Skip to main content
Log in

Optimum hello interval for a connected homogeneous topology in mobile wireless sensor networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Topology of a mobile wireless sensor/ad hoc network is prone to link breakages due to node mobility which compels the periodic re-construction of the topology in so called “hello” intervals. The problem addressed in this paper is determining the maximum “hello” interval preserving the connectivity of a homogeneous topology with high probability. In order to study the optimum “hello” interval, statistical topology lifetime (STL) is formally defined as a value of “hello” interval that ensures statistical connectivity with a given threshold. Temporal properties of the topology are studied based on two phenomena; one concerning a connectivity phase transition with time and the other one concerning the average degree of the logical communication graph at time of starting the phase transition defined as disconnection degree. Finally, an estimation method for STL is proposed and based on the method the STL of several scenarios is estimated. The results are compared to the results of extensive simulations, which confirms the accuracy of the proposed method. In addition, the phase transition in connectivity is verified with considering shadowing effect in radio signal propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ilyas, M., & Mahgoub, I. (2004). Handbook of sensor networks: compact wireless and wired sensing systems. Boca Raton: CRC Press.

    Book  Google Scholar 

  2. Demirkol, L., Ersoy, C., & Alagoz, F. (2006). MAC protocols for wireless sensor networks: a survey. IEEE Communications Magazine, 44(4), 115–121.

    Article  Google Scholar 

  3. Ben-Othman, J., & Yahya, B. (2010). Energy efficient and QoS based routing protocol for wireless sensor networks. Journal of Parallel and Distributed Computing, 70(8), 849–857.

    Article  Google Scholar 

  4. Kawadia, V., & Kumar, P. R. (2003). Power control and clustering in ad hoc networks. In IEEE INFOCOM 03.

    Google Scholar 

  5. Santi, P. (2005). Topology control in wireless ad hoc and sensor networks. New York: Wiley.

    Book  Google Scholar 

  6. Gupta, P., & Kumar, P. R. (1998). Critical power for asymptotic connectivity. In The 37th IEEE conference on decision and control.

    Google Scholar 

  7. Santi, P. (2005). The critical transmitting range for connectivity in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 4(3), 310–317.

    Article  Google Scholar 

  8. Santi, P., & Blogh, D. M. (2002). An evaluation of connectivity in mobile wireless ad hoc networks. In The international conference on dependable systems and networks (DSN’02).

    Google Scholar 

  9. Santi, P., & Blough, D. (2003). The critical transmitting range for connectivity in sparse wireless ad hoc networks. IEEE Transactions on Mobile Computing, 2(1), 25–39.

    Article  Google Scholar 

  10. Penrose, M. D. (1997). The longest edge of the random minimal spanning tree. The Annals of Applied Probability, 7(2), 340–361.

    Article  Google Scholar 

  11. Wu, J., & Dai, F. (2006). Mobility-sensitive topology control in mobile ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 17(6), 522–535.

    Article  Google Scholar 

  12. Gurumohan, P. C., Taylor, T. J., & Syrotiuk, V. R. (2004). Topology control for MANETs. In WCNC04.

    Google Scholar 

  13. Li, L., Halpern, J., Bahl, P., Wang, Y., & Wattenhofer, R. (2001). Analysis of a cone-based distributed topology control algorithm for wireless multi-hop networks. In ACM PODC, Newport (RI) (pp. 264–273).

    Google Scholar 

  14. Blough, D. M., Leoncini, M., Resta, G., & Santi, P. (2006). The k-neighbors approach to interference bounded and symmetric topology control in ad hoc networks. IEEE Transactions on Mobile Computing, 5, 1267–1282.

    Article  Google Scholar 

  15. Blough, D., Leoncini, M., Resta, G., & Santi, P. (2003). The k-neighbors protocol for symmetric topology control in ad hoc networks. In ACM MobiHoc, Annapolis (MD) (pp. 141–152).

    Google Scholar 

  16. Blough, D. M., Leoncini, M., Resta, G., & Santi, P. (2003). The k-neighbors approach to physical degree bounded and symmetric topology control in ad hoc networks. (Technical Report: IIT-TR-14/2003). Pisa: Istituto di Informatica e Telematica.

  17. Philips, T. K., Panwar, S. S., & Tantawi, A. N. (1989). Connectivity properties of a packet radio network model. IEEE Transactions on Information Theory, 35(5), 1044–1047.

    Article  Google Scholar 

  18. Liu, X., & Srikant, R. (2004). An information-theoretic view of connectivity in wireless sensor networks. In The first IEEE Communications Society conference on sensor and ad hoc communications and networks (SECON), Santa Clara, CA, 4–7 Oct. 2004.

