Skip to main content
Log in

A new fingerprinting scheme using social network analysis for majority attack

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Digital fingerprinting is a technology to protect multimedia content from unauthorized redistribution. However, collusion attack is a cost-efficient attack for digital fingerprinting, where groups of dishonest users create a pirate copy using their copies for the purpose of attenuating or removing the fingerprints. In this paper, FCBSN, Fingerprinting Code Based on Social Networks, for coding the user’s fingerprints to resist majority attack, is proposed. The proposed scheme stems from the concept of coalition which always occurred in a social network. Different from all existing work, we explore the notion of the hierarchical community structure of social network and its intrinsic properties to assign fingerprints to users, drawing on the social relation according to the similar metric between two users. Theoretical analysis and experimental results show that the FCBSN detector outperforms the existing group detector for BS code and Tardos detector by large margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lin, E. T., Eskicioglu, A. M., & Lagendijk, R. L. (2005). Advances in digital video content protection. Proceedings of the IEEE, 93(1), 171–183.

    Article  Google Scholar 

  2. Barhoush, M., & William Atwood, J. (2010). Requirements for enforcing digital rights management in multicast content distribution. Telecommunications Systems, 45(1), 3–20.

    Article  Google Scholar 

  3. Cheng, H., & Li, X. B. (2000). Partial encryption of compressed images and videos. IEEE Transactions on Signal Processing, 48(8), 2439–2451.

    Article  Google Scholar 

  4. Lian, S. G., Sun, J. S., & Wang, Z. Q. (2005). Security analysis of a chaos-based image encryption algorithm. Physica A, 351(2–4), 645–661.

    Article  Google Scholar 

  5. Lee, D. G., Kim, J., Sung, J., et al. (2010). Cryptanalysis of block-wise stream ciphers suitable for the protection of multimedia and ubiquitous systems. Telecommunications Systems, 45(3–4), 267–279.

    Article  Google Scholar 

  6. Wang, Y., Wong, K. W., Liao, X. F., et al. (2011). A new chaos-based fast image encryption algorithm. Applied Soft Computing, 11(1), 514–522.

    Article  Google Scholar 

  7. Li, C. Q., Li, S. J., Asim, M., et al. (2009). On the security defects of an image encryption scheme. Image and Vision Computing, 27(9), 1371–1381.

    Article  Google Scholar 

  8. Huang, F., Feng, Y., & Yu, X. H. (2007). A symmetric image encryption scheme based on a simple novel two-dimensional map. International Journal of Innovative Computing, Information & Control, 3(6B), 1593–1602.

    Google Scholar 

  9. Kim, C. (2003). Content-based image copy detection. Signal Processing. Image Communication, 18(3), 169–184.

    Article  Google Scholar 

  10. Wub, M.-N., Linc, C.-C., & Chen, C. (2007). Novel image copy detection with rotating tolerance. The Journal of Systems and Software, 80(7), 1057–1069.

    Article  Google Scholar 

  11. Douze, M., Jegou, H., & Schmid, C. (2010). An image-based approach to video copy detection with spatio-temporal post-filtering. IEEE Transactions on Multimedia, 12(4), 257–266.

    Article  Google Scholar 

  12. Xu, Z., Ling, H., Zou, F., et al. (2011). A novel image copy detection scheme based on the local multi-resolution histogram descriptor. Multimedia Tools and Applications, 52(2), 445–463.

    Article  Google Scholar 

  13. Ling, H., Wang, L., Zou, F., et al. (2011). Fine-search for image copy detection based on local affine-invariant descriptor and spatial dependent matching. Multimedia Tools and Applications, 52(2), 551–568.

    Article  Google Scholar 

  14. Bhat, D. N., & Nayar, S. K. (1998). Ordinal measures for image correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(4), 415–423.

    Article  Google Scholar 

  15. Hsiao, J. H., Chen, C. S., Chien, L. F., & Chen, M. S. (2007). A new approach to image copy detection based on extended feature sets. IEEE Transactions on Image Processing, 16(8), 2069–2079.

    Article  Google Scholar 

  16. Petitcolas, F. A. P., Anderson, R. J., & Kuhn, M. G. (1999). Information hiding—a survey. Proceedings of the IEEE, 87(7), 1062–1078.

    Article  Google Scholar 

  17. Saikia, M., Majumder, S., & Das, T. S. (2010). Coded fingerprinting based watermarking to resist collusion attacks and trace colluders. In International conference on advances in computer engineering (ACE), 2010 (pp. 120–124).

