite networks, Telecommunication Systems 22(1–4)(2003) 151–168.

    Article  Google Scholar 

  30. S. Karapantazis, P. Todorova and F.-N. Pavlidou, On call admission control and handover management in multimedia LEO satellite systems, in: Proc. of the 23rd AIAA International Communications Satellite Systems Conference (ICSSC 2005) (Rome, Italy, 2005).

  31. W. Zhao, R. Tafazolli and B.G. Evans, Combined handover algorithm for dynamic satellite constellations, Electronics Letters 32(7) (1996) 622–624.

    Article  Google Scholar 

  32. M. Gkizeli, R. Tafazolli and B. Evans, Performance analysis of handover mechanisms for non-geo satellite diversity based systems, in: Proc. of IEEE GLOBECOM 2001 (San Antonio, Texas, USA, 2001) vol. 4, pp. 2744–2748.

  33. M. Gkizeli, R. Tafazolli and B.G. Evans, Hybrid channel adaptive handover scheme for non-GEO satellite diversity based systems, IEEE Commun. Letters 5(7) (2001) 284–286.

    Article  Google Scholar 

  34. A.H. Zaim, G.N. Rouskas and H.G. Perros, Computing call-blocking probabilities in LEO satellite networks: The single-orbit case, IEEE Trans. Veh. Technol. 51(2) (2002) 332–347.

    Article  Google Scholar 

  35. I. Ali, N. Al-Dhahir and J.E. Hershey, Doppler characterization for LEO satellites, IEEE Trans. Commun. 46(3) (1998) 309–313.

    Article  Google Scholar 

  36. I. Ali, N. Al-Dhahir and J.E. Hershey, Predicting the visibility of LEO satellites, IEEE Trans. Aerosp. Electron. Syst. 35(4) (1999) 1183–1190.

    Article  Google Scholar 

  37. D.J. Bem, T.W. Wieckowski and R.J. Zielinski, Broadband satellite systems, IEEE Communications Surveys & Tutorials 3(1) (2000) 2–16. [Online]. Available: http://www.comsoc.org/livepubs/surveys

    Google Scholar 

  38. http://www.spaceandtech.com/spacedata/constellations/teledesic_specs.shtml

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos Karapantazis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karapantazis, S., Pavlidou, FN. QoS handover management for multimedia LEO satellite networks. Telecommun Syst 32, 225–245 (2006). https://doi.org/10.1007/s11235-006-9000-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-006-9000-6

Keywords

Navigation