Skip to main content
Log in

On the advantages of optimal end-to-end QoS budget partitioning

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

We investigate the optimal partitioning of the end-to-end network QoS budget to quantify the advantage of having a non-uniform allocation of the budget over the links in a path. We formulate an optimization problem that provides a unified framework to study QoS budget allocation. We examine the underlying mathematical structure for the optimal partitioning and dimensioning equations. In the context of network dimensioning, we then show that optimal partitioning can bring large cost reductions as compared with equal partitioning based on the results on small networks.

More importantly, we also find that optimal partitioning gives significant improvements in robustness in the presence of failed components and in fairness when the traffic demand is different from the forecast, two effects that had not been observed in previous work and that can have a significant effect on network operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Awduche, D. (1999). MPLS and traffic engineering in IP networks. IEEE Communications Magazine, 37(12), 42–47.

    Article  Google Scholar 

  2. Barabasi, A.-L., Albert, R., & Jeong, H. (1999). Mean-field theory for scale-free random networks. Physica A, 272, 173–187.

    Article  Google Scholar 

  3. Bertsekas, D. (1999). Nonlinear programming (2nd ed.). Athena Scientific.

  4. Blake, S., Black, D., Carlon, M., Davies, E., Wang, Z., & Weiss, W. (1998). An architecture for differentiated services. RFC 2475.

  5. Braden, R., Clark, D., & Shenker, S. (1994). Integrated services in the Internet architecture: an overview. RFC 1633.

  6. Braden, R., Zhang, L., Berson, S., Herzog, S., & Jamin, S. (1997). Resource reservation protocol (RSVP)—version 1 functional specification. RFC 2205.

  7. Chang, C.-S. (2000). Performance guarantees in communication networks. Berlin: Springer.

    Google Scholar 

  8. Cho, H., Girard, A., & Rosenberg, C. (2005). On optimal end-to-end QoS budget partitioning in network dimensioning. In Proceedings of the 19th ITC (pp. 1445–1454).

  9. de Veciana, G., & Walrand, J. (1995). Effective bandwidths: call admission, traffic policing and filtering for ATM networks. Queueing Systems, 20, 37–59.

    Article  Google Scholar 

  10. Diwan, A., Kuri, J., & Kumar, A. (2002). Optimal per-node rate allocation to provide per-flow end-to-end delay guarantees in a network of routers supporting guaranteed service class. In Proceedings of the IEEE ICC (Vol. 2, pp. 1112–1117).

  11. Elsayed, K. M. F. (2005). A framework for end-to-end deterministic-delay service provisioning in multiservice packet networks. IEEE Transactions on Multimedia, 7(3), 563–571.

    Article  Google Scholar 

  12. Ferrari, D., & Verma, D. (1990). A scheme for real-time channel establishment in wide-area networks. IEEE Journal on Selected Areas in Communications, 8(3), 368–379.

    Article  Google Scholar 

  13. Filsfils, C., & Evans, J. (2002). Engineering a multiservice IP backbone to support tight SLAs. Computer Networks, 40(1), 131–148.

    Article  Google Scholar 

  14. Firoiu, V., & Towsley, D. (1996). Call admission and resource reservation for multicast sessions. In Proceedings of IEEE INFOCOM (Vol. 1, pp. 94–101).

  15. Floyd, S. (1994). TCP and explicit congestion notification. ACM SIGCOMM Computer Communication Review, 24(5), 8–23.

    Article  Google Scholar 

  16. Girard, A. (1990). Routing and dimensioning in circuit-switched networks. Reading: Addison-Wesley.

    Google Scholar 

  17. Girard, A. (1993). Revenue optimization of telecommunication networks. IEEE Transactions on Communications, 41(4), 583–591.

    Article  Google Scholar 

  18. Girard, A. (1998). The common structure of packet- and circuit-switched network synthesis. In B. Sansò & P. Soriano (Eds.), Telecommunications network planning (pp. 101–120). Dordrecht: Kluwer Academic (Center for Transportation Research 25th Anniversary Series).

    Google Scholar 

  19. Girard, A., Liau, B., & Boumzebra, N. (1991). Routing optimization and dimensioning of networks with revenues: numerical results. In Proceedings of ITC Specialist Seminar (pp. 153–164).

  20. Girard, A., Rosenberg, C., & Cho, H. (2002). Optimal performance partitioning for networks with envelope-regulated traffic. In Proceedings of ITC Specialist Seminar.

  21. Girard, A., & Zidane, R. (1995). Revenue optimization of B-ISDN networks. IEEE Transactions on Communications, 43(5), 1992–1997.

    Article  Google Scholar 

  22. Gopalan, K., Chiueh, T., & Lin, Y.-J. (2004). Delay budget partitioning to maximize network resource usage efficiency. In Proceedings of IEEE INFOCOM (Vol. 3, pp. 2060–2071).

  23. Guerin, R. A., & Orda, A. (1999). QoS routing in networks with inaccurate information: theory and algorithms. IEEE/ACM Transactions on Networking, 7(3), 350–364.

    Article  Google Scholar 

  24. Harmantzis, F. C., Hatzinakos, D., & Lambadaris, I. (2003). Effective bandwidths and tail probabilities for Gaussian and stable self-similar traffic. In Proceedings of IEEE ICC (Vol. 3, pp. 1515–1520).

