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Abstract In order to keep services running despite link
or node failure in MPLS networks, RSVP-TE fast reroute
(FRR) schemes use precomputed backup label-switched
path tunnels for local repair of LSP tunnels. In the event
of failure, the redirection of traffic occurs onto backup LSP
tunnels that have the same quality of service constraints as
original paths. Local repair of LSP tunnels notably differ
from traditional (1:1) dedicated path protection schemes in
that traffic is diverted near the point of failure which speeds
up the protection process by not having to notify the source
and then resend the lost traffic. This gain in protection delay
is crucial for MPLS networks which would otherwise suffer
from an important recovery latency.

In this paper, we investigate the algorithmic aspects of
computing original paths along with their back-up so that
they satisfy quality-of-service constraints (namely, delay)
for single link or multiple link failure. In the case of single
link failure, we propose an algorithm in O(nm + n2log(n))

that computes shortest guaranteed paths with their backup
towards a single destination. In the case of directed graphs,
we show that this algorithm is optimal by proving that com-
puting shortest guaranteed paths is as hard as to compute
multiple source shortest paths in directed graphs. In the case
of undirected graphs, we propose a faster algorithm with
time complexity O(mlog(n) + n2). We also provide a dis-
tributed algorithm based on Bellman-Ford distance compu-
tation which converges in 3n rounds at worst.
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1 Introduction

Network survivability has become of key importance to ser-
vice providers due to the growth of real-time business ap-
plications over the Internet. The ability of keeping services
running despite link or node failure and without apparent
service disruption are nonetheless still a challenge for real
time services such as high-quality video. For multicast ap-
plications such as real-time streaming or teleconferencing,
dedicated fast reroute schemes have been proposed in [4, 9]
for publish/subscribe internetworking architectures. In IP
and multiprotocol label-switched (MPLS) networks, this de-
mand is met through fast reroute schemes that allow net-
works to divert traffic to precomputed backup paths while
they repair automatically (see [7] for a survey). In MPLS
networks, resource reservation protocol—traffic engineering
(RSVP-TE) fast reroute (FRR) schemes (see RFC4090 [6])
use two methods to redirect the traffic in case of failure
within 10s of milliseconds: the one-to-one backup method
creates detour LSPs at each potential point of local repair,
whereas the facility backup method creates a bypass tunnel
to protect a potential failure point. Both methods require the
computation of backup paths along with the original LSPs
that provide the same quality-of-service level. Therefore,
the quality-of-service metric that is used for the paths along
which data is normally routed must encompass the quality
of backup paths that will be used in fast reroute schemes, in
the event of node or link failure.

The problem under study has some marked differences
with protection mechanisms developed for WDM optical
networks, such as the p-cycle protection method [5], or even
for multidomain optical networks [2]. First of all, recovery
latencies are in general much lower when dealt with at the
physical layer [8], and therefore the added lengths of re-
covery paths do not affect too much the overall quality of
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Fig. 1 Online recovery on a 3 × 3 grid: (a) the original path goes
through a, b, c; (b) edge bc is broken; (c) recovery through node d

service of the network. Secondly, these protection schemes
focus mainly on local link protection, and more generally
on protection of the whole network, whereas LSP schemes
have more user-oriented protection policies.

On an added note, MPLS networks are often composed
of virtual links, that themselves represent physical network
paths. In such settings, a physical failure will cascade down
to multiple virtual link failure, where every virtual link that
uses the physical impaired component will fail. A Shared
Risk Link Group (SRLG) is the set of edges that share a
common physical resource that may fail. In (1:1) protec-
tion, the problem of computing SRLG-diverse routing, that
is to find a main path and a protection path that avoids ev-
ery SRLG that may involve the main path has been shown
to be NP-hard [3]. In contrast, the problem of computing
fast reroute paths under quality-of-service constraints in the
context of shared-link groups is tractable, as we will see in
Sect. 4.

