Skip to main content
Log in

Joint subcarrier and power allocation for downlink cellular OFDMA systems by intercell interference limitation

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

An Erratum to this article was published on 31 August 2013

Abstract

This paper addresses resource allocation for sum throughput maximization in a sectorized two-cell downlink orthogonal frequency-division multiple-access (OFDMA) system impaired by multicell interference. It is well known that the optimization problem for this scenario is NP-hard and combinational, which is here converted to a novel sum throughput maximization problem in cellular OFDMA systems based on the intercell interference limitation. Then, three subclasses of this new problem are solved. By the first subclass, on the assumption that subcarrier allocation parameters are fixed, an algorithm for optimal power allocation is obtained. However, the optimal resource allocation requires an exhaustive search, including the optimal power allocation which cannot be implemented in practice due to its high complexity. By the second subclass, the problem is reduced to a single cell case where the intercell interference in each subcarrier is limited to a certain threshold. Based on the solution of the single cell problem, a distributed resource allocation scheme with the aim of small information exchange between the coordinated base stations is proposed. By the third subclass, the centralized resource allocation for two adjacent cells as a general problem is solved. Here, the algorithm allocates simultaneously the subcarriers and the power of the considered two cells while the resource allocation parameters of both cells are coupled mutually. The present study shows that distributed and centralized resource allocation algorithms have much less complexity than the algorithm used in the exhaustive search and can be used in practice as efficient multicell resource allocation algorithms. Simulation results illustrate the performance improvements of the proposed schemes in comparison to the schemes with no intercell interference consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. 3GPP long-term evolution (LTE) (2013). [online]. Available: http://www.3gpp.org/Highlights/LTE/LTE.htm.

  2. IEEE 802.16 Task Group m. (2013). [online]. Available: http://ieee302.org/16/tgm.

  3. Chang, R. Y., Tao, Z., Zhang, J., & Kuo, C.-C. J. (2009). Multicell OFDMA downlink resource allocation using a graphic framework. IEEE Transactions on Vehicular Technology, 58(7), 3494–3507.

    Article  Google Scholar 

  4. Rahman, M., & Yanikomeroglu, H. (2010). Enhancing cell-edge performance: a downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications, 9(4), 1414–1425.

    Article  Google Scholar 

  5. Rhee, W., & Cioffi, J. M. (2000). Increase in capacity of multiuser OFDM system using dynamic subchannel allocation. In Proc. veh. technol. conf., Tokyo, Japan, May 2000 (pp. 1085–1089).

    Google Scholar 

  6. Wong, C. Y., Chen, R. S., Ben Letaief, K., & Murch, R. D. (1999). Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications, 17(10), 1747–1758.

    Article  Google Scholar 

  7. Yu, W., & Lui, R. (2006). Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Transactions on Communications, 54(7), 1310–1322.

    Article  Google Scholar 

  8. Venturino, L., Prasad, N., & Wang, X. (2009). Coordinated scheduling and power allocation in downlink multicell OFDMA networks. IEEE Transactions on Vehicular Technology, 58(6), 2825–2834.

    Article  Google Scholar 

  9. Seong, K., Mohseni, M., & Cioffi, J. M. (2006). Optimal resource allocation for OFDMA downlink systems. In Proc. IEEE int. symp. inf. theory, Seattle, WA, Jul. 2006 (pp. 1394–1398).

    Google Scholar 

  10. Luo, Z. Q., & Zhang, S. (2008). Dynamic spectrum management: complexity and duality. IEEE Journal of Selected Topics in Signal Processing, 2(1), 57–73.

    Article  Google Scholar 

  11. Katzela, I., & Naghshineh, M. (1996). Channel assignment schemes for cellular mobile telecommunication systems: a comprehensive survey. IEEE Wireless Communications, 3(3), 10–31.

    Google Scholar 

  12. Hanly, S. V., Andrew, L. L. H., & Thanabalasingham, T. (2009). Dynamic allocation of subcarriers and transmit powers in an OFDMA cellular network. IEEE Transactions on Information Theory, 55(12), 5445–5462.

    Article  Google Scholar 

  13. Downlink inter-cell interference co-ordination/avoidance evaluation of frequency reuse, 3GPP TSG-RAN WG1 contribution (Tech. Rep. R1-061374). May 2006 [online]. Available: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_45/Docs/R1061374.zip.

  14. Abaii, M., Liu, Y., & Tafazoli, R. (2008). An efficient resource allocation strategy for future wireless cellular systems. IEEE Transactions on Wireless Communications, 7(8), 2940–2949.

    Article  Google Scholar 

  15. Su, H. J., & Geraniotis, E. (1998). A distributed power allocation algorithm with adaptive modulation for multi-cell OFDM systems. In Proc. IEEE int. symp. spread spectrum technol., Sun City, South Africa, Sep. 1998 (pp. 474–478).

    Google Scholar 

  16. Han, Z., Ji, Z., & Liu, K. J. R. (2004). Power minimization for multi-cell OFDM networks using distributed non-cooperative game approach. In Proc. IEEE globecom, Dallas, TX, Nov./Dec. 2004 (pp. 3742–3747).

    Google Scholar 

  17. Yu, D. D., & Cioffi, J. M. (2006). Iterative water-filling for optimal resource allocation in OFDM multiple access and broadcast channels. In Proc. IEEE globecom, San Francisco, CA, Nov./Dec. 2006 (pp. 1–5).

