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Abstract

The Internet is composed of a collection of inter-connected and self-administered Autonomous

Systems (ASms). Inter-AS routing is accomplished by having neighboring ASms exchange reachability

information via the Border Gateway Protocol. An AS is said to be a transit AS if it allows traffic from

other ASms to cross through it. In particular, transit ASms provide transit services for traffic between

customer and provider ASms.

In this article, we focus on maximizing the utilization of resources at transit ASms. In particular,

inter-AS links have been shown to be a bottleneck. To make better use of inter-AS links, we consider

the problem of balancing the load among inter-AS links. We refer to this problem as the Balanced-Flow

Assignment ProbleM (B-FAPM). We show that the B-FAPM is NP-hard, and thus, likely intractable. We

then present a heuristic protocol, the Balanced-Flow Assignment ProtocoL (B-FAPL), that balances the

out-bound traffic loads on inter-AS links. We show via simulation that the B-FAPL effectively balances

outgoing traffic over inter-AS links. Our solution is fully distributed and uses random matchings to assign

in-bound flows to out-bound inter-AS links.

I. INTRODUCTION

The Internet is composed of a collection of inter-connected and self-administered Autonomous Systems

(ASms). Routing in the Internet is divided into two categories: intra-AS routing and inter-AS routing. On

one hand, intra-AS routing protocols, such as RIP [Malkin, 1998] and OSPF [Moy, 1998], are used to

share reachability information between any two routers within the same AS. On the other hand, inter-AS

routing protocols are used to advertise reachability information between ASms. The global nature of



inter-AS routing requires that all ASms execute the same inter-AS routing protocol. The protocol chosen

for inter-AS routing in the Internet is the Border Gateway Protocol (BGP) [Rekhter and Li, 1995].

Traffic bottlenecks in an AS increase congestion and deteriorate the service provided by the AS to its

customers. In particular, inter-AS links commonly cause bottlenecks in transit ASms [Bressoud et al., 2003].

To alleviate this problem, transit traffic through an AS should be balanced among its inter-AS links. In

addition, balanced traffic reduces the utilization at each inter-AS link, and thus, each link is able to better

absorb temporary increases in traffic.

Future plans for the Internet include the support of real-time applications such as Voice over IP, Internet

TV etc. To support these applications, traffic engineering support is required for both intra-AS and inter-

AS routing protocols. By providing load balancing across inter-AS links, each inter-AS link has a greater

probability of maintaining spare bandwidth to support QoS reservations for real-time applications.

Several methods have been proposed to improve load balancing over intra-AS links [Fortz and Thorup, 2000],

[Fortz et al., 2002], [Apostolopoulos et al., 1999], [Guerin et al., 1997]. The load-balancing techniques

proposed in [Fortz and Thorup, 2000], [Fortz et al., 2002] change the costs of intra-AS links to direct

inter-AS traffic. However, BGP path selection is based on many path attributes. Hence, changing intra-AS

costs may not suffice to balance the loads over intra-AS links.

Other solutions attempt to provide QoS in inter-AS routing [Xiao et al., 2002] in a manner similar to

QoS extensions proposed for intra-AS routing [Apostolopoulos et al., 1999], [Guerin et al., 1997]. QoS

extensions are provided by adding QoS metrics to the original routing messages. However, BGP is a com-

plex protocol, whose path selection is based on many path attributes, and the interaction between these path

attributes causes many well-known routing anomalies [Griffin et al., 2002], [Cobb and Musunuri, 2004],

[Basu et al., 2002], [Musunuri et al., 2004]. The introduction of additional QoS attributes would increase

the complexity of BGP and has the potential of introducing new routing anomalies.

Traffic engineering in BGP [Awduche et al., 2002] may also be implemented by controlling the in-

bound and/or the out-bound traffic via service agreements between neighboring ASms. Traffic patterns

however may vary over time, in violation of the service agreement.