In this paper, we study the algorithmic aspects of com-
puting original and back-up paths under quality of service
constraints. We consider a network modeled by a communi-
cation graph G = (V ,E) with n = |V | nodes and m = |E|
edges. Whenever a source node s needs to send message
to node t , a path from s to t is chosen in the network,
and the message is carried over this path unless a node or
link fails during the transmission. A small example on a
3 × 3 grid is illustrated in Fig. 1. We shall make two re-
marks illustrated by the example. First, the message is not
re-emitted from the source node: we have a launch-and-
forget protocol. The traffic control occurs locally. Then, the
recovery route goes directly towards node t without going
through node c: the recovery is not local for the edge bc,
but global. When a failure detection happens, the recovery
route starts from the last reachable node (b in the example
above).

We consider a cost function on the network denoted
c : E → R+ (that measures link latencies, for instance). The
length of a path P is defined as the sum of the costs of all
the edges on the path: c(P ) = ∑

e∈P c(e). A path from s to
t which minimizes the length is called a shortest path. The
length of a shortest path between s and t is called distance
between s and t . To compute efficient shortest paths, the

Fig. 2 Recovery example: (a) shortest path with length 8; (b) recovery
length 19; (c) best path recovery-wise

well known Dijkstra’s algorithm may be used. However, a
shortest path may well lead to an expensive (long) recovery
path if one of its edges fails. In the example of Fig. 2, the
shortest path from s to t goes through e, f , and d and costs
8; unfortunately, if the edge ef fails, the length of the recov-
ery path from s to t is 19; in order to minimize the recovery
part, it would have been better to go through a, b, and c;
this latter path length is 10, but has worst recovery length 13
(attained if edge ct fails).

Since the length of a path may affect the overall quality of
service provided by the network, an edge failure will remain
unnoticed for the end user only if the length of the recovery
path is under a certain limit. Therefore, we are interested in
the worst case recovery scenario for a path: the guaranteed
length g(P ) of a path P is defined as the length of the actual
path followed by a message that was originally cast over P

in the worst case recovery scenario. A path P from s to t that
has the smallest guaranteed length is called shortest guaran-
teed path, and g(P ) is called guaranteed distance from s to
t thereafter.

In this paper, we propose a generic algorithm in O(nm+
n2log(n)) that computes shortest guaranteed paths with their
backup towards a single destination. We argue that this al-
gorithm is optimal in the case of directed graphs by prov-
ing that computing shortest guaranteed paths is as hard as to
compute MSSP (Multiple Source Shortest Paths) in directed
graphs (see [1, 10] for shortest path algorithms and their
complexity). In the case of undirected graphs, we propose
a faster algorithm with time complexity O(mlog(n) + n2).
This paper is organized as follows. In Sect. 2 we propose
a generic algorithm to compute shortest guaranteed paths
when recovery knowledge is available. Then, in Sect. 3,
we propose an algorithm in O(nm + n2log(n)) to compute
shortest recovery paths, and we show in Sect. 5 that it is op-
timal for directed graphs. In Sect. 4 we discuss the impact
of shared risk link groups on the recovery computations.
In Sect. 6, we propose a faster computation in undirected
graphs with a time complexity of O(mlog(n)+n2). Finally,
in Sect. 7 we discuss centralized and distributed implemen-
tations of fast reroute path computation.
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2 Single destination routing algorithm with recovery
knowledge

In this section, we present the computation of path with
guaranteed length while assuming that a recovery route to-
wards the destination t has already been computed for each
possible edge failure. In other words the computation of re-
covery costs must be done beforehand in the algorithm stack
(see Sects. 3, 4 and 6). Therefore, for each vertex u and
each edge uv we have the minimum distance from u to t

in G − uv1, which is denoted r(u,uv). Note that if the edge
uv fails on a path from s to t , the total length of the recovery
path will be the sum of the distance between s and u and the
value r(u,uv). We will now prove the following lemma:

Lemma 1 (Postfix property) Let P be a path from u to t

beginning with edge uv and let P ′ be the subpath of P from
v to t . Then we have g(P ) = max{c(uv) + g(P ′), r(u,uv)}.