    Google Scholar 

  18. Pischella, M., & Belfiore, J. C. (2009). Resource allocation for QoS-aware OFDMA using distributed network coordination. IEEE Transactions on Vehicular Technology, 58(4), 1766–1775.

    Article  Google Scholar 

  19. Pischella, M., & Belfiore, J. C. (2010). Weighted sum throughput maximization in multicell OFDMA networks. IEEE Transactions on Vehicular Technology, 59(2), 896–905.

    Article  Google Scholar 

  20. Ksairi, N., Bianchi, P., Cibalt, P., & Hachem, W. (2010). Resource allocation for downlink cellular OFDMA systems—part I: optimal allocation. IEEE Transactions on Signal Processing, 58(2), 720–734.

    Article  Google Scholar 

  21. Ksairi, N., Bianchi, P., Cibalt, P., & Hachem, W. (2010). Resource allocation for downlink cellular OFDMA systems—part II: practical algorithms and optimal reuse factor. IEEE Transactions on Signal Processing, 58(2), 735–749.

    Article  Google Scholar 

  22. Gault, S., Hachem, W., & Ciblat, P. (2005). Performance analysis of an OFDMA transmission system in a multi-cell environment. IEEE Transactions on Communications, 55(12), 2143–2159.

    Google Scholar 

  23. Boyd, S., & Vandenberghe, L. (2003). Convex optimization. Cambridge: Cambridge University Press.

    Google Scholar 

  24. Lo, E. S., Chan, P. W. C., Lau, V. K. N., Cheng, R. S., Letaief, K. B., Murch, R. D., & Mow, W. H. (2007). Adaptive resource allocation and capacity comparison of downlink multiuser MIMO-MC-CDMA and MIMO-OFDMA. IEEE Transactions on Wireless Communications, 6(3), 1083–1093.

    Article  Google Scholar 

  25. Seong, K. (2008). Cross layer resource allocation for multi-user communication systems. PhD thesis, Stanford University.

  26. Jang, J., & Lee, K. B. (2003). Transmit power adaption for multiuser OFDM systems. IEEE Journal on Selected Areas in Communications, 21(2), 171–178.

    Article  Google Scholar 

  27. Sklar, B. (1997). Rayleigh fading channels in mobile digital communication systems. I. Characterization. IEEE Communications Magazine, 35(7), 90–100.

    Article  Google Scholar 

  28. Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., & Knuth, D. E. (1996). On the Lembert W function. Advances in Computational Mathematics, 5, 329–359.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mehdi Hosseini Andargoli.

Appendices

Appendix A: Optimum power allocation

After setting the derivative of \(L(p_{k,n}^{A},p_{k,n}^{B})\) (from (14)) with regard to \(p_{k,n}^{A}\) and \(p_{k,n}^{B}\) to zero, respectively, the following equations are obtained:

$$ \rho_{{k,n}}^{A}.C_{k,n}^{\prime A} \bigl(p_{k,n}^{A}\bigr) - \lambda^{A} - \varOmega _{{k,n}}^{A} + v_{{k,n}}^{A} = 0 $$
(32)
$$ \rho_{{k,n}}^{B}.C_{k,n}^{\prime B} \bigl(p_{k,n}^{B}\bigr) - \lambda^{B} - \varOmega _{{k,n}}^{B} + v_{{k,n}}^{B} = 0 $$
(33)

where

$$ \begin{aligned} &C_{k,n}^{\prime A}\bigl(p_{k,n}^{A} \bigr) = \frac{\gamma_{{k,n}}^{A}}{\ln(2)(1 + \gamma _{{k,n}}^{A}p_{k,n}^{A})}, \\ &C_{k,n}^{\prime B}\bigl(p_{k,n}^{B} \bigr) = \frac{\gamma_{{k,n}}^{B}}{\ln(2)(1 + \gamma_{{k,n}}^{B}p_{k,n}^{B})} \end{aligned} $$
(34)

The KKT conditions impose that the following conditions must be satisfied for the optimal solution

$$ (1)\quad\lambda^{A}\Biggl(\sum_{k = 1}^{K^{A}} \sum_{n = 1}^{N} p_{{k,n}}^{A} - P_{{T}}^{A} \Biggr) = 0 $$
(35)
$$ (2)\quad\lambda^{B}\Biggl(\sum_{k = 1}^{K^{B}} \sum_{n = 1}^{N} p_{{k,n}}^{B} - P_{{T}}^{B} \Biggr) = 0 $$
(36)
$$ (3)\quad\varOmega_{{k,n}}^{A}\bigl(p_{{k,n}}^{A} - I_{n}^{A}\bigr) = 0 $$
(37)
$$ (4)\quad\varOmega_{{k,n}}^{B}\bigl(p_{{k,n}}^{B} - I_{n}^{B}\bigr) = 0 $$
(38)
$$ (5)\quad v_{{k,n}}^{A}p_{{k,n}}^{A} = 0 $$
(39)
$$ (6)\quad v_{{k,n}}^{B}p_{{k,n}}^{B} = 0 $$
(40)

Due to the fact that the proof of optimal \(p_{{k,n}}^{A*}\) is the same as \(p_{{k,n}}^{B*}\), we provide proof for \(p_{{k,n}}^{A*}\) only.