In this article, we first define the problem of out-bound traffic balancing over inter-AS links. We refer

to this problem as the Balanced-Flow Assignment ProbleM (B-FAPM). Next, we show that the B-FAPM

is NP-hard. We present a heuristic, the Balanced-Flow Assignment ProtocoL (B-FAPL), to solve this

problem. Throughout the article, we focus on the case of transit ASms. However, B-FAPL may be easily

extended to the case of stub ASms [Uhlig and Bonaventure, 2004]. B-FAPL uses random matchings

[Ghosh and Muthukrishnan, 1996] to assign in-bound flows to out-bound inter-AS links. In addition, B-



FAPL has the desirable properties of being distributed and scalable. Finally, we show via simulation that

the B-FAPL effectively balances outgoing traffic over inter-AS links.

II. INTER-AS ROUTING: BGP

In order for each AS to learn a path to all other ASms, neighboring ASms exchange routing information

via the Border Gateway Protocol (BGP) [Rekhter and Li, 1995]. A distinguishing feature of BGP is that

each router advertises, for each destination prefix, the full path of ASms that are traversed to reach the

destination prefix. BGP is thus referred to as a path-vectoring protocol. The motivation for choosing

path-vectoring as the basis for BGP, as opposed to more traditional approaches such as link-state or

distance vectors, is the avoidance of routing loops and the ability to implement flexible routing policies.

Each BGP router establishes a peering session with other BGP routers. A peering session is said to

be internal if both peers are contained in the same AS. A peering session is said to be external if the

peers are located in different ASms, and furthermore, they are joined directly by an inter-AS link. BGP

routers with external peering sessions are said to be border routers, because they lie at the “border” of

the AS.

Assume a router R is located in AS v, and it receives an advertised path P from a peer, where path

P leads to destination prefix d. Then, the advertised path contains the following attributes.

• local pref : A preference value indicating the ranking of P in the local routing policy of AS v. A

larger preference value indicates a greater preference for the path. This attribute is exchanged only

if two peers belong to the same AS.

• AS path: Sequence of ASms along the path to reach destination prefix d from the current AS v.

• MED: For a pair of ASms connected by more than one link, the Multi-Exit Discriminator (MED)

value indicates the preference of one link over another. A smaller MED value indicates a greater

link preference.

• next hop: The IP address of the next-hop border router. If the router R is an interior router, then

next hop is the IP address of the border router that is the exit point from AS v. If the router R is

a border router, then next hop is the IP address of the border router that is the entry point into the

neighboring AS.

From each peer, a router receives a path (potentially empty) to reach each destination prefix. From

this set of paths, the router must choose the “best” path and adopt it as its own path. The best path to

reach some destination d is chosen according to the algorithm given in Fig. 1 [Basu et al., 2002]. If a

router adopts a new path, i.e., if its best path is not its previously chosen path, then the router informs

each of its peers about the newly chosen path.



best(input A: set of paths advertised by peers to reach d)

{
1) A is reduced to only those paths with largest local pref value.

2) If |A| > 1, then reduce A to those paths with least AS path sequence length.

3) If |A| > 1, then separate A into disjoint subsets, where all paths in a subset exit via the

same neighboring AS. Reduce each subset to those paths with smallest MED value. Set

A to the union of the reduced subsets.

4) If |A| > 1, then:

a) If A has at least one path whose next hop is an external peer, then the router reduces

A to those paths whose next hop is an external peer.

b) If A has no paths whose next hop is an external peer, then the router reduces A to

those paths whose intra-AS cost from itself to the path’s border router is the least.

5) Finally, if |A| > 1, then use some deterministic tie breaker to reduce A to a single element.

6) The best path is the single element in A.

}

Fig. 1. Best Path Selection Algorithm

III. PROBLEM DEFINITION

Consider an AS v that provides transit service for traffic destined to l prefixes. We denote these

prefixes as p1, p2, . . . , pl−1, pl. We assume AS v contains m border routers, which are denoted by

b1, b2, . . . , bm−1, bm.

We assume each inter-AS link is assigned an agent in charge of balancing the traffic load. Throughout

the article, we use the terms agent and inter-AS link interchangeably. Let AS v contain n agents, which are

represented as a1, a2, . . . , an−1, an. The outgoing capacity of an agent ai is denoted by c(ai). Furthermore,

the set of destination prefixes that are reachable from agent ai (through its external peer) is denoted by

pf(ai).