Proof Let P be a path with from u0 to uk with k edges, go-
ing through u1, . . . , uk−1. Let u = u0, v = u1, and t = uk .
For all i ∈ {0, . . . , k} let P i

0 be the subpath going from u0 to
ui and for all i ∈ {1, . . . , k} let P i

1 be the subpath going from
u1 to ui , with P k

1 = P ′. The guaranteed length of P corre-
sponds to a worst-case scenario: either g(P ) = c(P ) or there
is i ∈ {0, . . . , k−1} such that g(P ) = c(P i

0)+ r(ui, uiui+1).
The developed formula is

g(P ) = max
{
c(P ), max

i∈{0,...,k−1}
{c(P i

0) + r(ui, uiui+1)}
}
.

Note that ∀i ∈ {1, . . . , k}, c(P i
0) = c(uv) + c(P i

1), so this
gives

g(P ) = max
{
c(uv) + c(P ′), max

i∈{1,...,k−1}
{c(uv) + c(P i

1)

+ r(ui, uiui+1)}, r(u,uv)
}
,

g(P ) = max
{
c(uv) + max{c(P ′),

max
i∈{1,...,k}

{c(P i
1) + r(ui, uiui+1)}}, r(u,uv)

}
.

From this, we conclude that indeed

g(P ) = max{c(uv) + g(P ′), r(u,uv)}. �

Lemma 1 has a direct implication: it never hurts to have
the guaranteed length of P ′ as low as possible. Thereof,
we introduce Algorithm 1 which incrementally constructs
shortest guaranteed paths to a single destination, using al-
ready computed paths as postfixes. We can already deduce
that the shape of the solution is a tree rooted in the destina-
tion.

1The graph G − uv is defined as G − uv = (V ,E\{uv}).

Algorithm 1 (Guaranteed paths with knowledge)

Complexity: O(m + n × log(n))

Input:
– a destination node t ∈ V

– a function c : E → R+
– a function r : V ×E → R+ (defined only on the pairs (u,uv)

such that uv ∈ E)
Output:

– an array g of reals which gives the guaranteed distance from
every vertex to t

– an array father of vertices which gives for every vertex (ex-
cept t) its father in the guaranteed shortest paths tree

Variables:
– a min-heap priority queue Q of vertices sorted by the value

of g. The queue admits three operations, insert to insert a
vertex in the queue, update to update the queue after a guar-
anteed distance g has been lowered, and extract which gives
the vertex in its root (with minimum g) and deletes it from
the queue.

– an array state which gives the state (open or closed) of each
vertex.

– two vertices u,v ∈ V and a real r ∈ R+
Instruction sequence:
1. initialization:

(a) set the state of every vertex to open
(b) g[t] ← 0
(c) initialize the min heap queue Q sorted according to g, with

only t in its root.
2. while Q is not empty, do

(a) v ←extract(Q),
(b) for every open u such that uv ∈ E do

i. compute r ← max{r(u,uv), (c(uv) + g[v])}
ii. if u was not in the queue, then

. g[u] ← r

. father[u] ← v

. insert u in the queue
iii. else if r < g[u]

. g[u] ← r

. father[u] ← v

. update(Q)
(c) state[v] ←closed

Algorithm 1 is a simple variation of Dijkstra’s, and as
such completes in O(m + n × log(n)) steps. Note that its
complexity is not more than Dijkstra’s (except there is a
max, + operation where there is only a + operation in Dijk-
stra’s), and that it will only be added once to the complexity
of computing recovery costs.

3 Recovery distance computation

In this section, we focus in computing shortest recovery
paths. Given a vertex u and an edge uv we want to know
what is the distance from u to t in G − uv, and optionally
we want to know what is the actual shortest path from u to
t in G − uv. An obvious way to compute a recovery dis-
tance is to remove the edge uv from G and apply Dijkstra’s
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algorithm on the resulting graph. This is presented as Algo-
rithm 2:

Algorithm 2 (On Demand Recovery Computation)

Complexity: O(m + n × log(n))

Input:
– vertex t ∈ V

– a function c : E → R+
– a vertex u ∈ V

– an edge uv ∈ E

Output:
– a real r which gives the recovery distance for the couple

(u,uv)

– (optional) a path path which is the shortest recovery path for
(u,uv)

Variables:
– none

Instruction sequence:
1. apply Dijkstra’s shortest path algorithm on G − uv with desti-

nation t

2. retrieve the distance between u to t and store it in r
3. (optional) retrieve the path from u to t and store it in path

This algorithm has the same complexity as Dijkstra’s,
O(m+n× log(n)). If it is applied for each edge, it will take
O(m2 + mn × log(n)). We may yet do something smarter
than to apply it m times. Given a vertex u and an edge
uv, you may observe that the shortest path from u to t in
(G − uv) is usually the same as in G. In fact, it differs only
if uv is part of the shortest path from u to t in G.

