Skip to main content
Log in

Applying control theoretic approach to mitigate SIP overload

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

The Session Initiation Protocol (SIP) retransmission mechanism is designed to maintain reliable transmission over lossy or faulty network conditions. However, the retransmission can amplify the traffic overload faced by the SIP servers. In this paper, by modeling the interaction between an overloaded downstream server and its upstream server as a feedback control system, we propose two Proportional-Integral (PI) control algorithms to mitigate the overload by regulating the retransmission rate in the upstream server. We provide the design guidelines for both overload control algorithms to ensure the system stability. Our OPNET® simulation results demonstrate that: (1) without the control algorithm applied, the overload at a downstream server may propagate to its upstream servers and cause widespread network failure; (2) in case of short-term overload, both proposed feedback control solutions can mitigate the overload effectively without rejecting calls or reducing resource utilization, thus avoiding the disadvantages of existing overload control solutions for SIP networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 3GPP (2011). 3rd Generation Partnership Project. http://www.3gpp.org.

  2. Abdelal, A., & Matragi, W. (2010). Signal-based overload control for SIP servers. In Proceedings of IEEE CCNC, Las Vegas, NV.

    Google Scholar 

  3. Amooee, A. M., & Falahati, A. (2009). Overcoming overload in IMS by employment of multiserver nodes and priority queues. In Proceedings of international conference on signal processing systems, Singapore (pp. 348–352).

    Google Scholar 

  4. Astrom, K. J., & Hagglund, T. (1995). PID controllers: theory, design, and tuning (2nd ed.). North Carolina: Instrument Society of America.

    Google Scholar 

  5. Astrom, K. J., & Murray, R. M. (2008). Feedback systems: an introduction for scientists and engineers. New Jersey: Princeton University Press.

    Google Scholar 

  6. Astrom, K. J., & Wittenmark, B. (1995). Adaptive control (2nd ed.). Boston: Addison-Wesley.

    Google Scholar 

  7. Astrom, K. J., Hagglund, T., Hang, C. C., & Ho, W. K. (1993). Automatic tuning and adaptation for PID controllers—a survey. Control Engineering Practice, 1(4), 699–714.

    Article  Google Scholar 

  8. Astrom, K. J., Goodwin, G. C., & Kumar, P. R. (1995). The IMA volumes in mathematics and its applications: Vol. 74. Adaptive control, filtering, and signal processing. Berlin: Springer.

    Book  Google Scholar 

  9. Bristol, E. H. (1986). The EXACT pattern recognition adaptive controllers, a user-oriented commercial success. adaptive and learning systems (pp. 149–163). New York: Plenum.

    Google Scholar 

  10. Cisco white paper (2005). DiffServ—the scalable end-to-end QoS model.

  11. Dacosta, I., & Traynor, P. (2010). Proxychain: developing a robust and efficient authentication infrastructure for carrier-scale VoIP networks. In Proceedings of the USENIX annual technical conference, Boston, MA.

    Google Scholar 

  12. Dacosta, I., Balasubramaniyan, V., Ahamad, M., & Traynor, P. (2009). Improving authentication performance of distributed SIP proxies. In Proceedings of IPTComm, Atlanta, GA, July 2009.

    Google Scholar 

  13. Dang, T. D., Sonkoly, B., & Molnar, S. (2004). Fractal analysis and modeling of VoIP traffic. In Proceedings of international telecommunication network strategy and planning symposium, Vienna, Austria (pp. 123–130).

    Google Scholar 

  14. Desbourough, L., & Miller, R. (2002). Increasing customer value of industrial control performance monitoring—Honeywell’s experience. In AIChE symposium series: Vol. 98(326). Proceedings of sixth international conference on chemical process control.

    Google Scholar 

  15. Faccin, S. M., Lalwaney, P., & Patil, B. (2004). IP multimedia services: analysis of mobile IP and SIP interactions in 3G networks. IEEE Communications Magazine, 42(1), 113–120.

    Article  Google Scholar 

  16. Garroppo, R. G., Giordano, S., Spagna, S., & Niccolini, S. (2009). Queuing strategies for local overload control in SIP server. In Proceedings of IEEE Globecom, Honolulu, Hawaii.

    Google Scholar 

  17. Geneiatakis, D., & Lambrinoudakis, C. (2007). A lightweight protection mechanism against signaling attacks in a SIP-based VoIP environment. Telecommunications Systems, 36(4), 153–159.

    Article  Google Scholar 

  18. Geng, F., Wang, J., Zhao, L., & Wang, G. (2006). A SIP message overload transfer scheme. In Proceedings of ChinaCom, Beijing, China.

    Google Scholar 

  19. Govind, M., Sundaragopalan, S., Binu, K. S., & Saha, S. (2003). Retransmission in SIP over UDP—traffic engineering issues. In Proceedings of international conference on communication and broadband networking, Bangalore, India.