With regard to condition \(3 (\varOmega_{{k,n}}^{A}(p_{{k,n}}^{A} - I_{n}^{A}) = 0)\), we can consider two cases:

$$(\mbox{3-{I}}) \quad\mbox{if } p_{{k,n}}^{A} < I_{n}^{A} \quad\mbox{then } \varOmega_{{k,n}}^{A} = 0 $$
$$(\mbox{3-{II}}) \quad\mbox{if }\varOmega_{{k,n}}^{A} > 0 \quad\mbox{then } p_{{k,n}}^{A} = I_{n}^{A} $$

And with regard to condition 5 \((v_{{k,n}}^{A}p_{{k,n}}^{A} = 0)\), two cases are considered:

$$(\mbox{5-{I}}) \quad \mbox{if }p_{{k,n}}^{A} > 0 \quad \mbox{then } v_{{k,n}}^{A} = 0 $$
$$(\mbox{5-{II}}) \quad \mbox{if }v_{{k,n}}^{A} > 0 \quad \mbox{then } p_{{k,n}}^{A} = 0 $$

By combination of 3-I and 5-II we can obtain

If \(\rho_{{k,n}}^{A}.C_{k,n}^{\prime A}(p_{k,n}^{A}) - \lambda^{A} < 0\) then \(p_{{k,n}}^{A} = 0\), therefore

$$ \frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma_{{k,n}}^{A}} < 0 \quad\Rightarrow\quad p_{{k,n}}^{A} = 0 $$
(41)

By combination of 3-II and 5-I we can obtain

If \(\rho_{{k,n}}^{A}.C_{k,n}^{\prime A}(p_{{k,n}}^{A} = I_{n}^{A}) - \lambda^{A} > 0\) then \(p_{{k,n}}^{A} = I_{n}^{A}\), therefore

$$ \frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma_{{k,n}}^{A}} > I_{n}^{A} \quad\Rightarrow\quad p_{{k,n}}^{A} = I_{n}^{A} $$
(42)

By combination of 3-I and 5-I we can obtain

$$\begin{aligned} &{0 < \frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma _{{k,n}}^{A}} < I_{n}^{A}} \\ &{\quad\Rightarrow\quad p_{{k,n}}^{A} = \frac{1}{\ln (2)\lambda^{A}} - \frac{1}{\gamma_{{k,n}}^{A}} } \end{aligned}$$
(43)

3-II and 5-II do not occur jointly.

Due to Eqs. (41), (42) and (43) we can write

$$ p_{{k,n}}^{A} = \min\biggl(\biggl(\frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma_{{k,n}}^{A}}\biggr)^{ +},I_{n}^{A}\biggr) $$
(44)

But if the condition \(\lambda^{A}(\sum_{k = 1}^{K^{A}} \sum_{n = 1}^{N} p_{{k,n}}^{A} - P_{{T}}^{A} ) = 0\) is satisfied, the optimum value of λ A is obtained. Due to condition 1, two cases can be considered as follows:

$$(\mbox{1-{I}}) \quad\mbox{if }\lambda^{A} > 0\quad\mbox{then }\sum _{k = 1}^{K^{A}} \sum_{n = 1}^{N} p_{{k,n}}^{A} = P_{{T}}^{A} $$
$$(\mbox{1-{II}}) \quad\mbox{if }\sum_{k = 1}^{K^{A}} \sum_{n = 1}^{N} p_{{k,n}}^{A} < P_{{T}}^{A}\quad\mbox{then }\lambda^{A} = 0 $$

By combination of 1-II and (44) we can deduce that

$$\begin{aligned} &{\lambda^{A} = 0} \\ &{\quad\Rightarrow\quad p_{{k,n}}^{A} = \min \biggl(\biggl(\frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma _{{k,n}}^{A}}\biggr)^{ +},I_{n}^{A} \biggr) = I_{n}^{A}} \end{aligned}$$
(45)

Thus if \(\sum_{n = 1}^{N} I_{n}^{A} < P_{{T}}^{A}\), then \(p_{{k,n}}^{A} = I_{n}^{A}\). And if \(\sum_{n = 1}^{N} I_{n}^{A} \ge P_{{T}}^{A}\),we can conclude that the λ A>0 and for the optimal solution the condition \(\sum_{k = 1}^{K^{A}} \sum_{n = 1}^{N} p_{{k,n}}^{A} = P_{{T}}^{A}\) must be satisfied. Therefore, the optimal value of λ A is chosen to fulfill the total power constraint with equality. We can summarize the optimal power allocation as follows

$$ \begin{aligned}[b] &p_{k,n}^{A*} = \left \{ \begin{array}{l@{\quad}l} I_{n}^{A}, & \sum_{n = 1}^{N} I_{n}^{A} < P_{{T}}^{A} \\ \min ((\frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma_{{k,n}}^{A}})^{ +},I_{n}^{A}), & \sum_{n = 1}^{N} I_{n}^{A} \ge P_{{T}}^{A} \end{array} \right . \end{aligned} $$
(46)
$$ \begin{aligned}[b] &p_{k,n}^{B*} = \left \{ \begin{array}{l@{\quad}l} I_{n}^{B}, & \sum_{n = 1}^{N} I_{n}^{B} < P_{{T}}^{B} \\ \min ((\frac{1}{\ln(2)\lambda^{B}} - \frac{1}{\gamma_{{k,n}}^{B}})^{ +},I_{n}^{B}), & \sum_{n = 1}^{N} I_{n}^{B} \ge P_{{T}}^{B} \end{array} \right . \end{aligned} $$
(47)

where (x)+=max(x,0). If \(\sum_{n = 1}^{N} I_{n}^{A} \ge P_{T}\) or \(\sum_{n = 1}^{N} I_{n}^{B} \ge P_{T}\), the optimal values of λ A or λ B is chosen to fulfill the total power constraint with equality.

