Skip to main content
Log in

A dynamic load balancing algorithm for Quality of Service and mobility management in next generation home networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Heterogeneity of connection technologies and nodes mobility open new challenges in home networks control strategies. Moreover, user’s needs are changing towards applications requiring high transmission speeds such as 3D gaming, enhanced interactivity and high definition video. Each of those applications puts several constraints on the network capabilities to guarantee requirements on the Quality of Service. In this paper we introduce an innovative concept based on fast load balancing algorithm operating on top of a convergence layer, in order to rapidly react to network changes and contemporaneously to satisfy strict application demands. We formulated the load balancing problem as a Multi-Commodity Flow and resolved it with a column generation approach using Lagrangian Relaxation and Dijkstra algorithm. The load balancing problem computational complexity is decreased with respect to state of the art load balancing solutions based on linear programming techniques. Proof of concept simulation results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Javaid, U., Meddour, D. E., & Rasheed, T. M. (2006). Towards universal convergence in heterogeneous wireless networks using ad-hoc connectivity. In International symposium on wireless personal multimedia communications, San Diego.

    Google Scholar 

  2. Wood, L., Eddy, W. M., Ivancic, W., McKim, J., & Jackson, C. (2007). Saratoga: a delay-tolerant networking convergence layer with efficient link utilization. In Third international workshop on satellite and space communications.

    Google Scholar 

  3. Yamada, K., Furumura, T., Kimura, K., Kaneyama, T., Yoshida, K., Kojima, M., Mineno, H., & Mizuno, T. (2007). Dual communication system using wired and wireless in home-network. In Knowledge-based intelligent information and engineering systems, pp. 469–476. ISBN 978-3-540-74828-1. doi:10.1007/978-3-540-74829-8_58.

    Chapter  Google Scholar 

  4. Bruni, C., Delli Priscoli, F., Koch, G., & Marchetti, I. (2006). An innovative approach to the formulation of connection admission control problem. World Academy of Science, Engineering and Technology, 18. ISSN 1307-6884.

    Google Scholar 

  5. Meyer, T., Langendorfer, P., Suraci, V., Nowak, S., & Bahr, M. (2009). An inter-MAC architecture for heterogeneous gigabit home networks. In Multi-gigabit wireless systems—MGWS, part of PIMRC, Tokyo.

    Google Scholar 

  6. Ford, L. R. Jr., & Fulkerson, D. R. (1958). A suggested computation for maximal multi-commodity network flows. Management Science, 5, 97–101.

    Article  Google Scholar 

  7. Dijkstra, E. W. (1959). A note on two problems in conneximon with graphs. Numerische Mathematik. doi:10.1007/BF01386390.

    Google Scholar 

  8. Fox, B. L., & Landi, D. M. (1970). Searching for the multiplier in one-constraint optimization problems. Operations Research, 18(2), 253–262.

    Article  Google Scholar 

  9. Ferguson, T. S. (2013). Linear programming a concise programming. http://www.usna.edu/Users/weapsys/avramov/Compressed%20sensing%20tutorial/LP.pdf.

  10. Pfetsch, M. (2013). Multicommodity flows and column generation. Lecture notes http://www.zib.de/borndoerfer/Homepage/Documents/IPOV-WS06-MultiCommodityFlow.pdf.

  11. Carlyle, M., Royset, J. O., & Wood, R. K. (2008). Lagrangian relaxation and enumeration for solving constrainedshortest-path problems. Networks, 52(4). doi:10.1002/net.v52:4.

  12. OPNET Modeler 11.5A (2013). OPNET Technologies, Inc. 7255 Woodmont Ave., Bethesda, MD 20814, USA. www.opnet.com.

  13. Terziyan, V., Zhovtobryukh, D., & Katasonov, A. (2009). Proactive future Internet: smart semantic middleware for overlay architecture. In Fifth international conference on networking and services.

    Google Scholar 

  14. Van Der Meer, S., Strassner, J., & Phelan, P. (2009). The design of a novel autonomic management methodology and architecture for next generation and future Internet systems. In Sixth IEEE conference and workshops on engineering of autonomic and autonomous systems.

    Google Scholar 

  15. Galis, A., Abramowicz, H., & Brenner, M. (2009). Management and service-aware networking architectures (MANA) for future Internet. Position Paper.

  16. Delli Priscoli, F. (2010). A fully cognitive approach for future Internet. MDPI - Open Access Publishing, 2, 16–29. Special issue on “Future Network Architectures” of “Future Internet”.

    Google Scholar 

  17. Zhong, J., Hu, R., & Zhu, X. (2010). A novel load-balancing algorithm for QoS provisionings over 802.11s wireless mesh networks. In Wireless communications networking and mobile computing (WiCOM), 6th international conference, September 2010, Chengdu, China.

    Google Scholar 

  18. Wu, X., & Nie, G. (2009). Design and simulation of an enhanced handover scheme in heterogeneous mobile IPv6 networks. In Asia-pacific conference on information processing (APCIP) 2009, 18th–19th July 2009, Shenzhen, China.

    Google Scholar 

  19. Meddour, D. E., Kortebi, A., & Boutaba, R. (2010). Mesh-based broadband home network solution: setup and experiments. In IEEE international conference on communications (ICC) 2010, 23rd–27th May 2010, Cape Town, South Africa.

    Google Scholar 

  20. Sahaly, S., & Christin, P. (2009). Inter-MAC forwarding and load balancing per flow. In IEEE 20th international symposium on personal, indoor and mobile radio communications (PIMRC) 2009, 13th–16th September 2009, Tokyo, Japan.

    Google Scholar 

  21. He, X., Tang, H., Zhu, M., & Chu, Q. (2009). Flow-level based adaptive load balancing in MPLS networks. In Fourth international conference on communications and networking in China (ChinaCOM) 2009, 26th–28th August 2009, Xi’an, China.

    Google Scholar 

  22. Lawrence, V., Zervos, N., Zahariadis, T., & Meliones, A. (2010). Digital gateways for multimedia home networks. Telecommunications Systems, 23(3–4), 335–349. ISSN:1018-4864, doi:10.1023/A:1024489827061.

    Google Scholar 

  23. Karetsos, G. T., Tragos, E. Z., & Tsiropoulos, G. I. A holistic approach to minimizing handover latency in heterogeneous wireless networking environments. Telecommunications Systems. ISSN: 1018-4864, doi:10.1007/s11235-011-9498-0.

  24. Develder, C., Lambert, P., et al. Delivering scalable video with QoS to the home. Telecommunications Systems. ISSN: 1018-4864, doi:10.1007/s11235-010-9358-3.

  25. UPnP-QoS Architecture:3 (2008). Web site http://www.upnp.org/specs/qos/UPnP-qos-Architecture-v3.pdf. Accessed on 15th of June, 2011.

Download references

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Framework Programme FP7/2007-2013 under grant agreement n213311 also referred as OMEGA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Oddi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macone, D., Oddi, G., Palo, A. et al. A dynamic load balancing algorithm for Quality of Service and mobility management in next generation home networks. Telecommun Syst 53, 265–283 (2013). https://doi.org/10.1007/s11235-013-9697-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9697-y

Keywords

Navigation