    Google Scholar 

  20. Gurbani, V. K., Jagadeesan, L. J., & Mendiratta, V. B. (2005). Characterizing Session Initiation Protocol (SIP) network performance and reliability. In Proceedings of 2nd international service availability symposium, Berlin, Germany (pp. 196–211).

    Chapter  Google Scholar 

  21. Gurbani, V. K., Hilt, V., & Schulzrinne, H. (2011). Session Initiation Protocol (SIP) overload control (IETF internet-draft), draft-ietfsoc-overload-control-05.

  22. Hilt, V., & Widjaja, I. (2008). Controlling overload in networks of SIP servers. In Proceedings of IEEE ICNP, Orlando, Florida (pp. 83–93).

    Google Scholar 

  23. Hilt, V., Noel, E., Shen, C., & Abdelal, A. (2011). Design considerations for Session Initiation Protocol (SIP) overload control (IETF internet-draft), draft-hilt-soc-overload-design-06.

  24. Ho, W. K., Lee, T. H., Han, H. P., & Hong, Y. (2001). Self-tuning IMC-PID control with interval gain and phase margin assignment. IEEE Transactions on Control Systems Technology, 9(3), 535–541.

    Article  Google Scholar 

  25. Ho, W. K., Hong, Y., Hansson, A., Hjalmarsson, H., & Deng, J. W. (2003). Relay auto-tuning of PID controllers using iterative feedback tuning. Automatica, 39(1), 149–157.

    Article  Google Scholar 

  26. Homayouni, M., Jahanbakhsh, M., Azhari, V., & Akbari, A. (2010). Controlling overload in SIP proxies: an adaptive window based approach using no explicit feedback. In Proceedings of IEEE Globecom, Miami, FL.

    Google Scholar 

  27. Hong, Y., Huang, C., & Yan, J. (2010). Analysis of SIP retransmission probability using a Markov-modulated Poisson process model. In Proceedings of IEEE/IFIP network operations and management symposium, Osaka, Japan (pp. 179–186).

    Google Scholar 

  28. Hong, Y., Huang, C., & Yan, J. (2010). Mitigating SIP overload using a control-theoretic approach. In Proceedings of IEEE Globecom, Miami, FL.

    Google Scholar 

  29. Hong, Y., Huang, C., & Yan, J. (2010). Stability condition for SIP retransmission mechanism: analysis and performance evaluation. In Proceedings of IEEE SPECTS, Ottawa, Canada (pp. 387–394).

    Google Scholar 

  30. Hong, Y., Huang, C., & Yan, J. (2011). Controlling retransmission rate for mitigating SIP overload. In Proceedings of IEEE ICC, Kyoto, Japan.

    Google Scholar 

  31. Hong, Y., Huang, C., & Yan, J. (2011). Design of a PI rate controller for mitigating SIP overload. In Proceedings of IEEE ICC, Kyoto, Japan.

    Google Scholar 

  32. Hong, Y., Huang, C., & Yan, J. (2011). Modeling and simulation of SIP tandem server with finite buffer. ACM Transactions on Modeling and Computer Simulation, 21(2).

  33. Hong, Y., Huang, C., & Yan, J. (2012). A comparative study of SIP overload control algorithms. In J. Abawajy, M. Pathan, M. Rahman, A. K. Pathan, & M. M. Deris (Eds.), Internet and distributed computing advancements: theoretical frameworks and practical applications, Hershey: IGI Global.

    Google Scholar 

  34. Hong, Y., Huang, C., & Yan, J. (2012, in press). Modeling chaotic behaviour of SIP retransmission mechanism. International Journal of Parallel, Emergent and Distributed Systems.

  35. Internet traffic report (2010). http://www.internettrafficreport.com/.

  36. IPTEL (2011). SIP express router. http://www.iptel.org/ser/.

  37. Jiang, H., Iyengar, A., Nahum, E., Segmuller, W., Tantawi, A., & Wright, C. (2009). Load balancing for SIP server clusters. In Proceedings of IEEE INFOCOM, Rio de Janeiro, Brazil (pp. 2286–2294).

    Google Scholar 

  38. Katabi, D., Handley, M., & Rohrs, C. (2002). Congestion control for high bandwidth delay product networks. In Proceedings of ACM SIGCOMM, Pittsburgh, PA.

    Google Scholar 

  39. Kitatsuji, Y., Noishiki, Y., Itou, M., & Yokota, H. (2010). Service initiation procedure with on-demand UE registration for scalable IMS services. In Proceedings of the fifth international conference on mobile computing and ubiquitous networking, Seattle, WA.

    Google Scholar 

  40. Montagna, S., & Pignolo, M. (2010). Comparison between two approaches to overload control in a real server: “local” or “hybrid” solutions? In Proceedings of IEEE MELECON, Valletta, Malta (pp. 845–849).

    Google Scholar 

  41. Nahm, E. M., Tracey, J., & Wright, C. P. (2007). Evaluating SIP server performance. In Proceedings of ACM SIGMETRICS, San Diego, CA (pp. 349–350).

