Skip to main content
Log in

Harmonic wavelet approximation of random, fractal and high frequency signals

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The analysis of a periodic signal with localized random (or high frequency) noise is given by using harmonic wavelets. Since they are orthogonal to the Fourier basis, by defining a projection wavelet operator the signal is automatically decomposed into the localized pulse and the periodic function. An application to the analysis of a self-similar non-stationary noise is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abry, P., Goncalves, P., & Lévy-Véhel, J. (2002). Lois d’éschelle, Fractales et ondelettes. Hermes.

  2. Aubry, J.-M., & Jaffard, S. (2002). Random wavelet series. Communications Mathematical Physics, 227, 483–514.

    Article  Google Scholar 

  3. Borgnat, P., & Flandrin, P. (2003). On the chirp decomposition of Weierstrass-Mandelbrot functions, and their time-frequency interpretation. Applied and Computational Harmonic Analysis, 15, 134–146.

    Article  Google Scholar 

  4. Cattani, C. (2005). Harmonic wavelets towards solution of nonlinear PDE. Computers and Mathematics with Applications, 50(8–9), 1191–1210.

    Article  Google Scholar 

  5. Cattani, C. (2008). Wavelet extraction of a pulse from a periodic signal. In M. Gavrilova et al. (Eds.), LNCS. Proceedings of the international conference on computational science and its applications (ICCSA 2008) (pp. 1202–1211). Perugia (It), June 30–July 3, 2008. Berlin: Springer.

    Chapter  Google Scholar 

  6. Cattani, C. (2008). Shannon wavelets theory. Mathematical Problems in Engineering, 2008, 24. doi:10.1155/2008/164808. Article ID 164808.

    Google Scholar 

  7. Cattani, C. (2009). Fractals based on harmonic wavelets. In O. Gervasi et al. (Eds.), LNCS : Vol. 5592. Proceedings of the international conference on computational science and its applications (ICCSA 2009) (pp. 729–744). Seoul (Kr), June 29–July 2, 2009. Berlin: Springer.

    Chapter  Google Scholar 

  8. Cattani, C., & Rushchitsky, J. J. (2007). Wavelet and wave analysis as applied to materials with micro or nanostructure. Series on advances in mathematics for applied sciences. Singapore: World Scientific.

    Google Scholar 

  9. Chui, C. K. (1992). An introduction to wavelets. New York: Academic Press.

    Google Scholar 

  10. Coifman, R., & Meyer, Y. (1991). Remarques sur l’analyse de Fourier á fenetre. Comptes Rendus de l’Académie des Sciences de Paris, 312, 259–261.

    Google Scholar 

  11. Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia: SIAM.

    Google Scholar 

  12. Härdle, W., Kerkyacharian, G., Picard, D., & Tsybakov, A. (1998). Lecture notes in statistics : Vol. 129. Wavelets, approximation, and statistical applications. Berlin: Springer.

    Google Scholar 

  13. Lepik, Ü. (2003). Exploring irregular vibrations and chaos by the wavelet method. Proceedings of the Estonian Academy on Sciences Engineering, 9, 109–135.

    Google Scholar 

  14. Li, M., Zhao, W., Long, D., & Chi, Ch. (2003). Modeling autocorrelation functions of self-similar teletraffic in communication networks based on optimal approximation in Hilbert space. Applied Mathematical Modelling, 27(3), 155–168.

    Article  Google Scholar 

  15. Mallat, S. (1998). A wavelet tour of signal processing. San Diego: Academic Press.

    Google Scholar 

  16. Meyer, Y. (1990). Ondelettes et opérateurs. Paris: Hermann.

    Google Scholar 

  17. Mouri, H., & Kubotani, H. (1995). Real-valued harmonic wavelets. Physics Letters A, 201, 53–60.

    Article  Google Scholar 

  18. Muniandy, S. V., & Moroz, I. M. (1997). Galerkin modelling of the Burgers equation using harmonic wavelets. Physics Letters A, 235, 352–356.

    Article  Google Scholar 

  19. Newland, D. E. (1993). Harmonic wavelet analysis. Proceedings of the Royal Society of London, Series A, 443, 203–222.

    Article  Google Scholar 

  20. Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  21. Weierstrass, K. (1967) Über continuirliche Functionen eines reelles Arguments, die für keinen Werth des letzteren einen Bestimmten Differentialquotienten besitzen. In König. Akad. der Wissenschaften, Berlin, July 18, 1872; Reprinted in: K. Weierstrass, Mathematische Werke II (pp. 71–74). New York: Johnson.

  22. Wojtaszczyk, P. A. (1997). London mathematical society student texts : Vol. 37. A mathematical introduction to wavelets. Cambridge: Cambridge University Press. 2nd ed. 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cattani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cattani, C. Harmonic wavelet approximation of random, fractal and high frequency signals. Telecommun Syst 43, 207–217 (2010). https://doi.org/10.1007/s11235-009-9208-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-009-9208-3

Keywords

Navigation