We can make another observation: the recovery distance
for (u,uv) where uv is not on the Dijkstra tree will be the
distance between u to t , and thus always ignored (because
it is too small) by Algorithm 1. Therefore, we need only
to compute the recovery for edges on the Dijkstra tree, and
arbitrarily set to zero (for easy recognition) the recovery dis-
tance of the other pairs (u,uv). It is done in the following
Algorithm 3:

Algorithm 3 (Global Recovery Computation)

Complexity: O(n × m + n2 × log(n))

Input:
– a vertex t ∈ V

– function c : E → R+
Output:

– an array r of reals which gives the recovery distance (or zero)
for every couple (u,uv) with uv ∈ E

– (optional) an array path of paths which gives the shortest
path for every vertex towards t

– (optional) an array alternate of paths which gives a shortest
recovery path for every vertex except t

Variables:
– an array father of vertices which gives for every vertex (ex-

cept t) its father in the Dijkstra tree
– two vertices u,v ∈ V

Instruction sequence:
1. for every edge uv ∈ E, set r[u,uv] = 0 and r[v,uv] = 0

2. apply Dijkstra’s shortest path algorithm on G with destination t

(a) store the result in the array father
(b) (optional) store the result in the array path

3. for every node u �= t do
(a) set v ← father[u]
(b) apply Dijkstra’s algorithm to G − uv with destination t

(c) retrieve the distance between u to t and store it in r[(u,uv)]
(d) (optional) retrieve the path from u to t and store it in

alternate[u]

Algorithm 3 runs n − 1 times Dijkstra’s and its complex-
ity is O(nm + n2 × log(n)).

4 Shared risk link groups

A Shared Risk Link Group (SRLG) is a set of edges
SRLGi ⊂ E that may simultaneously fail. This may hap-
pen due to the proximity of physical network components
(several optical fibers in a same underground pipe may be
severed at the same time), or due to the virtual nature of
many MPLS networks (where two virtual edges may rep-
resent two physical paths that share a common physical re-
source). Once identified, SRLG are used by the network
administrator to foresee simultaneous failures and enforce
sensible recovery strategies.

In the case of fast reroute schemes, only one failure is de-
tected at a time, that is, the failure of the next LSP compo-
nent, which may belong to several SRLGs. Thus, if the edge
uv fails in a path from s to t in the graph G, a recovery path
from u to t must avoid all the edges that may have failed
at the same time as edge uv. In other words, the recovery
path from u to t must be computed in the graph G − Euv ,
where Euv is the union of all the shared risk link groups that
contain uv (Euv = ⋃

uv∈SRLGi
SRLGi ).

Using an identical argument as in the previous section,
we can see that the recovery distance from u to t in G−Euv

needs only to be computed in the case where Euv intersects
the shortest path from u to t . This can happen at worst for
every edge uv, which means that the computation of recov-
ery costs may take up to m(rk +m+n× log(n)) time steps,
where r is the number of shared risk link groups, k their size,
and rk is the time taken mark the edges in Euv .

5 Recovery distances in directed graphs

In this section, we show in Theorem 1 that computing sin-
gle destination recovery paths in a directed graph G′ with
2n + 1 vertices and m + 3n edges is as hard as to compute
shortest paths between n arbitrary pairs of vertices in a di-
rected graph G with n vertices and m edges. Therefore, the
complexity O(nm + n2 × log(n)) for finding single desti-
nation recovery paths is unbeatable, unless a major break-
through occurs in the field of Multiple Source Shortest Paths
(MSSP) algorithms.
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Fig. 3 The graph constructed by Algorithm 4

Theorem 1 Given a directed graph G = (V ,E) with n ver-
tices and m edges, given a function c : E → R+ and given
n pairs of vertices, we can construct in linear time a graph
G′ = (V ′,E′) with 2n + 1 vertices and m + 3n edges, com-
pute a function c′ : E′ → R+ such that V ⊂ V ′, E ⊂ E′,
c′ equals c on E, and such that computing recovery paths
towards a certain vertex t in G′ gives us the shortest paths
between the n pairs of vertices in G.