    Chapter  Google Scholar 

  18. Cox, I. J., Kilian, J., Leighton, F. T., et al. (1997). Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing, 6(12), 1673–1687.

    Article  Google Scholar 

  19. Zhang, L., & Zhou, P.-P. (2010). Localized affine transform resistant watermarking in region-of-interest. Telecommunications Systems, 45(3–4), 205–220.

    Article  Google Scholar 

  20. Boneh, D., & Shaw, J. (1998). Collusion-secure fingerprinting for digital data. IEEE Transactions on Information Theory, 44(5), 1897–1905.

    Article  Google Scholar 

  21. Luo, X. Y., Wang, D. S., Wang, P., et al. (2008). A review on blind detection for image steganography. Signal Processing, 88(9), 2138–2157.

    Article  Google Scholar 

  22. Barg, A., Blakley, G., & Kabatiansky, G. (2003). Digital fingerprinting codes: problem statements, constructions, identification of traitors. IEEE Transactions on Information Theory, 49, 852–865.

    Article  Google Scholar 

  23. Boneh, D., & Shaw, J. (1998). Collusion-secure fingerprinting for digital data. IEEE Transactions on Information Theory, 44, 1987–1995.

    Article  Google Scholar 

  24. Hagiwara, M., Hanaoka, G., & Imai, H. (2006). A short random fingerprinting code against a small number of pirates. In LNCS: Vol. 3857. Proc. of AAECC 2006 (pp. 193–202). Berlin: Springer.

    Google Scholar 

  25. Kitagawa, T., & Hagiwara, M. (2007). A short random fingerprinting code and its pirates tracing algorithm which uses group testing. In Proc. of IEICE and SITA joint conference on information theory, Hawaii, USA.

    Google Scholar 

  26. Boella, G., van der Torre, L., & Villata, S. (2009). Analyzing cooperation in iterative social network design. Journal of Universal Computer Science, 15(13), 2676–2700.

    Google Scholar 

  27. Lin, W. S., Zhao, H. V., & Liu, K. J. R. (2009). Fairness dynamics in multimedia colluders’ social networks. In IEEE international conference on acoustics, speech and signal processing, 2009. ICASSP 2009 (pp. 1465–1468).

    Chapter  Google Scholar 

  28. Lin, W. S., Zhao, H. V., & Liu, K. J. R. (2009). Behavior forensics with side information for multimedia fingerprinting social network. IEEE Transactions on Information Forensics and Security, 4(4), 911–927.

    Article  Google Scholar 

  29. Lin, W. S., Zhao, H. V., & Liu, K. J. R. (2008). Fairness dynamics in multimedia colluders’ social networks. In 15th IEEE international conference on image processing, 2008 (ICIP 2008) (pp. 3132–3135).

    Chapter  Google Scholar 

  30. Lin, W. S., Zhao, H. V., & Liu, K. J. R. (2009). Behavior modeling and forensics for multimedia social networks: a case study in multimedia fingerprinting. IEEE Signal Processing Magazine, 26(1), 118–139.

    Article  Google Scholar 

  31. Kitagawa, T., Hagiwara, M., Nuida, K., et al. (2008). A group testing based deterministic tracing algorithm for a short random fingerprint code. In International symposium on information theory and its application (Vol. 1–3, pp. 706–710).

    Google Scholar 

  32. Feng, H., Ling, H., Zou, F., et al. (2009). A performance evaluation of collusion attacks in multimedia fingerprinting. In International conference on multimedia information networking and security, 2009, MINES ’09 (pp. 530–534).

    Chapter  Google Scholar 

  33. Kirovski, D., & Mihcak, M. K. (2005). Bounded Gaussian fingerprints and the gradient collusion attack. In IEEE international conference on acoustics, speech, and signal processing (pp. 1037–1040).

    Google Scholar 

  34. Cha, B. H., & Kuo, C. C. J. (2009). Robust MC-CDMA-based fingerprinting against time-varying collusion attacks. IEEE Transactions on Information Forensics and Security, 4(3), 302–317.

    Article  Google Scholar 

  35. Kiyavash, N., & Moulin, P. (2006). A framework for optimizing nonlinear collusion attacks on fingerprinting systems. In 40th annual conference on information sciences and systems, 2006 (pp. 1170–1175).

    Chapter  Google Scholar 

  36. Zhao, H. V., Wu, M., Wang, Z. J., et al. (2005). Forensic analysis of nonlinear collusion attacks for multimedia fingerprinting. IEEE Transactions on Image Processing, 14(5), 646–661.