Appendix B: Single cell problem

We differentiate \(L(s_{k,n}^{A},\rho_{k,n}^{A})\) (from (20)) with regard to \(s_{k,n}^{A},\rho _{k,n}^{A}\) and setting them to zero.

$$ \begin{aligned}[b] \frac{\partial L}{\partial s_{{k,n}}^{A}} &= \rho _{{k,n}}^{A}.C_{k,n}^{\prime A} \biggl(\frac{s_{{k,n}}^{A}}{\rho_{{k,n}}^{A}}\biggr) - \lambda^{A} - \varOmega _{{k,n}}^{A} + v_{{k,n}}^{A} \\ &= \frac{\gamma_{{k,n}}^{A}}{\ln(2)(1 + \gamma _{{k,n}}^{A}p_{k,n}^{A})} - \lambda^{A} - \varOmega_{{k,n}}^{A} + v_{{k,n}}^{A} = 0 \end{aligned} $$
(48)
$$ \begin{aligned}[b] \frac{\partial L}{\partial\rho_{{k,n}}^{A}} &= C_{k,n}^{A}\biggl(\frac{s_{{k,n}}^{A}}{\rho _{{k,n}}^{A}} \biggr) + \rho_{{k,n}}^{A}.\frac{\partial}{\partial\rho _{{k,n}}^{A}}C_{k,n}^{A} \biggl(\frac{s_{{k,n}}^{A}}{\rho_{{k,n}}^{A}}\biggr) - \varphi_{{n}}^{A} \\ &= \frac{1}{\ln(2)}\ln\biggl(1 + \frac{\gamma _{{k,n}}^{A}s_{k,n}^{A}}{\rho_{{k,n}}^{A}}\biggr) \\ &\quad{}- \frac{\frac{\gamma_{{k,n}}^{A}s_{k,n}^{A}}{\rho _{{k,n}}^{A}}}{\ln(2)(1 + \frac{\gamma _{{k,n}}^{A}s_{k,n}^{A}}{\rho_{{k,n}}^{A}})} - \varphi_{{n}}^{A} = 0 \end{aligned} $$
(49)

The KKT conditions that must be satisfied for obtaining the optimal solution are:

$$ (1)\quad\lambda^{A}\Biggl(\sum_{k = 1}^{K^{A}} \sum_{n = 1}^{N} s_{{k,n}}^{A} - P_{{T}}^{A} \Biggr) = 0 $$
(50)
$$ (2)\quad\varOmega_{{k,n}}^{A}\bigl(s_{{k,n}}^{A} - I_{n}^{A}\bigr) = 0 $$
(51)
$$ (3)\quad v_{{k,n}}^{A}s_{{k,n}}^{A} = 0 $$
(52)
$$ (4)\quad\varphi_{n}^{A}\Biggl(\sum_{k^{A} = 1}^{K^{A}} \rho_{{k,n}}^{A} - 1\Biggr) = 0 $$
(53)

As seen in Appendix A, by combination of conditions 1, 2, 3 and (48), we can obtain the optimal power allocation as follows:

$$ s_{k,n}^{A*} = \left \{ \begin{array}{l@{\quad}l} I_{n}^{A}, & \sum_{n = 1}^{N} I_{n}^{A} < P_{{T}}^{A} \\ \min ((\frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma_{{k,n}}^{A}})^{ +},I_{n}^{A}), & \sum_{n = 1}^{N} I_{n}^{A} \ge P_{{T}}^{A} \end{array} \right . $$
(54)

Let \(x = 1 + \gamma_{{k,n}}^{A}p_{k,n}^{A}\) and \(c = \ln(2).\varphi _{{n}}^{A}\). Because \(\varphi_{{n}}^{A}\) is the same for different users in cell A, it is constant over k. Therefore, (49) can be expressed as

$$ \begin{aligned}[b] \ln(x) = 1 - x^{ - 1} + c &\quad\Rightarrow\quad x = e^{ - x^{ - 1}}e^{1 + c} \\ &\quad\Rightarrow\quad- x^{ - 1}e^{ - x^{ - 1}} = - e^{ - (1 + c)} \end{aligned} $$
(55)

Observe that this is in the form of Lembert-W function W(c) [28] which is the solution to W(c)e W(c)=c. Thus, we can write

$$ \begin{aligned}[b] &- x^{ - 1} = W\bigl( - e^{ - (1 + c)}\bigr) \\ &\quad\Rightarrow\quad x = 1 + \frac{\gamma_{{k,n}}^{A}s_{k,n}^{A}}{\rho _{k,n}^{A}} = \frac{ - 1}{W( - e^{ - (1 + c)})} \\ &\quad\Rightarrow\quad\frac{\gamma _{{k,n}}^{A}s_{k,n}^{A}}{\rho_{k,n}^{A}} = \frac{ - 1}{W( - e^{ - (1 + c)})} - 1 \end{aligned} $$
(56)