Each agent ai maintains two matrices, t-ini and t-outi, as shown in the Fig. 2. Matrix t-ini stores the

in-bound traffic information of agent ai, while matrix t-outi stores the out-bound traffic information of

agent ai.

Matrix t-ini is indexed by destination prefix, and it returns the in-bound traffic volume of agent ai

destined to this prefix, as shown in Fig. 2. Before explaining matrix t-out, we define the term flow.

Definition 1: A flow is a tuple 〈aj , px〉 representing the traffic entering via agent aj and destined to



t-ini

prefix traffic

. . . . . .

px t-ini[px]

. . . . . .

t-outi

〈agent, prefix〉 traffic

〈. . . 〉 . . .

〈aj , px〉 t-outi[aj , px]

〈. . . 〉 . . .

Fig. 2. Traffic Matrices at Agent i

prefix px.

Each row in t-outi stores a flow and the corresponding amount of traffic of the flow that exits via agent

ai. The total out-bound traffic at an agent ai is denoted by t(ai). That is,

t(ai) =
∑

j,x

t-outi[aj , px]. (1)

The load at agent ai is calculated as follows.

load(ai) =
t(ai)
c(ai)

(2)

Note that the selection of a best path, according to Fig. 1, is influenced by intra-AS link costs, as

follows. From step 4(a) in Fig. 1, border routers prefer a path advertised by an external peer, provided the

paths advertised by internal peers are equally preferable until step three of the algorithm. Those routers

not choosing a path via an external peer, from step 4(b), choose the path advertised by the nearest border

router according to intra-AS cost values.

In general, the intra-AS cost value [Cisco Systems, 1997] assigned to each link is inversely proportional

to the capacity of the link, and does not consider traffic demands. Since loads on inter-AS links depend

on the choice of intra-AS cost values, BGP may not provide balanced loads on out-bound inter-AS links.

The above observation leads us to define the Balanced-Flow Assignment ProbleM (B-FAPM) as follows.

Given the t-in matrix associated with each agent, the t-out matrix at each agent must be found such that

following conditions hold.

1) For all i and x, t-ini[px] > 0 implies

t-ini[px] =
∑

j,j 6=i

t-outj [ai, px]

2) For all i,j, and x, t-outi[aj , px] > 0 implies both of the following.

• Prefix px is reachable through an external peer at the agent ai, i.e. px ∈ pf(ai).

• t-inj [px] > 0.



3) The standard deviation (σL) of the loads at the agents should be minimized, where

σL =

√∑n
i=1 (load− load(ai))2

n
(3)

Where load denotes the average load at all the agents.
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Fig. 3. Example Autonomous System v

A. Example

To explain the problem more clearly, let us consider the example shown in Fig. 3. AS v consists of

four border routers and four inter-AS links. Each inter-AS link between (AS ui, bi) is associated with an

agent ai. Agents a1 and a2 have the in-bound traffic to the reach destination prefixes p1 and p2, while

agents a3 and a4 have the external paths to reach destination prefixes p1 and p2.

As shown in Fig. 3, the out-bound capacities of agents a3 and a4 are 100 and 50 units, respectively.

The t-in matrices of agents a1 and a2 are shown in Fig. 4. Agent a1 receives 30 units of traffic destined

to prefix p1 and 15 units of traffic destined to prefix p2. Agent a2 receives 10 units of traffic destined to

prefix p1 and 20 units of traffic destined to prefix p2. Matrix t-in is empty (i.e., all elements are zero)

for both a3 and a4.

AS v should route its in-bound traffic such that the out-bound traffic load on the inter-AS links is as

balanced as possible. One such solution, shown in the Fig. 5, is as follows. Agent a1 routes its in-bound

traffic destined to p1 through the agent a3 and the in-bound traffic destined to p2 through the agent a4.

Agent a2 routes its in-bound traffic destined to p1 through a4 and the in-bound traffic destined to p2

t-in1

prefix traffic

p1 30

p2 15

t-in2

prefix traffic

p1 10

p2 20

Fig. 4. Traffic-in Matrices



t-out3

〈agent, prefix〉 traffic

〈a1, p1〉 30

〈a2, p2〉 20

t-out4

〈agent, prefix〉 traffic

〈a1, p2〉 15

〈a2, p1〉 10

Fig. 5. Traffic-out Matrices

through a3. Total out-bound traffic at a3 is equal to 50 units. Hence, the load at the agent a3 is equal

50%. Similarly, the total out-bound traffic at a4 is equal to 25 units. Hence, the load at the agent a4 is

also equal to 50%.