In order to prove Theorem 1, we will first give the lin-
ear algorithm for the reduction (Algorithm 4), illustrated in
Fig. 3, and then prove that this algorithm produces the re-
quired graph for Theorem 1.

Algorithm 4 (Reduction)

Complexity: O(n + m)

Input:
– a directed graph G = (V ,E) with n vertices and m edges
– a function c : E → R+
– n pairs (u1, v1), (u2, v2) . . . (un, vn) of vertices

Output:
– a directed graph G′ = (V ′,E′) with 2n + 1 vertices and m +

3n edges
– a function c′ : E′ → R+

Variables:
– an edge e, an integer i, a real r

Instruction sequence:
1. set r = 1 + ∑

e∈E c(e)

2. construct n + 1 vertices t0, t1, . . . tn
(a) set V ′ = V ∪ {t0, t1, . . . tn}

3. construct 3n edges:
(a) construct n edges t0t1, t1t2, . . . tn−1tn
(b) construct n edges t0u1, t1u2, . . . tn−1un

(c) construct n edges v1t1, v2t2, . . . vntn
(d) set E′ = E ∪ {t0t1, t1t2, . . . tn−1tn}∪

{t0u1, t1u2, . . . tn−1un} ∪ {v1t1, v2t2, . . . vntn}
4. ∀e ∈ E set c′(e) = c(e)

5. for i from 1 to n

(a) set c′(ti−1ti ) = 0
(b) set c′(ti−1ui) = 0
(c) set c′(vi ti ) = r × i

Proof It is self-evident that Algorithm 4 runs in time O(n+
m), that its output G′ contains G as a subgraph, has 2n + 1
vertices and m + 3n edges, and that the two functions c and
c′ are equal on E. We will now prove that computing short-
est recovery paths towards vertex tn in G′ gives us the short-
est paths between the pairs (u1, v1), (u2, v2), . . . (un, vn)

in G.
First, since r = ∑

e∈E c(e), we know that any single edge
viti is longer that any path in G (provided it has no loops).
Moreover, any single edge vj tj is longer that any path con-
taining only one edge viti , with i < j .

For any i ∈ {1, . . . , n}, consider the shortest path from
ti−1 to tn. It is obviously the zero cost path ti−1ti ti+1 . . . tn.
The recovery path for the edge ti−1ti has to go through ui

since ti−1 has only two outgoing edges. Then, the recovery
path has to attain one of the vertices tj with j ≥ i to finally
reach tn. The only way to do so is to use one of the edges
vj tj with j ≥ i. In order to have a length no greater than
(i + 1)r , the path necessarily goes through viti : the shortest
recovery path for ti−1ti goes through ui and ti . Since sub-
paths of shortest paths are shortest paths themselves, it fol-
lows that the shortest recovery path for ti−1ti contains the
shortest path between ui and vi . Moreover, the length of the
recovery path is exactly r × i plus the length of the shortest
path between ui and vi . �

6 Recovery distances in undirected graphs

In this section, we present a more efficient algorithm to com-
pute recovery paths by exploiting the properties of undi-
rected graphs. Given an undirected graph G = (V ,E), a cost
function c : E → R+ and a destination vertex t ∈ V , we call
Dijkstra tree the tree composed by the shortest paths in G

towards t . In this section, we say that u is a child of v if the
shortest path from u to t in the Dijkstra tree contains v (as
such, u is a child of itself).

6.1 Properties of shortest recovery paths

Given a couple (u,uv), we have already seen in Sect. 3 that
the recovery distance from u to t in G − uv was virtually
zero if v was not the father of u in the Dijkstra tree. Thus,
we now suppose that v is the father of u. The shortest recov-
ery path of (u,uv) is by definition, the shortest path from u

to t on G − uv. Notice that we already know some of the
shortest paths in G − uv: indeed, all the vertices y that are
not children of u in the Dijkstra tree have the same shortest
paths towards t in both G and G − uv. This is illustrated in
Fig. 4.

