Skip to main content
Log in

Some similarity coefficients and application of data mining techniques to the anomaly-based IDS

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper introduces an approach to anomaly-based intrusion detection, which searches the system activity data for deviations from preliminarily described profiles of normal activity. The normal system activity in the proposed methodology is described using data mining techniques, namely classification trees. The intrusion detection is performed using some similarity coefficients with a purpose to measure the similarity between the normal activity and the current one. The evaluation of the represented simulation results indicates the proposed methodology produces reliable and steady results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderberg, M. (1973). Cluster analysis for applications. New York: Academic Press.

    Google Scholar 

  2. Ashby, F. G., & Perrin, N. A. (1988). Toward a unified theory of similarity and recognition. Psychological Review, 95, 124–150.

    Article  Google Scholar 

  3. Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A., & Nielsen, H. (2000). Assessing the accuracy of prediction algorithms for classification: An overview. Bioinformatics, 16, 412–424.

    Article  Google Scholar 

  4. Brieman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Belmont: Wadsworth International Group.

    Google Scholar 

  5. Chen, R. C., Cheng, K. F., & Hsieh, C. C. (2008). Using Fuzzy Neural Networks and rule heuristics for anomaly intrusion detection on database connection. In Proceedings of international conference on machine learning and cybernetics (Vol. 6, pp. 3607–3612).

    Google Scholar 

  6. Dal, D., Abraham, S., Abraham, A., Sanyal, S., & Sanglikar, M. (2008). Evolution induced secondary immunity: An artificial immune system based intrusion detection system. In Proceedings of 7th computer information systems and industrial management applications (pp. 65–70).

    Google Scholar 

  7. Ferri, C., Lachinche, N., Macskassy, S. A., & Rakotomamonjy, A. (Eds.) (2005). Second Workshop on ROC Analysis in ML.

    Google Scholar 

  8. Forrest, S., Hofmeyr, S. A., Somayaji, A., & Longtaff, T. A. (1996). A sense of self for unix processes. In Proceedings of the 1996 IEEE symposium on security and privacy (pp. 120–128). Los Alamitos: IEEE Computer Society Press.

    Chapter  Google Scholar 

  9. Forrest, S., Hofmeyr, S. A., & Somayaji, A. (1998). Intrusion detection using sequences of system calls. Journal of Computer Security, 6, 151–180.

    Google Scholar 

  10. Guo, G.-D., Jain, A. K., Ma, W.-Y., & Zhang, H.-J. (2002). Learning similarity measure for natural image retrieval with relevance feedback. IEEE Transactions on Neural Networks, 13, 811–820.

    Article  Google Scholar 

  11. Huang, B., Li, W., Chen, D., & Shi, L. (2009). An intrusion detection method based on outlier ensemble detection. In Proceedings of international conference on networks security wireless communications and trusted computing (Vol. 2, pp. 600–603).

    Chapter  Google Scholar 

  12. Jiang, Z., Luosheng, W., Yong, F., & Xiao, Y. C. (2008). Intrusion detection based on density level sets estimation. In Proceedings of international conference on networking, architecture, and storage (pp. 173–174).

    Chapter  Google Scholar 

  13. Kemmerer, R. A., & Vigna, G. (2002). Intrusion detection: a brief history and overview. Computer, 35(4), 27–30.

    Article  Google Scholar 

  14. Kokotos, D. X., & Smirlis, Y. G. (2005). A classification tree application to predict total ship loss. Journal of Transportation and Statistics, 8(2), 31–42.

    Google Scholar 

  15. Kruegel, C., Vigna, G., & Robertson, W. (2005). A multi-model approach to the detection of web-based attacks. Computer Networks, 48(5), 717–738.

    Article  Google Scholar 

  16. Lauria, E. J. M., & Tayi, G. K. (2008). Statistical machine learning for network intrusion detection: a data quality perspective. International Journal of Services Sciences, 1(2), 179–195.

    Article  Google Scholar 

  17. Liao, Y., Vemuri, V. R., & Pasos, A. (2007). Adaptive anomaly detection with evolving connectionist systems. Journal of Network and Computer Applications, 30(1), 60–80.

    Article  Google Scholar 

  18. Liu, Y., Cai, J., Huang, Z., Yu, J., & Yin, J. (2007). Fast detection of database system abuse behaviors based on data mining approach. In ACM international conference proceeding series: Vol. 304. Proceedings of the 2nd international conference on scalable information systems: InfoScale ’07 (pp. 1–7).

    Google Scholar 

  19. Masri, W., & Podgurski, A. (2008). Application-based anomaly intrusion detection with dynamic information flow analysis. Computers & Security, 27(5–6), 176–187.

    Article  Google Scholar 

  20. Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica Biophysica Acta, 405, 442–451.

    Article  Google Scholar 

  21. M’e, L., Michel, C. (2001). Intrusion detection: A bibliography (Technical Report No. SSIR-2001-01).

  22. Prasad, G., Dhanalakshmi, Y., & Kumar, V. (2008). Modeling an intrusion detection system using data mining and genetic algorithms based on fuzzy logic. IJCSNS International Journal of Computer Science and Network Security, 8(7), 319–325.

    Google Scholar 

  23. Prashanth, G., Prashanth, V., Jayashree, P., & Srinivasan, N. (2008). Using random forests for network-based anomaly detection at active routers. In Proceedings of international conference on signal processing communications and networking, ICSCN ’08 (pp. 93–96).

    Chapter  Google Scholar 

  24. Rieck, K., & Laskov, P. (2008). Linear-time computation of similarity measures for sequential data. The Journal of Machine Learning Research, 9, 23–48.

    Google Scholar 

  25. Rieck, K., Laskov, P., & Sonnenburg, S. (2007). Computation of similarity measures for sequential data using generalized suffix trees. In Advances in neural information processing systems 19 (pp. 1177–1184). Cambridge: MIT Press.

    Google Scholar 

  26. Saniee Abadeh, M., Habibi, J., Barzegar, Z., & Sergi, M. (2007). A parallel genetic local search algorithm for intrusion detection in computer networks. Engineering Applications of Artificial Intelligence, 20(8), 1058–1069.

    Article  Google Scholar 

  27. Tan, K., Killourhy, K., & Maxion, R. (2002). Undermining an anomaly-based intrusion detection system using common exploits. In LNCS: Vol. 2516. Proceedings of 5th international symposium on recent advances in intrusion detection (RAID 2002) (pp. 54–73).

    Chapter  Google Scholar 

  28. Tian, D., Liu, Y., & Li, B. (2007). A distributed hebb neural network for network anomaly detection. In Lecture notes in computer science: Vol. 4742. Parallel and distributed processing and applications (pp. 314–325). (Including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

    Chapter  Google Scholar 

  29. University of New Mexico’s Computer Immune Systems Project, http://www.cs.unm.edu/~immsec/systemcalls.htm. Accessed 14 August 2009.

  30. Webb, A. (2002). Statistical pattern recognition. New York: Wiley.

    Book  Google Scholar 

  31. Yao, L., & Yao, K. (2007). A low complexity intrusion detection algorithm. In LNCS: Vol. 4489. Computational science–ICCS 2007 (pp. 461–464).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veselina Jecheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolova, E., Jecheva, V. Some similarity coefficients and application of data mining techniques to the anomaly-based IDS. Telecommun Syst 50, 127–135 (2012). https://doi.org/10.1007/s11235-010-9390-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-010-9390-3

Keywords

Navigation