B. Assumptions

We use the following assumptions in our B-FAPM.

• Internal BGP (IBGP) uses the full-mesh peering scheme [Musunuri et al., 2004], i.e., every border

router advertises its chosen best path to every other router inside its AS.

• Agents are time synchronized. In particular, different phases in our protocol are time synchronized.

• To support traffic engineering, each AS can create Multi Protocol Label Switching (MPLS) tunnels

between any entry border router and any exiting border router.

• In-bound traffic, i.e., t-in matrices at the agents, is known a-priori and is static. Every AS maintains

an estimate of the in-bound traffic information. However, traffic estimates might be different during

normal and peak times of the day. These differences can be addressed by solving the problem for

each of these times using the in-bound traffic information collected during each of these.

IV. COMPLEXITY OF B-FAPM

Before presenting our heuristic, we show that B-FAPM is NP-hard by reducing an instance of the

Generalized Assignment Problem (GAP) [Shmoys and Tardos, 1993] to an instance of B-FAPM. An

instance of the GAP is defined as below:

Given the following:

• J : jobs.

• M : parallel machines.

• tj,m : processing time of job j on machine m.

• cj,m : cost of processing job j on machine m.

• Tm : total available processing time on machine m.



GAP, if possible, assigns each job to a machine, such that the processing time at a machine m does

not exceed Tm and the total processing cost is minimized. GAP remains NP-hard if the processing costs

are ignored [Lenstra et al., 1990]. Furthermore, the problem remains NP-hard even with the additional

simplifying assumption that processing time is constant on all machines, i.e., under the assumption that

tj,m is independent of m [Chekuri and Khanna, 2000]. We thus ignore processing costs, and assume a

constant processing time tj for each job j.

Next, we reduce an instance of GAP into an instance of B-FAPM. Let the B-FAPM have J +M agents

and one destination prefix. Let there be J in-bound flows, one per each of J agents. Also, let there be

an additional M agents, each of which can reach the destination prefix. We map each of job in GAP to

a distinct in-bound flow in B-FAPM, and each machine in GAP to a distinct agent that can reach the

destination prefix.

We next address processing times. If a job j is mapped to a flow f , then the constant processing time,

tj , of job j on any machine corresponds to the in-bound traffic volume (bit rate) of flow f in B-FAPM.

Lastly, the total available processing time on machine m, Tm, corresponds to the capacity (bit rate) of

its corresponding agent. B-FAPM assigns flows to agents such that the capacity of each agent is not

exceeded, i.e., so that the available processing time on each machine is not exhausted.

V. BALANCED-FLOW ASSIGNMENT PROTOCOL

We next present a distributed heuristic solution to assign the in-bound flows to the out-bound inter-AS

links such that the load on the inter-AS links is as balanced as possible. We refer to the heuristic as

the Balanced-Flow Assignment ProtocoL (B-FAPL). In-bound flows are given in the form of the t-in

matrices. B-FAPL finds the out-bound traffic assignment in the form of t-out matrices.

Agents in the B-FAPL participate in three phases: the initialization phase, the random matching phase

and the flow transfer phase. All these phases are time synchronized at all agents. In the initialization

phase, every agent assigns each of its in-bound flows from the t-in matrix to an agent at the nearest

border router. The nearest border router can be found by using the algorithm in Fig. 1. This is same

behavior as in the original BGP protocol.

Next, B-FAPL, at each agent, iteratively calls the next two phases to balance the out-going loads.

The random matching and flow transfer phases, shown in Figs. 6 and 7, were motivated by the load

balancing algorithms in [Ghosh and Muthukrishnan, 1996], [Ghosh and Muthukrishnan, 1994]. B-FAPL

takes two input parameters: Pm and iter. The probability of an agent choosing another particular agent

in the random matching phase is denoted as Pm. Parameter iter denotes the number of iterations that



each agent should call the random matching and the flow transfer phases. The value of iter depends on

the the network topology and the in-bound traffic. The value of Pm is assigned between 0.5 and 0.7.