  25. Kelly, F. P. (1988). Routing in circuit-switched networks: optimization, shadow prices and decentralization. Advances in Applied Probability, 20, 112–144.

    Article  Google Scholar 

  26. Kelly, F. P. (1991). Effective bandwidths at multi-class queues. Queueing Systems, 9, 5–16.

    Article  Google Scholar 

  27. Kelly, F. P. (1991). Loss networks. The Annals of Applied Probability, 1(3), 319–378.

    Google Scholar 

  28. Kelly, F. P. (1996). Notes on effective bandwidths. In F. Kelly, S. Zachary & I. Ziedins (Eds.), Royal statistical society lecture notes series: Vol. 4. Stochastic networks: theory and applications (pp. 141–168). Oxford: Oxford University Press.

    Google Scholar 

  29. Kleinrock, L. (1975). Queuing systems. New York: Wiley.

    Google Scholar 

  30. Kontovasilis, K., & Mitrou, N. (1997). Effective bandwidths for a class of non Markovian fluid sources. ACM SIGCOMM Computer Communications Review, 27(4), 263–274.

    Article  Google Scholar 

  31. Likhanov, N., Mazumdar, R. R., & Theberge, F. (2005). Providing QoS in large networks: statistical multiplexing and admission control. In E. K. Boukas & R. P. Malhamé (Eds.), Analysis, control and optimization of complex dynamic systems. Berlin: Springer.

    Google Scholar 

  32. Lin, F. Y. S. (1993). Allocation of end-to-end delay objectives for networks supporting SMDS. In Proceedings of IEEE GLOBECOM (Vol. 3, pp. 1346–1350).

  33. Lorenz, D. H., & Orda, A. (1998). QoS routing in networks with uncertain parameters. IEEE/ACM Transactions on Networking, 6(6), 768–778.

    Article  Google Scholar 

  34. Lorenz, D. H., & Orda, A. (2002). Optimal partition of QoS requirements on unicast paths and multicast trees. IEEE/ACM Transactions on Networking, 10(2), 102–114.

    Article  Google Scholar 

  35. Lorenz, D. H., Orda, A., & Raz, D. (2003). Optimal partition of QoS requirements for many-to-many connections. In Proceedings of IEEE INFOCOM (Vol. 3, pp. 1670–1679).

  36. Lorenz, D. H., Orda, A., Raz, D., & Shavitt, Y. (2000). Efficient QoS partition and routing of unicast and multicast. In Proceedings of IEEE IWQoS (pp. 75–83)

  37. Luenberger, D. (2003). Linear and nonlinear programming (2nd ed.). Berlin: Springer.

    Google Scholar 

  38. McDysan, D. E., & Spohn, D. L. (1998). ATM theory and application. New York: McGraw-Hill.

    Google Scholar 

  39. Mo, J., & Walrand, J. (2000). Fair end-to-end window-based congestion control. IEEE/ACM Transactions on Networking, 8(5), 556–567.

    Article  Google Scholar 

  40. Nagarajan, R., Kurose, J., & Towsley, D. (1993). Local allocation of end-to-end quality-of-service in high-speed networks. In Proceedings of IFIP workshop on performance analysis of ATM systems (pp. 99–118).

  41. Orda, A., & Sprintson, A. (2002). A scalable approach to the partition of QoS requirements in unicast and multicast. In Proceedings of IEEE INFOCOM (Vol. 2, pp. 685–694).

  42. Romanow, A., & Floyd, S. (1995). Dynamics of TCP traffic over ATM networks. IEEE Journal on Selected Areas in Communications, 13(4), 633–641.

    Article  Google Scholar 

  43. Rosen, E., Viswanathan, A., & Callon, R. (2001). Multiprotocol label switching architecture. RFC 3031.

  44. Schulzrinne, H., & Rosenberg, J. (1999). The IETF Internet telephony architecture and protocols. IEEE Network, 13(3), 18–23.

    Article  Google Scholar 

  45. Sun, X., & Girard, A. (1998). A fast numerical algorithm for multi-rate network synthesis. Telecommunication Systems, 10, 355–388.

    Article  Google Scholar 

  46. Verma, S., Pankaj, R. K., & Leon-Garcia, A. (1998). Call admission and resource reservation for guaranteed QoS services in Internet. Computer Communications, 21(4), 362–374.

    Article  Google Scholar 

  47. White, P. (1997). RSVP and integrated services in the Internet: tutorial. IEEE Communications Magazine, 35(5), 100–107.

    Article  Google Scholar 

  48. Whitt, W. (1993). Tail probabilities with statistical multiplexing and effective bandwidths in multi-class queues. Telecommunication Systems, 2, 71–107.

    Article  Google Scholar 

  49. Wu, T., & Knightly, E. W. (1999). Buffering vs. smoothing for end-to-end QoS: fundamental issues and comparison. In Proceedings of IEEE performance’99, August 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Girard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, H., Girard, A. & Rosenberg, C. On the advantages of optimal end-to-end QoS budget partitioning. Telecommun Syst 34, 91–106 (2007). https://doi.org/10.1007/s11235-007-9030-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-007-9030-8

Keywords

Navigation