Skip to main content
Log in

On the interference management in wireless multi-user networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

A study on interference management schemes in wireless multi-user networks is presented. We analyze the interference management problem in cellular networks and show that interference management is an optimization problem, for which we propose a general formulation. Using this general formulations we show that different interference management approaches are either exact or approximated solutions to this optimization problem. For each radio resource management technique, we provide a general overview and discuss its relation vis-a-vie other interference management techniques. As a case study, we then apply the proposed general formulation on the interference management in OFDM wireless networks and show that it results in a joint transmit scheduling and dynamic sub-carrier and power allocation scheme. A polynomial-time heuristic algorithm is also proposed to solve the formulated optimization problem. The distinguishing feature of the proposed scheme is that it gives in one shot, the transmission scheduling, the sub-carriers assigned to each user, and the power allocated to each sub-carrier, based on a fair and efficient framework while satisfying the delay requirements of real-time users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Federal Communication Commission. Commission, http://www.fcc.gov/.

  2. Haykin, S. (2005). Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  3. Jamalipour, A., Wada, T., & Yamazato, T. (2005). A tutorial on multiple access technologies for beyond 3G mobile networks. IEEE Communications Magazine, 43(2), 110–117.

    Article  Google Scholar 

  4. Stuber, G. L. (1996). Principles of mobile communication. Dordrecht: Kluwer.

    Google Scholar 

  5. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. Cambridge: Cambridge University Press. Available online: http://www.eecs.berkeley.edu/~dtse/book.html.

    Google Scholar 

  6. Verdu, S. (1998). Multiuser detection. Cambridge: Cambridge University Press.

    Google Scholar 

  7. Popescu, D. C., & Rose, C. (2004). Information technology: transmission, processing, and storage series. Interference avoidance methods for wireless systems. Dordrecht: Kluwer.

    Google Scholar 

  8. Navaie, K., Valaee, S., Sharafat, A. R., & Sousa, E. S. (2006). On the downlink interference in heterogeneous wireless DS-CDMA networks. IEEE Transactions on Wireless Communications, 5(2), 384–393.

    Article  Google Scholar 

  9. Holma, H., & Toskala, A. (2000). WCDMA for UMTS: Radio access for third generation mobile communications. New York: Wiley.

    Google Scholar 

  10. Kelly, F. P. (1997). Charging and rate control for elastic traffic. European Transactions on Telecommunications, 8, 33–37. Available online: http://www.statslab.cam.ac.uk/~frank/elastic.ps.

    Article  Google Scholar 

  11. Navaie, K., & Yanikomeroglu, H. (2006). Optimal downlink resource allocation for non-realtime traffic in cellular CDMA/TDMA networks. IEEE Communications Letter, 10(4), 278–280.

    Article  Google Scholar 

  12. Bender, P., Black, P., Grob, M., Padovani, R., Sindhushayana, N., & Viterbi, A. (2000). CDMA HDR: a bandwidth-efficient high-speed wireless data service for nomadic users. IEEE Communications Magazine, 38(7), 70–77.

    Article  Google Scholar 

  13. Viterbi, A. J. (1995). CDMA: principles of spread spectrum communication. Reading: Addison-Wesley.

    Google Scholar 

  14. Liu, X., Chong, E. K. P., & Shroff, N. B. (2001). Opportunistic transmission scheduling with resource-sharing constraints in wireless networks. IEEE Journal on Selected Areas in Communications, 19(10), 2053–2064.

    Article  Google Scholar 

  15. Lu, S., Bharaghavan, V., & Srikant, R. (1999). Fair scheduling in wireless packet networks. IEEE/ACM Transactions on Networking, 7(4), 473–489.

    Article  Google Scholar 

  16. Cao, Y., & Li, V. (2001). Scheduling algorithms in broadband wireless networks. Proceedings of the IEEE, 89(1), 76–87.

    Article  Google Scholar 

  17. Navaie, K., Montuno, D., & Zhao, Y. Q. (2005). Resource allocation in next generation wireless networks. New York: Nova Science. Available online: http://www.sce.carleton.ca/~keivan/html/aboutme.htm, ch. Fairness of resource allocation in cellular networks: a survey.

    Google Scholar 

  18. Viswanath, P., Tse, D., & Larioa, R. (2002). Opportunistic beamforming using dumb antennas. IEEE Transactions on Information Theory, 48(6), 1277–1294.

    Article  Google Scholar 

  19. Ahmavaara, K., Haverinen, H., & Pichna, R. (2003). Interworking architecture between 3GPP and WLAN systems. IEEE Communications Magazine, 41(11), 74–81.

    Article  Google Scholar 

  20. Schultz, D., et al. (2005). Proposal of the best suited deployment concepts for the identified scenarios and related RAN protocols. WINNER, Tech. Rep. D3.5, December 2005. Available online: https://www.ist-winner.org/publicdeliverables.htm.