Random Matching Phase at ai:

choose a random number p between 0 to 1

if p ≤ Pm

randomly choose another agent aj

Mi := {(ai, aj)}
inform aj that ai has chosen to match with it;

wait for all other agents to choose their match;

if any other ak has chosen ai to match with;

Mi := Mi ∪ {(ai, ak)}
for every j and k,

if (((ai, aj) ∧ (ai, ak)) ∈ Mi) ∧ (ak < aj)

Mi := Mi − {(ai, aj)}

Fig. 6. Random Matching Phase

In the random matching phase, every agent participates in choosing another agent with whom to match.

In the flow transfer phase, matching agents transfer flows between each other. Next, we explain each of

these phases in detail.

A. Random Matching Phase

The pseudo-code for the random matching phase at an agent ai is as shown in Fig. 6. Matching edges

are selected in two steps. In step one, each agent generates a uniform, real random variable between 0

and 1. If the generated random variable is less than or equal to Pm, then the agent randomly chooses an

agent and creates a tentative matching between itself and the chosen agent. In step two, if an agent is

involved in more than one tentative matching, then each agent removes all its tentative matchings except

the matching with the smallest id agent.

Random matching is simple, efficient, and does not require any centralized entity coordination. Time

complexity of the random matching phase is constant.



Flow Transfer Phase at ai:

01. if ((ai, aj) ∈ M) ∧ (load(ai) > load(aj))

02. traft := (t(ai) · c(aj)− t(aj) · c(ai))/(c(ai) + c(aj))

03. cpf := pf(ai) ∩ pf(aj)

04. xfer := ∅
05. for each agent agt and prefix pfx

06. if (pfx ∈ cpf ) ∧ (t-outi[agt, pfx] = traft)

07. xfer := xfer ∪ 〈agt, pfx, t-outi[agt, pfx]〉
08. t-outi[agt, pfx] := 0

09. traft := 0

10. let s-outi contain the flows of t-outi sorted

in non-decreasing order of traffic.

11. k := 1

12. while((traft > 0) ∧ (k < rows(s-outi))

13. let 〈agt, pfx〉 := s-outi[k]

14. if (pfx ∈ cpf ) ∧ (t-outi[agt, pfx] ≤ traft)

15. xfer := xfer ∪ 〈agt, pfx, t-outi[agt, pfx]〉
16. traft := traft − t-outi[agt, pfx]

17. t-outi[agt, pfx] := 0

18. if (pfx ∈ cpf ) ∧ (t-outi[agt, pfx] > traft)

19. if (split = 1 ∨ (split = 2 ∧ t-outi[agt, pfx] ≥ Thr))

20. xfer := xfer ∪ 〈agt, pfx, traft〉
21. t-outi[agt, pfx] := t-outi[agt, pfx]− traft

22. traft := 0

23. else if (split = 3)

24. traft := 0

25. k := k + 1

26. transfer the flows in xfer to aj

Fig. 7. Flow Transfer Phase



B. Flow Transfer Phase

Fig. 7 shows the pseudo-code of the flow transfer phase at an agent ai. Let us assume that agents

ai and aj have a matching between them, and load(ai) is greater than load(aj). In the flow transfer

phase, matching agents share their out-going traffic volume with each other. The agent with the higher

load calculates the transferable amount of traffic (denoted by traft). If agent ai’s load is greater, then it

should transfer traffic to aj such that loads at ai and aj become equal after the transfer. The transferable

amount of traffic from ai to aj is calculated by equating the loads at ai and aj after the transfer, as

follows.

t(ai)− traft

c(ai)
=

t(aj) + traft

c(aj)

t(ai) · c(aj)− traft · c(aj) = t(aj) · c(ai) + traft · c(ai)

traft =
t(ai) · c(aj)− t(aj) · c(ai)

c(ai) + c(aj)

Next, agent ai calculates the common set of prefixes (cpf ) that are reachable from both ai and aj .