Since a subpath of a shortest path is itself a shortest path,
we deduce that a shortest path from u to t in G − uv can be
decomposed into three parts: a shortest path P1 from u to x
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Fig. 4 Recovery path properties: (a) Dijkstra tree rooted in t ;
(b) shortest paths towards t in G − ct ; (c) decomposition of the re-
covery path from c to t after ct failed

where all the vertices are children of u (x included), an edge
xy, and a shortest path P2 from y to t in the Dijkstra tree
(see Fig. 4c). In undirected graphs, shortest paths from u to
its children are the same as from the children to u, so both
P1 and P2 are part of the Dijkstra tree. x should be a child
of u and y should not be a child of u.

6.2 Dijkstra with memory

In order to properly use the Dijkstra tree, we use Algo-
rithm 5, a variant of Dijkstra’s algorithm which keeps the
memory of paths and children for each vertex. Its complex-
ity is O(n2) (equal to the size of its output).

Algorithm 5 (Dijkstra’s with Memory)

Complexity: O(n2)

Input:
– an undirected graph G = (V ,E)

– a destination node t ∈ V

– a function c : E → R+
Output:

– an array distance of reals which gives for each vertex the dis-
tance from the vertex to t

– an array path of arrays which gives for each vertex the short-
est path from this vertex to t , under the form of an array of
vertices, starting with t . As an illustration, we would have
path[s] = [t, d, f, e, s] in our usual example (see Fig. 2).

– an array children of sets of vertices which gives for each ver-
tex its children in the Dijkstra tree

Variables:
– an array father of vertices which gives for every vertex except

t its father in the Dijkstra tree
– a min-heap priority queue Q of vertices sorted by distance.

The queue admits three operations, insert to insert a vertex
in the queue, update to update the queue after a distance has
been lowered, and extract which gives the vertex in its root
(with minimum distance) and deletes it from the queue.

– an array state which gives the state (open or closed) of each
vertex.

– two vertices u,v ∈ V and a real p ∈ R+
Instruction sequence:
1. initialization:

(a) set the children of every vertex to ∅
(b) set the state of every vertex to open

(c) set the distance of t to zero
(d) set path[t] to [t]
(e) initialize the min heap queue Q sorted by distance, with

only t in the root
2. while Q is not empty, do

(a) v ←extract(Q),
(b) for every open neighbor u of v

i. compute p =distance[v] + c[uv]
ii. if u was not in the queue, then

. set distance[u] = p

. set father[u] = v

. insert u in the queue
iii. else if p <distance[u]

. set distance[u] = p

. set father[u] = v

. update(Q)
(c) for every vertex u found in path[father[v]] do

i. update children[u] ←children[u] ∪ {v}
(d) set path[v] to the concatenation of path[father[v]] and [v]
(e) set state[v] ←closed

6.3 Computing recovery data on the edges

Given a vertex u and the edge uv in the Dijkstra tree, our
main problem is so to find a vertex x among the children of
u and an edge xy such that a shortest path from u to x, the
edge xy and a shortest path from y to t would make a short
and correct recovery path towards t .

The length of this path is c(P ) = d(u, x) + c(xy) +
d(y, t) where d(u, x) is the distance between u and x. In
another formulation, c(P ) = d(x, t) + d(y, t) + c(x, y) −
d(u, t). This latter formulation is very interesting because
the first part d(x, t) + d(y, t) + c(x, y) is specific to the
edge xy, whereas the second part −d(u, t) is constant for
the vertex u. Therefore we want to minimize ed(xy) =
d(x, t) + d(y, t) + c(x, y) among the eligible edges xy. Al-
gorithm 6 computes this value ed for every edge in G.

Given an edge xy, we will also compute the distance
d(z, t) where z is the common ancestor of x and y. This
distance is named depth(xy). If x is a child of u and y not a
child of u, then the common ancestor of x and y should also
be an ancestor of u, and so depth(xy) < d(u, t). If x and
y are both children of u then depth(xy) ≥ d(u, t). There-
fore, when considering vertex u, one could scrap right away
the edges xy with depth(xy) ≥ d(u, t), and then be confi-
dent that remaining edges from its children will yield cor-
rect recovery paths. In Algorithm 6, we compare the arrays
path(x) and path(y) to find the common ancestor z. This
search takes at worst O(log(n)) steps if done properly, so
the overall computation takes O(m × log(n)).