Therefore \(\frac{\gamma_{{k,n}}^{A}s_{k,n}^{A}}{\rho_{k,n}^{A}}\) is constant for all users and to maximize \(\rho_{k,n}^{A}\), the subcarrier n should be allocated to user \(k_{n}^{*}\) selected by

$$ k_{n}^{*} = \arg\max_{k}\bigl(\gamma _{{k,n}}^{A}s_{k,n}^{A}\bigr)\quad\mbox{for }\forall n $$
(57)

By substituting \(s_{k,n}^{A}\) from Eq. (54) and since λ A is the same for different users, we can obtain

$$ k_{n}^{*} = \arg\max_{k}\bigl(\gamma _{{k,n}}^{A}\bigr)\quad\mbox{for }\forall n $$
(58)

where \(k_{^{n}}^{*}\) is the user which subcarrier n is exclusively assigned to. By this scheme, the condition 4 is satisfied, too.

Appendix C: Centralized resource allocation problem

For optimal power allocation, we differentiate \(L(s_{k,n}^{A},s_{k,n}^{B}, \rho_{{k,n}}^{A},\rho _{{k,n}}^{B})\) (from (25)) with regard to \(s_{k,n}^{A},s_{k,n}^{B}\) and setting them to zero.

$$ \begin{aligned}[b] \frac{\partial L}{\partial s_{{k,n}}^{A}} & = \rho_{{k,n}}^{A}. C_{k,n}^{\prime A} \biggl(\frac{s_{{k,n}}^{A}}{\rho_{{k,n}}^{A}}\biggr) - \lambda^{A} \\ &\quad{}- \varOmega _{{k,n}}^{A}\sum_{l = 1}^{K^{B}} \rho_{{l,n}}^{B}\bigl \vert \bar{H}_{{l,n}}^{B} \bigr \vert ^{2} + v_{{k,n}}^{A} \\ & = \frac{\gamma_{{k,n}}^{A}}{\ln(2)(1 + \gamma_{{k,n}}^{A}p_{k,n}^{A})} - \lambda^{A} \\ &\quad{}- \varOmega_{{k,n}}^{A}\sum _{l = 1}^{K^{B}} \rho_{{l,n}}^{B}\bigl \vert \bar{H}_{{l,n}}^{B} \bigr \vert ^{2} + v_{{k,n}}^{A} = 0 \end{aligned} $$
(59)
$$ \begin{aligned}[b] \frac{\partial L}{\partial s_{{k,n}}^{B}} &= \rho_{{k,n}}^{B}.C_{k,n}^{\prime B} \biggl(\frac{s_{{k,n}}^{B}}{\rho_{{k,n}}^{B}}\biggr) - \lambda^{B} \\ &\quad{}- \varOmega _{{k,n}}^{B}\sum_{l = 1}^{K^{A}} \rho_{{l,n}}^{A}\bigl \vert \bar{H}_{{l,n}}^{A} \bigr \vert ^{2} + v_{{k,n}}^{B} \\ &= \frac{\gamma_{{k,n}}^{B}}{\ln(2)(1 + \gamma_{{k,n}}^{B}p_{k,n}^{B})} - \lambda^{B} \\ &\quad{}- \varOmega_{{k,n}}^{B}\sum _{l = 1}^{K^{A}} \rho_{{l,n}}^{A}\bigl \vert \bar{H}_{{l,n}}^{A} \bigr \vert ^{2} + v_{{k,n}}^{B} = 0 \end{aligned} $$
(60)

The KKT conditions that must be satisfied for the optimal solution is

$$ (1)\quad\lambda^{A}\Biggl(\sum_{k = 1}^{K^{A}} \sum_{n = 1}^{N} s_{{k,n}}^{A} - P_{{T}}^{A} \Biggr) = 0 $$
(61)
$$ (2)\quad\lambda^{B}\Biggl(\sum_{k = 1}^{K^{B}} \sum_{n = 1}^{N} s_{{k,n}}^{B} - P_{{T}}^{B} \Biggr) = 0 $$
(62)
$$ (3)\quad\varOmega_{{k,n}}^{A}\Biggl(s_{{k,n}}^{A}. \sum_{l = 1}^{K^{B}} \rho_{{l,n}}^{B} \bigl \vert \bar{H}_{{l,n}}^{B} \bigr \vert ^{2} - I \Biggr) = 0 $$
(63)
$$ (4)\quad\varOmega_{{k,n}}^{B}\Biggl(s_{{k,n}}^{B}. \sum_{l = 1}^{K^{A}} \rho_{{l,n}}^{A} \bigl \vert \bar{H}_{{l,n}}^{A} \bigr \vert ^{2} - I \Biggr) = 0 $$
(64)
$$ (5)\quad v_{{k,n}}^{A}s_{{k,n}}^{A}=0 $$
(65)
$$ (6)\quad v_{{k,n}}^{B}s_{{k,n}}^{B}=0 $$
(66)
$$ (7)\quad\varphi_{n}^{A}\Biggl(\sum_{k = 1}^{K^{A}} \rho_{{k,n}}^{A} - 1\Biggr) = 0 $$
(67)
$$ (8)\quad\varphi_{n}^{B}\Biggl(\sum_{k = 1}^{K^{B}} \rho_{{k,n}}^{B} - 1\Biggr) = 0 $$
(68)