    Article  Google Scholar 

  37. Luh, W., & Kundur, D. (2005). New paradigms for effective multicasting and fingerprinting of entertainment media. IEEE Communications Magazine, 77(84).

  38. Chor, et al. (1994). Tracing traitors. In LNCS: Vol. 839. Advances in cryptology-Crypto’94 (pp. 480–491). Berlin: Springer.

    Google Scholar 

  39. Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 69, 026113.

    Article  Google Scholar 

  40. Tomas-Buliart, J., Fernandez, M., & Soriano, M. (2010). Traitor tracing over YouTube video service-proof of concept. Telecommunications Systems, 45(1), 47–60.

    Article  Google Scholar 

  41. Lian, S. G., Liu, Z. X., Ren, Z., et al. (2006). Secure advanced video coding based on selective encryption algorithms. IEEE Transactions on Consumer Electronics, 52(2), 621–629.

    Article  Google Scholar 

  42. Lian, S. G., et al. (2007). Commutative encryption and watermarking in video compression. IEEE Transactions on Circuits and Systems for Video Technology, 17(6), 774–778.

    Article  Google Scholar 

  43. Lian, S. G. (2009). Efficient image or video encryption based on spatiotemporal chaos system. Chaos, Solitons and Fractals, 40(5), 2509–2519.

    Article  Google Scholar 

  44. Lian, S. G. (2010). Content and service protection for the ubiquitous TV based on network convergence. Wireless Personal Communications, 55(1), 19–34.

    Article  Google Scholar 

  45. Lian, S. G., & Wang, Z. Q. (2008). Collusion-traceable secure multimedia distribution based on controllable modulation. IEEE Transactions on Circuits and Systems for Video Technology, 18(10), 1462–1467.

    Article  Google Scholar 

  46. Lian, S. G., & Liu, Z. X. (2008). Secure media content distribution based on the improved set-top box in IPTV. IEEE Transactions on Consumer Electronics, 54(2), 560–566.

    Article  Google Scholar 

  47. Lian, S. G. (2009). Secure video distribution scheme based on partial encryption. International Journal of Imaging Systems and Technology, 19(3), 227–235.

    Article  Google Scholar 

  48. Lian, S. G. (2009). Secure image distribution based on joint decryption and fingerprinting. Imaging Science Journal, 57(2), 84–93.

    Article  Google Scholar 

  49. Lian, S. G. (2009). Quasi-commutative watermarking and encryption for secure media content distribution. Multimedia Tools and Applications, 43(1), 91–107.

    Article  Google Scholar 

  50. Kantarci, A. (2010). Bandwidth-effective streaming of educational medical videos. Multimedia Systems, 16(6), 381–397.

    Article  Google Scholar 

  51. Zhao, H. V., & Liu, K. J. R. (2006). Fingerprint multicast in secure video streaming. IEEE Transactions on Image Processing, 15(1), 12–29.

    Article  Google Scholar 

  52. Pan, Y., Li, D.-H., Liu, J.-G., et al. (2010). Detecting community structure in complex networks via node similarity. Physica. A, 389, 2849–2857.

    Article  Google Scholar 

  53. Schaathun, H. G. (2006). The Boneh-Shaw fingerprinting scheme is better than we thought. IEEE Transactions on Information Forensics and Security, 1(2), 248–255.

    Article  Google Scholar 

  54. Tardos, G. (2008). Optimal probabilistic fingerprint codes. Journal of the ACM, 55(2), 1–24.

    Article  Google Scholar 

  55. Skoric, B., Vladimirova, T. U., Celik, M., & Talstra, J. C. (2008). Tardos fingerprinting is better than we thought. IEEE Transactions on Information Theory, 54(8), 3663–3676.

    Article  Google Scholar 

  56. Shen, H., Cheng, X., Cai, K., & Hu, M.-b. (2009). Detect overlapping and hierarchical community structure in networks. Physica. A, 388(8), 1706–1712.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for numerous comments which improved and clarified the contents. This work is supported by NSF of China under Grant No. 61272409, the Fundamental Research Funds for the Central Universities and Wuhan Youth Science and Technology, and Hubei Provincial Department of Education Grant No. Q20132705.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hefei Ling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, C., Ling, H., Zou, F. et al. A new fingerprinting scheme using social network analysis for majority attack. Telecommun Syst 54, 315–331 (2013). https://doi.org/10.1007/s11235-013-9736-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9736-8

Keywords

Navigation