Given a vertex u, and one of its children x, we will
want to find the edge xy that minimizes ed(xy), and with
depth(xy) < d(u, t). We order these edges by strictly in-
creasing ed (so the minimum is first) and strictly decreasing
depth; edges with greater ed and greater depth would be less
effective and less likely to be eligible, so they are discarded.
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The ordering of edges takes for each vertex O(k × log(k))

steps, where k is its degree, which can be upper bounded
by O(k × log(n)). Summed on all the vertices, this gives an
overall complexity of O(m × log(n)).

Algorithm 6 (Ordering edges)

Complexity: O(m × log(n))

Input:
– an undirected graph G = (V ,E)

– a vertex t ∈ V

– a function c : E → R+
– an array distance of reals which gives for each vertex the dis-

tance from the vertex to t

– an array path of arrays (see Algorithm 5)
Output:

– an array ed of reals which gives for every edge xy ∈ E the
value distance[x]+distance[y]+c(xy)

– an array depth of reals which gives for every edge xy ∈ E

the distance of the closest common ancestor of x and y in the
Dijkstra tree

– an array neighbors of vertices that gives for every vertex a
set of its neighbors ordered by increasing ed and decreasing
depth.

Variables:
– three vertices x, y, z ∈ V

Instruction sequence:
1. for every edge xy ∈ E do

(a) set ed[xy] =distance[x]+distance[y] + c(xy)

(b) compute the vertex z such that the arrays path[x] and
path[y] are equal until z, and differ afterwards.

(c) set depth[xy] =distance[z]
2. for every vertex x ∈ V do

(a) order the neighbors y of x by increasing ed[xy]
(b) in the process, discard the neighbors that would have a

greater or equal ed[xy] and a greater or equal depth[xy]
(c) the remaining neighbors are now ordered by increasing

ed[xy] and decreasing depth[xy]
(d) store the result in the array neighbors[x]

6.4 Computing recovery distances and paths

Given all the data gathered by Algorithm 6, we are now able
to compute shortest recovery paths. For each vertex u, we
will need to get rid of the edges xy with depth(xy) ≥ d(u, t).
In order to do this efficiently, we will order the vertices u

by decreasing distance to t . At the start of Algorithm 7, we
take the vertex u with maximum d(u, t), so of course for
any edge xy we have depth(xy) ≤ d(u, t). We need only to
remove those with depth(x, y) = d(u, t). Since the neigh-
bors of every vertex x are ordered by strictly decreasing
depth, it takes only one operation per vertex to remove all
of these edges. At some point in the algorithm with a ver-
tex u, assuming we have depth(xy) < d(u, t) for every edge
xy, we will again have depth(xy) ≤ d(u, t) when moving to
the next vertex u, and so it will take again n operations to
remove all the ineligible edges.

Once all the ineligible edges have been removed, we
know that the edge we search is one with minimum ed(xy),

with x among the children of u. Since the edges are ordered
by increasing ed , only the first neighbor of every children
needs to be considered, so it takes only O(n) operations.
The complexity of ordering the vertices (O(n × log(n))) is
smaller than the O(n) operations per vertex we do after-
wards, so the overall complexity of Algorithm 7 is O(n2).

Algorithm 7 (Computing recovery costs)

Complexity: O(n2)

Input:
– an undirected graph G = (V ,E)

– a vertex t ∈ V

– an array distance of reals which gives for each vertex the dis-
tance from the vertex to t

– an array depth of reals (see Algorithm 6)
– an array ed of reals (see Algorithm 6)
– an array neighbors of vertices (see Algorithm 6)
– an array children of sets of vertices (see Algorithm 5)

Output:
– an array r of reals which gives the recovery distance (or zero)

for every couple (u,uv) with uv ∈ E

– (optional) an array bridge of edges which gives the critical
edge for an alternate route for every vertex except t