The conditions \(v_{{k,n}}^{A}s_{{k,n}}^{A} = 0\) and \(\varOmega_{{k,n}}^{A}(s_{{k,n}}^{A}.\sum_{l = 1}^{K^{B}} \rho_{{l,n}}^{B} \vert \bar{H}_{{l,n}}^{B} \vert^{2} - I) = 0\) show that

$$(\mbox{5-{I}}) \quad\mbox{if }s_{{k,n}}^{A} > 0 \quad\mbox{then } v_{{k,n}}^{A} = 0 $$
$$(\mbox{5-{II}}) \quad\mbox{if }v_{{k,n}}^{A} > 0 \quad\mbox{then } s_{{k,n}}^{A} = 0 $$
$$(\mbox{3-{I}}) \quad\mbox{if }s_{{k,n}}^{A}.\sum _{l = 1}^{K^{B}} \rho_{{l,n}}^{B}\bigl \vert \bar{H}_{{l,n}}^{B} \bigr \vert ^{2} < I\quad\mbox{then } \varOmega_{{k,n}}^{A} = 0 $$
$$(\mbox{3-{II}}) \quad\mbox{if }\varOmega_{{k,n}}^{A} > 0 \quad\mbox {then } s_{{k,n}}^{A} = \frac{I}{\sum_{l = 1}^{K^{B}} \rho _{{l,n}}^{B}\vert \bar{H}_{{l,n}}^{B} \vert ^{2}} $$

By combination of 3-I and 5-II we can obtain

$$\mbox{If} \quad\rho_{{k,n}}^{A}.C_{k,n}^{\prime A}(p_{k,n}^{A}) - \lambda^{A} < 0 \quad \mbox{then }p_{{k,n}}^{A} = 0 $$
$$ \frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma_{{k,n}}^{A}} < 0 \quad\Rightarrow\quad p_{{k,n}}^{A} = 0 $$
(69)

By combination of 3-II and 5-I we can obtain

$$\begin{aligned} &\mbox{If} \quad\rho_{{k,n}}^{A}.C_{k,n}^{\prime A}\biggl(p_{{k,n}}^{A} = \frac{I}{\sum_{l = 1}^{K^{B}} \rho _{{l,n}}^{B}\vert \bar{H}_{{l,n}}^{B} \vert ^{2}} \biggr) - \lambda^{A} > 0 \quad\mbox{then } \\ &\quad s_{{k,n}}^{A} = \frac{I}{\sum_{l = 1}^{K^{B}} \rho_{{l,n}}^{B}\vert \bar {H}_{{l,n}}^{B} \vert ^{2}} \end{aligned} $$
$$ \begin{aligned}[b] &\frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma_{{k,n}}^{A}} > \frac {I}{\sum_{l = 1}^{K^{B}} \rho _{{l,n}}^{B}\vert \bar{H}_{{l,n}}^{B} \vert ^{2}} \\ &\quad\Rightarrow\quad p_{{k,n}}^{A} = \frac{I}{\sum_{l = 1}^{K^{B}} \rho_{{l,n}}^{B}\vert \bar{H}_{{l,n}}^{B} \vert ^{2}} \end{aligned} $$
(70)

By combination of 3-I and 5-I we can obtain

$$ \begin{aligned}[b] &0 < \frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma_{{k,n}}^{A}} < \frac{I}{\sum_{l = 1}^{K^{B}} \rho_{{l,n}}^{B}\vert \bar{H}_{{l,n}}^{B} \vert ^{2}} \\ &\quad\Rightarrow\quad p_{{k,n}}^{A} = \frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma_{{k,n}}^{A}} \end{aligned} $$
(71)

3-II and 5-II do not occur jointly.

We can summarize Eqs. (69), (70) and (71) as follows

$$ p_{{k,n}}^{A} = \min\biggl(\biggl(\frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma_{{k,n}}^{A}}\biggr)^{ +},\frac{I}{\sum_{l = 1}^{K^{B}} \rho_{{l,n}}^{B}\vert \bar {H}_{{l,n}}^{B} \vert ^{2}} \biggr) $$
(72)

But if the condition \(\lambda^{A}(\sum_{k = 1}^{K^{A}} \sum_{n = 1}^{N} p_{{k,n}}^{A} - P_{{T}}^{A} ) = 0\) is satisfied the optimum value of λ A is obtained. Due to this condition, two cases can be considered:

$$(\mbox{1-{I}}) \quad\mbox{if }\lambda^{A} > 0\quad\mbox{then }\sum _{k = 1}^{K^{A}} \sum_{n = 1}^{N} p_{{k,n}}^{A} = P_{{T}}^{A} $$
$$(\mbox{1-{II}}) \quad\mbox{if }\sum_{k = 1}^{K^{A}} \sum_{n = 1}^{N} p_{{k,n}}^{A} < P_{{T}}^{A}\quad\mbox{then }\lambda^{A} = 0 $$