    Google Scholar 

  42. Noel, E., & Johnson, C. R. (2007). Initial simulation results that analyze SIP based VoIP networks under overload. In Proceedings of 20th international teletraffic Congress, Ottawa, Canada (pp. 54–64).

    Google Scholar 

  43. Noel, E., & Johnson, C. R. (2009). Novel overload controls for SIP networks. In Proceedings of 21st international teletraffic congress, Paris, France.

    Google Scholar 

  44. Ogata, K. (2002). Modern control engineering (4th ed.). New Jersey: Prentice Hall.

    Google Scholar 

  45. Ohta, M. (2006). Overload control in a SIP signaling network. In Proceeding of World Academy of Science, engineering and technology, Vienna, Austria (pp. 205–210).

    Google Scholar 

  46. Ohta, M. (2006). Overload protection in a SIP signaling network. In Proceedings of international conference on Internet surveillance and protection, Cap Esterel, France.

    Google Scholar 

  47. OPNET Technologies Inc. (2003). OPNET modeler manuals, OPNET version 10.0.

  48. Rebahi, Y., Pallares, J. J., Vingarzan, D., Onofrei, A. A., Gouveia, F., & Magedanz, T. (2011). A priority queuing model for IMS-based emergency services. In Proceedings of IEEE CCNC, Las Vegas, NV.

    Google Scholar 

  49. Rosenberg, J. (2008). Requirements for management of overload in the Session Initiation Protocol (IETF RFC 5390).

  50. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., & Schooler, E. (2002). SIP: Session Initiation Protocol. In IETF RFC 3261, June 2002.

    Google Scholar 

  51. Sadhukhan, P., Das, P. K., & Saha, S. (2011). Hybrid mobility management schemes integrating mobile IP and SIP for seamless invocation of services in all-IP network. Telecommunications Systems. doi:10.1007/s11235-011-9483-7. Online first.

    Google Scholar 

  52. Shen, C., & Schulzrinne, H. (2010). On TCP-based SIP server overload control. In Proceedings of IPTComm, Munich, Germany.

    Google Scholar 

  53. Shen, C., Schulzrinne, H., & Nahum, E. (2008). SIP server overload control: design and evaluation. In Proceedings of IPTComm, Heidelberg, Germany.

    Google Scholar 

  54. Subramanian, S. V., & Dutta, R. (2009). Measurements and analysis of M/M/1 and M/M/c queuing models of the SIP proxy server. In Proceedings of IEEE ICCCN, San Francisco, CA (pp. 397–402).

    Google Scholar 

  55. Sukhov, A., Calyam, P., Daly, W., & Illin, A. (2005). Towards an analytical model for characterizing behaviour of high-speed VoIP applications. In Proceedings of TERENA networking conference, Poznan, Poland.

    Google Scholar 

  56. Sun, J., Tian, R., Hu, J., & Yang, B. (2009). Rate-based SIP flow management for SLA satisfaction. In Proceedings of IEEE/IFIP IM, New York, NY (pp. 125–128).

    Google Scholar 

  57. Usui, T., Kitatsuji, Y., & Yokota, H. (2011). A study on traffic management cooperating with IMS in MPLS networks. Telecommunications Systems, 52(2), 671–680.

    Google Scholar 

  58. Wang, Y. G. (2010). SIP overload control: a backpressure-based approach. Computer Communication Review, 40(4), 399–400.

    Article  Google Scholar 

  59. Xu, L., Huang, C., Yan, J., & Drwiega, T. (2009). De-registration based s-CSCF load balancing in IMS core network. In Proceedings of IEEE ICC, Dresden, Germany.

    Google Scholar 

  60. Yang, J., Huang, F., & Gou, S. Z. (2009). An optimized algorithm for overload control of SIP signaling network. In Proceedings of 5th international conference on wireless communications, networking and mobile computing, Beijing, China.

    Google Scholar 

  61. Zhang, G., Fischer-Hübner, S., & Ehlert, S. (2010). Blocking attacks on SIP VoIP proxies caused by external processing. Telecommunications Systems, 45(1), 61–76.

    Article  Google Scholar 

  62. Shen, C., Nahum, E., Schulzrinne, H., & Wright, C. P. (2012). The Impact of TLS on SIP Server Performance: Measurement and Modeling. IEEE/ACM Transactions on Networking, 20(4), 1217–1230.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the anonymous reviewers whose comments help to improve the quality of this paper. This work was supported by the NSERC grant #CRDPJ 354729-07 and the OCE grant #CA-ST-150764-8. OPNET simulation codes for RRRC and RTDC algorithms in this paper are available for non-commercial research use upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Y., Huang, C. & Yan, J. Applying control theoretic approach to mitigate SIP overload. Telecommun Syst 54, 387–404 (2013). https://doi.org/10.1007/s11235-013-9744-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9744-8

Keywords

Navigation