This information is available locally at agent ai, because, we assumed every border router advertises

its best path to every other router inside its AS. From steps 4 to 25, agent ai marks the flows that are

transferable. In the end, agent ai transfers to agent aj all the flows that are marked.

The actual traffic transferred may be less than traft due to following. First, both ai and aj should

have a non-empty cpf , i.e., the set of prefixes reachable by both agents. If cpf is empty, then ai may

not be able to transfer any traffic to aj . Second, the actual traffic transferred also depends on the flow-

splitting policy of the ISP. Some ISPs support splitting of all the flows [Fortz and Thorup, 2000], i.e.,

part of the incoming traffic of a flow may exit via some agent, while the remaining part may exit via a

different agent. Some ISPs support constrained splitting, in which, a flow is allowed to be split only if

the traffic of that flow exceeds some threshold, Thr, while other ISPs do not allow any flow to be split

[Ben-Ameur and Gourdin, 2003].

From step 5 to 9, agent ai searches the t-outi matrix to find a flow whose traffic volume is exactly

equal to traft. If the agent is successful in finding such flow, then it marks that flow as transferable (i.e.,

adds the flow to set xfer) and assigns the required traffic volume, traft, to zero. If ai is unsuccessful

in finding such a flow, then the marking process continues from step 10. These steps are necessary to

avoid unnecessary flow splits.

At step 10, the flows are sorted in order of non-decreasing traffic. The remaining steps iterate over

these flows from the lowest traffic flow to the highest traffic flow. The iterations continue until there are

no more flows, or until ai finds enough flows to transfer traft units of traffic.



For some flow 〈agt, pfx〉, if pfx is in set cpf and its traffic t-outi[agt, pfx] is smaller than the remain-

ing traft (or equal to traft), agent ai adds the flow, 〈agt, pfx〉, and its traffic volume, t-outi[agt, pfx],

to the set of flows to transfer. Also, agent ai reduces traft by the amount of traffic transferred, i.e.,

traft − t-outi[agt, pfx].

For some flow 〈agt, pfx〉, if pfx is in set cpf and its traffic t-outi[agt, pfx] is greater than the

remaining traft, then there are three cases to consider. These cases depend on the splitting policies of

the ISPs. In Fig. 7, variable split stores the splitting policy of the ISP, where 1 = splitting allowed, 2 =

threshold splitting, and 3 = no splitting.

Splitting occurs under two conditions: either splitting is allowed (split = 1) or there is constrained

splitting and the flow has enough traffic to be split (split = 2∧ t-outi[agt, pfx] ≥ Thr). If either of these

holds, the flow is split. Thus, the flow, 〈agt, pfg〉, and the remaining traffic to be transferred, traft, are

added to the set of flows to be transferred. The output traffic of this flow is reduced by the amount that

will be transferred (t-outi[agt, pfx] := t-outi[agt, pfx]− traft, and traft is set to zero.

On the other hand, if the ISP does not allow splitting (split = 3), then traft is set to zero. This is

because all other flows in the iteration will have non-decreasing traffic, and therefore are to be large to

be transferred without splitting.

In the flow transfer phase shown in Fig. 7, from line one to four, it takes only constant time. From line

five to twenty five, each agent scans each row in the t-out matrix twice and sorts t-out matrix once. The

number of rows in the t-out matrix of an agent is at most equal to the total number of prefixes reachable

via that agent. Hence, the worst case time complexity of the flow transfer phase iteration is equal to

O(max(∀i, |pf(ai)log(pf(ai))|)), where |pf(ai)log(pf(ai))| is equal to number of prefixes reachable

via some agent ai.

VI. SIMULATION STUDY

In this section, we will the study performance of our B-FAPL on the synthetic ISP networks. We will

use two example ISPs to compare the performance. In the ISP-1 example, we assume that the AS v has

50 border routers, 25 neighboring ASms, and 300 destination prefixes. In the ISP-2 example, we assume

that the AS v has 70 border routers, 35 neighboring ASms, and 1000 destination prefixes. In both the

examples, we also assume the following.

• The intra-AS cost values between the pair of border routers is randomly distributed between 10 and

30 units.

• Each neighboring AS will have a path to a randomly chosen set of 5% to 10% of the total destination

prefixes.