By combination of 1-II and (72) we can deduce that

$$ \begin{aligned}[b] &\lambda^{A} = 0 \quad\Rightarrow\quad \\ &p_{{k,n}}^{A} = \min \biggl(\biggl(\frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma _{{k,n}}^{A}}\biggr)^{ +}, \frac{I}{\sum_{l = 1}^{K^{B}} \rho_{{l,n}}^{B}\vert \bar{H}_{{l,n}}^{B} \vert ^{2}} \biggr) \\ &\hphantom{p_{{k,n}}^{A}}= \frac{I}{\sum_{l = 1}^{K^{B}} \rho _{{l,n}}^{B}\vert \bar{H}_{{l,n}}^{B} \vert ^{2}} \end{aligned} $$
(73)

Thus if

$$\sum_{n = 1}^{N} \frac{I}{\sum_{l = 1}^{K^{B}} \rho_{{l,n}}^{B}\vert \bar{H}_{{l,n}}^{B} \vert ^{2}} < P_{{T}}^{A} $$

then

$$p_{{k,n}}^{A} = \frac{I}{\sum_{l = 1}^{K^{B}} \rho_{{l,n}}^{B}\vert \bar{H}_{{l,n}}^{B} \vert ^{2}} $$

and if

$$\sum_{n = 1}^{N} \frac{I}{\sum_{l = 1}^{K^{B}} \rho_{{l,n}}^{B}\vert \bar {H}_{{l,n}}^{B} \vert ^{2}} \ge P_{{T}}^{A}, $$

we can conclude that the λ A>0 and for the optimal solution, the condition \(\sum_{k = 1}^{K^{A}} \sum_{n = 1}^{N} s_{{k,n}}^{A} = P_{{T}}^{A}\) must be satisfied. Therefore, the optimal value of λ A is chosen to fulfill the total power constraint with equality. We can write the optimal power allocation in cell A as follows:

$$ p_{k,n}^{A*} = \left \{ \begin{array}{l} \frac{I}{\sum_{k = 1}^{K^{B}} \rho_{k,n}^{B*}\vert \bar{H}_{{k,n}}^{B} \vert ^{2}}, \quad\sum_{n = 1}^{N} I_{n}^{A}(\rho_{k,n}^{B*}) < P_{{T}}^{A} \\ \min((\frac{1}{\ln(2)\lambda^{A}} - \frac{1}{\gamma_{k,n}})^{ +},I_{n}^{A}(\rho _{k,n}^{B*})), \\ \quad\sum_{n = 1}^{N} I_{n}^{A}(\rho_{k,n}^{B*}) \ge P_{{T}}^{A} \end{array} \right . $$
(74)

and similarly, by combination of the conditions 2, 4, and 6 in Eq. (60), we can write the optimal power allocation in cell B as follows:

$$ p_{k,n}^{B*} = \left \{ \begin{array}{l} \frac{I}{\sum_{k = 1}^{K^{A}} \rho_{k,n}^{A*}\vert \bar{H}_{{k,n}}^{A} \vert ^{2}}, \quad\sum_{n = 1}^{N} I_{n}^{B}(\rho_{k,n}^{A*}) < P_{{T}}^{B} \\ \min((\frac{1}{\ln(2)\lambda^{B}} - \frac{1}{\gamma_{k,n}})^{ +},I_{n}^{B}(\rho _{k,n}^{A*})), \\ \quad\sum_{n = 1}^{N} I_{n}^{B}(\rho_{k,n}^{A*}) \ge P_{{T}}^{B} \end{array} \right . $$
(75)

Therefore, the optimal power allocation is obtained through (74) and (75). It can be observed that the optimal power allocation is a function of the subcarrier allocation in the adjacent cell. Therefore, the subcarrier allocation and power distribution must be performed jointly.

Now we must determine the subcarrier allocation scheme. We differentiate \(L(s_{k,n}^{A},s_{k,n}^{B},\rho_{{k,n}}^{A},\rho_{{k,n}}^{B})\) with regard to \(\rho _{{k,n}}^{A}\), \(\rho_{{k,n}}^{B}\) and setting them to zero.