  21. Katoozian, M., Navaie, K., & Yanikomeroglu, H. (2008). Optimal utility-based resource allocation for OFDM networks with multiple types of traffic. In Proceedings of the IEEE 67th vehicular technology conference VTC-2008 spring, Singapore, 11–14 May 2008 (pp. 2223–2227).

  22. Katoozian, M., Navaie, K., & Yanikomeroglu, H. (2009). Utility-based adaptive radio resource allocation in OFDM wireless networks with traffic prioritization. IEEE Transactions on Wireless Communications, 7(1), 66–71.

    Article  Google Scholar 

  23. Wong, C. Y., Cheng, R. S., Letaief, K. B., & Murch, R. D. (1999). Multi-user OFDM with adaptive sub-carrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications, 17(10), 1747–1758.

    Article  Google Scholar 

  24. Rhee, W., & Cioffi, J. M. (2000). Increase in capacity of multi-user OFDM system using dynamic sub-carrier allocation. In Proceedings of the IEEE vehicular technology conference (Vol. 2, pp. 1085–1089), Tokyo, Japan, May 2000.

  25. Huang, J., Subramanian, V., Agrawal, R., & Berry, R. (2006). Downlink scheduling and resource allocation for OFDM systems. In Proceedings of the 40th annual conference on information sciences and systems (CISS) (pp. 1272–1279), Princeton, NJ, March 2006.

  26. Yanhui, L., Chunming, W., Changchuan, Y., & Guangxin, Y. (2006). Downlink scheduling and radio resource allocation in adaptive OFDMA wireless communication systems for user-individual QoS. In Proceedings of the World Academy of science, engineering and technology (Vol. 12, pp. 221–225), March 2006.

  27. Yanhui, L., Lizhi, Z., Changchuan, Y., & Guangxin, Y. (2006). Adaptive radio resource allocation for multiple traffic OFDMA broadband wireless access system. In Proceedings of the World Academy of science, engineering and technology (Vol. 12, pp. 231–236), March 2006.

  28. Shen, Z., Andrews, J. G., & Evans, B. L. (2003). Optimal power allocation in multiuser OFDM systems. In Proceedings of the IEEE global telecommunications conference 2003 (Vol. 1, pp. 337–341), December 2003.

  29. Zhang, Y. J., & Letaief, K. B. (2004). Multiuser adaptive subcarrier-and-bit allocation with adaptive cell selection for OFDM systems. IEEE Transactions on Wireless Communications, 3, 1566–1575.

    Article  Google Scholar 

  30. Song, G. Ye (Geoffrey), L. (2005). Cross-layer optimization for OFDM wireless networks–Part I: Theoretical framework. IEEE Transactions on Wireless Communications, 4(2), 614–624.

    Article  Google Scholar 

  31. Song, G. Ye (Geoffrey), L. (2005). Cross-layer optimization for OFDM wireless networks–Part II: Algorithm development. IEEE Transactions on Wireless Communications, 4(2), 625–634.

    Article  Google Scholar 

  32. Moser, M., Jokanovic, P., & Shiratori, N. (1997). An algorithm for the multidimensional multiple-choice knapsack problem. IEICE Transactions on Fundamentals, E80-A(3), 582–589.

    Google Scholar 

  33. Everett, H. (1963). Generalized Lagrange multiplier method for solving problems of optimum allocation of resources. Operation Research, 11(3), 399–417.

    Article  Google Scholar 

  34. Shakkottai, S., & Stolyar, A. (2002). Scheduling for multiple flows sharing a time-varying channel: the exponential rule. American Mathematical Society Translations, ser. 2, Y.M. Suhov Ed.

  35. Navaie, K., Montuno, D. Y., & Zhao, Y. Q. (2005). Fairness of resource allocation in cellular networks: A survey. In W. Li & Y. Pan (Eds.), Resource allocation in next generation wireless networks. New York: Nova Science.

    Google Scholar 

  36. Tanenbaum, A. S. (2003). Computer networks (4th ed.). New York: Prentice Hall.

    Google Scholar 

  37. Liu, Y., & Knightly, E. (2003). Opportunistic fair scheduling over multiple wireless channels. In Proc. of IEEE INFOCOM’03 (Vol. 2, pp. 1106–1115).

  38. Kawadia, V., & Kumar, P. (2005). A cautionary perspective on cross-layer design. IEEE Wireless Communications, 12(1), 3–11.

    Article  Google Scholar 

  39. Keller, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. Berlin: Springer.

    Google Scholar 

  40. Akbar, M., Manning, E. G., Shoja, G. C., & Khan, S. (2001). Heuristic solutions for the multiple-choice multi-dimension knapsack problem. In Proc. of ICCS’01 (pp. 659–668).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Navaie.

Additional information

Manuscript received May 04, 2008, revised September 24, 2008. Part of this paper has been presented in the IEEE 67th Vehicular Technology Conference: VTC2008-Spring 11–14 May 2008, Marina Bay, Singapore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navaie, K. On the interference management in wireless multi-user networks. Telecommun Syst 46, 135–148 (2011). https://doi.org/10.1007/s11235-010-9283-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-010-9283-5

Keywords

Navigation