• Each border router randomly creates an inter-AS link with 10% to 20% of the total neighboring

ASms.

• The out-bound capacity of the inter-AS links is randomly distributed between 20 and 60 units in

the increments of 10 units.

• Values of input parameters pm, iter are 0.7 and 100 respectively.

Before presenting the simulation results, lets consider another coordinated approach to create the

matchings. In the coordinated matching, a centralized entity helps in creating the matchings instead of

every agent distributively choosing the matchings. We will use the coordinated matching with full splitting

of flows for comparison in our simulation study. In each iteration, central entity divides the agents into

two sets A1 and A2, where the set A1 consists of top 50% of the agents with higher loads and the set

A2 consists of bottom 50% of the agents with lower loads. Central entity creates the matchings such that

no two agents from the same set Ai are matched. Intuitively, coordinated matching with full splitting

should perform better than our B-FAPL, which uses the randomized matchings. But the simulation results

show that the performance gain is very small. Next, we will present the simulation results on the ISP-1

example.

We created 300 in-bound random flows from the neighboring ASms with traffic volume ranging from

5 to 20 units. Graph, shown in the Fig. 8, presents variation in σL value as the number of iterations

(iter) increased to 100.

In the graph 8, we compared the σL values of three flavors of our B-FAPL, the coordinated matching

with full splitting (CM-FS) and the original BGP. Three flavors of B-FAPL include the random matching

with full splitting (RM-FS), the random matching with constrained splitting (RM-CS), and the random

matching with no splitting (RM-NS). In the RM-CS, threshold value, Thr, is equal to 12.5 units, i.e.,

flow is allowed to split if it belongs to top 50% of the flows with the higher traffic volume.

Original BGP protocol greedily assigns the in-bound flows to the agents without balancing the loads at

the agents. Value σL obtained from the original BGP is shown as the straight line. After 100 iterations,

the RM-NS, even with no flow splitting policy, decreases the σL value up to 52% as compared to the

original BGP. If we allow splitting of all the flows, the RM-FS decreases the σL value up to 65%. But,

If we allow constrained splitting, which allows splitting of only 50% of the flows with higher traffic

volume, RM-CS decreases the σL value up to 59%. This is important because [Feamster et al., 2003],

“in the Internet, traffic destined for the top 10% of prefixes accounts for 70% of the out-bound traffic ”.

Hence, we can get the balanced loads on the inter-AS links by splitting only a few number of flows. As

expected, the RM-FS performs better than the RM-CS and the RM-CS performs better than the RM-NS.



The CM-FS performs slightly better than RM-FS protocol during the first 50 iterations. Reason for

this performance gain is as follows. In the CM-FS, there is a better chance of two agents with high load

difference being matched. Hence, there will be a higher reduction in the σL value. After 50 iterations

RM-FS performs slightly better than the CM-FS. Performance of B-FAPL is comparable to CM-FS,

which requires centralized entity coordination.

In all three flavors of the B-FAPL, the σL value is decreased significantly during the first 30 iterations.

Hence, the number of iterations required is relatively linear to the number of border routers.
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In the current Internet, routing table of the BGP aware router contains around 90,000 prefixes [Bressoud et al., 2003],

[Feamster et al., 2003]. But Feamster et al. [Feamster et al., 2003] suggested ways to group the prefixes

to reduce the scale of the problem. As mentioned before, very few popular prefixes account for major

portion of the out-going traffic volume. Hence, we can further reduce the size of the traffic assignment

problem by considering only popular prefixes.

Next, we will consider a more realistic ISP-2 example with 1000 prefixes. In the ISP-2, we created

500 in-bound flows randomly from the neighboring ASms with the traffic volume ranging from 5 to 20

units. Graph, shown in the Fig. 9, presents the simulation results on the ISP-2 example. Results obtained

for ISP-2 example are very similar to the results in the previous example. Hence, B-FAPL performs well

even when the scale of the problem increased.