Variables:
– four vertices u,v, x, y, a real r

Instruction sequence:
1. for every edge uv ∈ E, set r[u,uv] = 0 and r[v,uv] = 0
2. order the vertices of V by decreasing distance
3. for vertex u �= t from the one with the greatest distance to the

one with the lowest, do
(a) for all vertex x remove the first entry of neighbor[x] if the

depth of the entry is greater or equal to distance[u]
(b) let v be the first entry of neighbor[u]
(c) remove v from neighbor u
(d) set r ← ∞
(e) for all vertices x in children[u] do

i. if neighbor[x] is not empty, do
. let y be the first entry of neighbor[x]
. if ed[xy] < r then

set r ←ed[xy]
(optional) set bridge[u] = xy

(f) set r[u,uv] = r−distance[u]

7 Distributed implementation

Fast reroute path computation can be done within the frame-
works of distance-vector routing protocols, link-state rout-
ing protocols, or centralized network administration.

In the case of centralized administration or link-state pro-
tocols (which duplicate the centralized computation on each
router), the computation of shortest recovery paths can be
simply done by using Algorithm 3, that runs with complex-
ity O(nm+n2 log(n)). If the network has asymmetric links,
this complexity can hardly be beaten as shown in Theo-
rem 1. Otherwise it is possible to compute fast reroute paths
with complexity O(m log(n)+n2), by first running Dijkstra
with memory (Algorithm 5) in O(n2) steps, by then order-
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ing the edges of the graph with Algorithm 6 in O(m log(n))

steps, and by eventually computing recovery distances and
paths with Algorithm 7 in O(n2) steps. Once recovery paths
and distances have been computed for each edge of the net-
work, we may use the postfix property of guaranteed paths
(Lemma 1) and compute shortest guaranteed paths with Al-
gorithm 1 in O(m + n log(n)) steps.

It is worth noting that the computation of recovery data
on the edges of undirected graphs (see Sect. 6.3) lends itself
well to a distributed approach. We propose a three-layered
adaptation of distance-vector computation. Each node u in
the network has a traditional distance table of size O(n2)

that may contain for each destination t known by u the com-
puted distance from u to t along with a shortest path from u

to t , a recovery table that may contain for each known node
t a recovery edge xy as well as its edge distance ed(xy),
common ancestor z and depth (cf. Algorithm 6, and a fast
reroute routing table that may contain for every destination
t known by u a neighbor and a guaranteed distance. All
tables are initially empty. The distance table is classically
maintained using Bellman-Ford’s distributed variant used in
distance-vector algorithms. The shortest paths are remem-
bered within the table, so as to avoid count-to-infinity prob-
lems in case of link failure, and to compute edge distance
and depth of edge uv for every neighbor u and every pos-
sible destination t . The recovery table is maintained by for-
warding recovery information towards each possible desti-
nation t using the distance table. When receiving recovery
information, node u checks the validity of recovery edges xy

towards t by looking if the common ancestor z is indeed in
the shortest path from u to t . Valid recovery edges are for-
warded towards t , and the one with shortest edge distance
is inserted in the recovery table. Finally, the routing table
proper is built by replacing the operation c(u, v) + d(v, t)

with max(r(u, v), c(u, v) + d(v, t)) if and only if v is in the
shortest path from u to t as recorded in the distance table. In
case of synchronized simultaneous exchanges of messages
between nodes, each layer of the fast reroute tables compu-
tation scheme converges at worst n rounds after the previous
layer has converged.

8 Conclusion

In this paper, we have investigated the algorithmic aspects
of computing original paths along with their back-up so
that quality-of-service constraints are satisfied under the sce-
narios of a single link failure or of the failure of multi-
ple links belonging to the same Shared Risk Link Group
(SRLG). We have seen that to solve this problem, it is re-
quired to compute beforehand recovery distances for each
link that may fail, and this may be as hard as computing mul-
tiple source shortest paths (Theorem 1) in directed graphs.
The algorithm we propose (Algorithm 3), and which runs

in O(nm + n2 log(n)) steps, is therefore arguably optimal.
Nonetheless, we also propose a faster algorithm in the case
of undirected links with time-complexity O(m log(n)+n2).
Both algorithms can be implemented for centralized as well
as distributed network administration; the convergence time
for the distributed version is no greater than 3n rounds.
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