    Google Scholar 

  19. Zhang, G., Li, J., Chen, Y., & Liu, J. (2005). Effect of mobility on the critical transmitting range for connectivity in wireless ad hoc networks. In The 19th international conference on advanced information networking and applications (AINA’05).

    Google Scholar 

  20. Nayebi, A., Khosravi, A., & Sarbazi-Azad, H. (2007). On the link excess life in mobile wireless networks. In International conference on computing: theory and applications ICCTA. Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  21. Yu, D., Li, H., & Gruber, I. (2003). Path availability in ad-hoc network. In Int’l conf. on telecomm. (ICT 2003), Tahiti, France, February 2003.

    Google Scholar 

  22. Nayebi, A., Khosravi, A., & Sarbazi-Azad, H. (2007). The impact of stationary nodes on the performance of wireless mobile networks. In The third international conference on wireless and mobile communications ICWMC. Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  23. Sasson, Y., Cavin, D., & Schiper, A. (2002). Probabilistic broadcast for flooding in wireless mobile ad hoc networks. Swiss Federal Institute of Technology (EPFL).

  24. Erdos, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61.

    Google Scholar 

  25. Bollobas, B. (1985). Random graphs. New York: Academic Press.

    Google Scholar 

  26. Raghavan, U. N., Thadakamalla, H. P., & Kumara, S. R. T. (2005). Phase transitions and connectivity in distributed wireless sensors networks. In The 13th international conference on advanced computing & communications.

    Google Scholar 

  27. Krishnamachari, B., Wicker, S. B., & Béjar, R. (2001). Phase transition phenomena in wireless ad-hoc networks. In Symposium on ad-hoc wireless networks (GlobeCom2001), San Antonio, Texas, Nov. 2001.

    Google Scholar 

  28. Haas, Z. J., Halpern, J. Y., & Li, L. (2002). Gossip-based ad hoc routing. In IEEE INFOCOM 02, June 2002.

    Google Scholar 

  29. Birman, K. P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., & Minsky, Y. (1999). Bimodal multicast. ACM Transactions on Computer Systems, 17(2), 41–88.

    Article  Google Scholar 

  30. Sadagopan, N., Bai, F., Krishnamachari, B., & Helmy, A. (2003). PATHS: Analysis of path duration statistics and the impact on reactive MANET routing protocols. In ACM MobiHoc, Annapolis (MD), June 2003.

    Google Scholar 

  31. Samar, P., & Wicker, S. B. (2006). Link dynamics and protocol design in a multihop mobile environment. IEEE Transactions on Mobile Computing, 5(9), 1156–1172.

    Article  Google Scholar 

  32. Cho, S., & Hayes, J. P. (2005). Impact of mobility on connection stability in ad hoc networks. In IEEE WCNC, March 2005.

    Google Scholar 

  33. Carofiglio, G., Chiasserini, C., Garetto, M., & Leonardi, E. (2009). Route stability in MANETs under the random direction mobility model. IEEE Transactions on Mobile Computing, 8(9), 1167–1179.

    Article  Google Scholar 

  34. Han, Y., La, R. J., Makowski, A. M., & Lee, S. (2006). Distribution of path durations in mobile ad-hoc networks—Palm’s theorem to the rescue. Computer Networks, 50(12), 1887–1900.

    Article  Google Scholar 

  35. Han, Y., & La, R. J. (2006). Maximizing path durations in mobile ad hoc networks. In 40th annual conference on information sciences and systems, Princeton, NJ, March 2006.

    Google Scholar 

  36. Gerharz, M., de Waal, C., Frank, M., & Martini, P. (2002). Link stability in mobile wireless ad hoc networks. In IEEE LCN, Nov. 2002.

    Google Scholar 

  37. Qin, M., & Zimmermann, R. (2006). An enhanced link availability model for supporting multimedia streaming in MANETs. USC Technical Report USC-CS-TR06-878.

  38. Rappaport, T. (2002). Wireless communications: principles and practice (2nd ed.). New York: Prentice Hall.

    Google Scholar 

  39. Bai, F., Sadagopan, N., Krishnamachari, B., & Helmy, A. (2004). Modeling path duration distributions in MANETs and their impact on reactive routing protocols. IEEE Journal on Selected Areas in Communications, 22(7), 1357–1373.

    Article  Google Scholar 

  40. Nayebi, A., Meraji, S., Shamaei, A., & Sarbazi-Azad, H. (2007). Xmulator: a listener-based integrated simulation platform for interconnection networks. In AMS 2007. New York: IEEE Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Nayebi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayebi, A., Sarbazi-Azad, H. Optimum hello interval for a connected homogeneous topology in mobile wireless sensor networks. Telecommun Syst 52, 2475–2488 (2013). https://doi.org/10.1007/s11235-011-9567-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-011-9567-4

Keywords

Navigation