VII. LOAD BALANCING IN MULTI-HOMED STUB ISPS

We can divide ISPs in the current Internet into two different categories. This division is based on

whether the ISP transits traffic from neighboring ISPs or the ISP uses services from neighboring ISPs
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Fig. 10. Traffic Matrices

to send and receive its traffic. Former category is known as the transit ISP and later category is known

as the stub ISP. Stub ISPs could be multi-homed and single-homed. A multi-homed ISP is connected

to more than one upstream provider ISP, where as single-homed ISP is connected to only one upstream

provider ISP.

Until now, our article considers load balancing only in transit ISPs. We can extend our work to provide

inter-AS outgoing load balancing in multi-homed stub ISPs. For multi-homed stub ISPs, we need to make

two important changes to B-FAPM defined in section III. First, we need to change the definition of a

flow as following.

Definition 2: A flow is a tuple 〈sj , px〉 representing the traffic from a source aj and destined to prefix

px.

Second, each border router should be associated with an agent instead of inter-AS links. Updated traffic

matrices are shown in Fig. 10. Matrix t-ini stores the in-bound traffic information of source si, while

matrix t-outk stores the out-bound traffic information of agent ak.

Now, agents iteratively improve the t-out matrices by using B-FAPL defined in section V.



VIII. RELATED WORK

Many works address the problem of traffic engineering in intra-AS routing. Fortz et al. [Fortz and Thorup, 2000]

studied the problem of assigning intra-AS costs in order to balanced the load on all links. Their solution

is based on the local search heuristic. Other solutions [Apostolopoulos et al., 1999], [Guerin et al., 1997]

provide QoS by adding QoS metrics to the original routing messages. These solutions do not consider

the inter-AS traffic and they don’t balance the loads on inter-AS links.

In [Xiao et al., 2002], the authors propose a QoS extension to BGP. In their solution, each BGP update

message carries an Available Bandwidth Index (ABI) metric. Their technique is scalable and efficient.

However, BGP is already a complex protocol and plagued with many forms of routing anomalies (see

[Griffin et al., 2002], [Cobb and Musunuri, 2004], [Basu et al., 2002], [Musunuri et al., 2004]) due to

the interaction between path attributes. The introduction of additional QoS attributes would increase

the complexity of BGP and has the potential of introducing new routing anomalies. Awduche et al

[Awduche et al., 2002] suggested that inter-AS traffic engineering is possible by controlling in-bound

and out-bound traffic. But they did not provide any solution to control the traffic.

Bressoud and Rastogi [Bressoud et al., 2003] solved an optimization problem, in which, for each

incoming flow, an AS selects an outgoing inter-AS link such that capacity constraint of the inter-AS

link is obeyed and intra-AS routing link cost of all incoming flows is minimized. This work considers

inter-AS traffic. However, they don’t balance the outgoing loads on the inter-AS links and their solution

is centralized as opposed to our distributed solution.

Authors in [Uhlig and Bonaventure, 2004] designed an out-bound traffic engineering technique for stub

ASms. Their solution is based on an evolutionary algorithm, which solves a multi-objective optimization

problem. Their solution deals only with multi-homed stub ASms, as opposed to our solution, which can

be used in both stub and transit ASms. Also, their solution requires a centralized coordination entity.

B-FAPL is a distributed protocol, and it does not require any centralized coordination. However, B-FAPL

does not deal with multi-objective optimizations.

IX. SUMMARY AND CONCLUDING REMARKS

BGP is the standard inter-AS routing protocol in the Internet. To improve the utilization of resources

at transit ASms, we defined B-FAPM and proved that B-FAPM is NP-hard. We proposed a heuristic

B-FAPL, which assigns the in-bound flows to the inter-AS links such that out-bound load on the inter-

AS links is as balanced as possible. B-FAPL is efficient and distributed. We also extended our work to

provide inter-AS load balancing for the case of multi-homed stub ASes.



Future directions for extending our work are as follows. In B-FAPL, each agent creates the matchings

without knowledge about the loads at other agents. We would like to investigate matching techniques in

which every agent will have partial knowledge about the loads at some random set of other agents. This

type of ivestigation is useful, If ASes are using route-reflection clustering to mitigate scalability problems

in distributing external BGP paths inside the AS.

In addition, we have assumed that the in-bound flows are static. We would like to investigate the

removal of this restriction from B-FAPL to provide online traffic engineering.
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