$$\begin{aligned} \frac{\partial L}{\partial\rho_{{k,n}}^{A}} =& C_{k,n}^{A}\biggl (\frac{s_{{k,n}}^{A}}{\rho_{{k,n}}^{A}} \biggr) + \rho_{{k,n}}^{A}.\frac{\partial}{ \partial\rho_{{k,n}}^{A}}C_{k,n}^{A} \biggl(\frac{s_{{k,n}}^{A}}{\rho_{{k,n}}^{A}}\biggr) \\ &{}- \bigl \vert \bar{H}_{{k,n}}^{A} \bigr \vert ^{2}\sum_{m = 1}^{K^{B}} \varOmega_{{m,n}}^{B}s_{{m,n}}^{B} - \varphi _{{n}}^{A} \\ =& \frac{1}{\ln(2)}\ln\bigl(1 + \gamma_{{k,n}}^{A}p_{k,n}^{A} \bigr) - \frac{\gamma _{{k,n}}^{A}p_{k,n}^{A}}{\ln(2)(1 + \gamma_{{k,n}}^{A}p_{k,n}^{A})} \\ &{}- \bigl \vert \bar{H}_{{k,n}}^{A} \bigr \vert ^{2}\sum_{m = 1}^{K^{B}} \varOmega_{{m,n}}^{B}s_{{m,n}}^{B} - \varphi _{{n}}^{A} = 0 \end{aligned}$$
(76)
$$\begin{aligned} \frac{\partial L}{\partial\rho_{{k,n}}^{B}} =& C_{k,n}^{B}\biggl (\frac{s_{{k,n}}^{B}}{\rho_{{k,n}}^{B}} \biggr) + \rho_{{k,n}}^{B}.\frac{\partial}{ \partial\rho_{{k,n}}^{B}}C_{k,n}^{B} \biggl(\frac{s_{{k,n}}^{B}}{\rho_{{k,n}}^{B}}\biggr) \\ &{}- \bigl \vert \bar{H}_{{k,n}}^{B} \bigr \vert ^{2}\sum_{k = 1}^{K^{A}} \varOmega_{{k,n}}^{A}s_{{k,n}}^{A} - \varphi _{{n}}^{B} \\ =& \frac{1}{\ln(2)}\ln\biggl(1 + \frac{\gamma _{{k,n}}^{B}s_{k,n}^{B}}{\rho _{{k,n}}^{B}}\biggr) - \frac{\frac{\gamma_{{k,n}}^{B}s_{k,n}^{B}}{\rho_{{k,n}}^{B}}}{\ln (2)(1 + \frac{\gamma_{{k,n}}^{B}s_{k,n}^{B}}{\rho_{{k,n}}^{B}})} \\ &{}- \bigl \vert \bar{H}_{{k,n}}^{B} \bigr \vert ^{2}\sum_{k = 1}^{K^{A}} \varOmega _{{k,n}}^{A}s_{{k,n}}^{A} - \varphi _{{n}}^{B} = 0 \end{aligned}$$
(77)

If we assume user m is assigned to subcarrier n in cell B, due to (59) we have

$$ \varOmega_{{m,n}}^{B}\bigl \vert \bar{H}_{{k,n}}^{A} \bigr \vert ^{2} = \frac{\gamma_{{m,n}}^{B}}{\ln (2)(1 + \gamma_{{m,n}}^{B}p_{m,n}^{B})} - \lambda^{B} + v_{{m,n}}^{B} $$
(78)

By substituting (78) in (76), we have

$$\begin{aligned} \frac{\partial L}{\partial\rho_{{k,n}}^{A}} =& \log\bigl(1 + \gamma_{{k,n}}^{A}p_{k,n}^{A} \bigr) - \frac{\gamma_{{k,n}}^{A}p_{k,n}^{A}}{\ln(2)(1 + \gamma _{{k,n}}^{A}p_{k,n}^{A})} \\ &{}- \frac{\gamma _{{m,n}}^{B}p_{m,n}^{B}}{\ln(2)(1 + \gamma_{{m,n}}^{B}p_{m,n}^{B})} + \lambda^{B}p_{m,n}^{B} \\ &{}- v_{{m,n}}^{B}p_{m,n}^{B} - \varphi _{{n}}^{A} \end{aligned}$$
(79)

Due to condition 6, \(v_{{m,n}}^{B}p_{m,n}^{B} = 0\) and \(\varphi _{{n}}^{A}\) is the same for different users. Therefore, the optimal subcarrier allocation in cell A is

$$\begin{aligned} k_{{n}}^{A*} =& \arg\max_{k,m}\biggl\{ \log \bigl(1 + \gamma_{{k,n}}^{A}p_{k,n}^{A}\bigr) - \frac{\gamma _{{k,n}}^{A}p_{k,n}^{A}}{\ln(2)(1 + \gamma_{{k,n}}^{A}p_{k,n}^{A})} \\ &{}+ \lambda^{B}p_{m,n}^{B} - \frac{\gamma_{{m,n}}^{B}p_{m,n}^{B}}{\ln(2)(1 + \gamma _{{m,n}}^{B}p_{m,n}^{B})}\biggr\} \end{aligned}$$
(80)

where \(k_{{n}}^{A*}\) is the user assigned to subcarrier n in cell A.

By the same analysis based on the combination of (60) and (77), we can write for cell B

$$\begin{aligned} k_{{n}}^{B*} =& \arg\max_{k,m}\biggl\{ \log \bigl(1 + \gamma_{{k,n}}^{B}p_{k,n}^{B}\bigr) - \frac{\gamma _{{k,n}}^{B}p_{k,n}^{B}}{\ln(2)(1 + \gamma_{{k,n}}^{B}p_{k,n}^{B})} \\ &{}+ \lambda^{A}p_{m,n}^{A} - \frac{\gamma_{{m,n}}^{A}p_{m,n}^{A}}{\ln(2)(1 + \gamma _{{m,n}}^{A}p_{m,n}^{A})}\biggr\} \end{aligned}$$
(81)

where \(k_{{n}}^{B*}\) is the user assigned to subcarrier n in cell B.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini Andargoli, S.M., Mohamed-pour, K. Joint subcarrier and power allocation for downlink cellular OFDMA systems by intercell interference limitation. Telecommun Syst 53, 195–212 (2013). https://doi.org/10.1007/s11235-013-9693-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9693-2

Keywords

Navigation