Skip to main content
Log in

Optimum link distance determination for a constant signal to noise ratio in M-ary PSK modulated coherent optical OFDM systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

In this paper 40 Gb/s and 100 Gb/s Coherent optical Orthogonal Frequency Division Multiplexing (CO-OFDM) systems are studied to obtain the relation between the bit error rate (BER) and transmission link distance for a constant signal to noise ratio (SNR). Utilizing Dense Wavelength Division Multiplexing (DWDM) with 192 optical channels in C and L bands (1528.77 nm–1612.65 nm), data rates can theoretically reach up to 19 Tb/s (192∗100 Gb/s) using only one optical fiber core. In this research, we selected the same data rates with the IEEE standards published by IEEE Computer Society in 2010 and 2011. Results show the performance of the CO-OFDM system at different data rates and distances for one RF carrier and one optical carrier instead of 4 optical carriers used in IEEE 802.3ba.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Djordjevic, I. B., & Vasic, B. (2006). Orthogonal frequency division multiplexing for high-speed optical transmission. Optics Express, 14, 3767–3775.

    Article  Google Scholar 

  2. Shieh, W., & Athaudage, C. (2006). Coherent optical orthogonal frequency division multiplexing. Electronics Letters, 42, 5–589.

    Article  Google Scholar 

  3. Xingwen, Y., Shieh, W., & Tang, Y. (2007). Phase estimation for coherent optical OFDM. IEEE Photonics Technology Letters, 13, 919–921.

    Google Scholar 

  4. Jansen, S. L., Morita, I., Takeda, N., & Tanaka, H. (2007). 20-Gb/s OFDM transmission over 4,160 km SSMF enabled by RF-pilot tone phase noise compensation. In Optical fiber communication conference OFC07.

    Google Scholar 

  5. Lowery, A. J., Liang, D., & Armstrong, J. (2006). Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems. In Optical fiber communication conference OFC06.

    Google Scholar 

  6. Lowery, A. J., & Armstrong, J. (2006). Orthogonal frequency division multiplexing for dispersion compensation of long haul optical systems. Optics Express, 14, 2079–2084.

    Article  Google Scholar 

  7. Shieh, W. (2007). PMD supported coherent optical OFDM systems. IEEE Photonics Technology Letters, 19, 134–136.

    Article  Google Scholar 

  8. Xiang, L., Qi, Y., Chandrasekhar, S., & Shieh, W. (2010). Transmission of 44-Gb/s coherent optical OFDM signal with trellis-coded 32-QAM subcarrier modulation. In 15th opto electronics and communications conference OECC.

    Google Scholar 

  9. Yazgan, A. (2008). OFDM based chromatic dispersion compensation in fiber optic media. M.Sc. thesis, Karadeniz Technical University Department of Electrical-Electronics Engineering, Trabzon, Turkey.

  10. Yazgan, A., Aydemir, O., Tugcu, E., & Simsek, C. (2009). Performance analysis of OFDM systems on AWGN channels. In Akademik Bilisim, Turkey.

    Google Scholar 

  11. Yazgan, A. (2011). Performance analysis and link design of longhaul coherent optical OFDM systems. M.Sc. thesis in electrical engineering. Halmstad, Sweden: Halmstad University Microelectronics and Phonics program.

    Google Scholar 

  12. Yazgan, A. (2011). The tradeoff between BER and link distance for a constant signal to noise ratio in coherent optical OFDM systems. In 34 international conference on telecommunications and signal processing, TSP 2011, Budapest, Hungary (pp. 126–130).

    Chapter  Google Scholar 

  13. Yazgan, A., & Cavdar, I. H. (2011). Examination of the effect of fixing laser phase noise in coherent optical OFDM systems with different channel parameters. In 34 international conference on telecommunications and signal processing, TSP 2011, Budapest, Hungary (pp. 121–125).

    Chapter  Google Scholar 

  14. Laude, J. P. (2002). DWDM fundamentals, components and applications. London: Artech house.

    Google Scholar 

  15. Stallo, C., Cianca, E., Mukherjee, S., Rossi, T., Sanctis, M. D., & Ruggieri, M. (2011). UWB for multi-gigabit/s communications beyond 60 GHz. Telecommunications Systems. doi:10.1007/s11235-011-9500-x.

    Google Scholar 

  16. Li, Y., & Stüber, G. L. (2006). Orthogonal frequency division multiplexing for wireless communications. Atlanta: Springer.

    Book  Google Scholar 

  17. Soysal, B. (2004). High performance receiver design for OFDM based wireless communication systems. Ph.D. thesis, Karadeniz Technical University Department of Electrical-Electronics Engineering, Trabzon, Turkey.

  18. Byun, D. K., Ki, Y. M., & Kim, D. K. (2007). Channel state-aware joint dynamic cell coordination scheme using adaptive modulation and variable reuse factor in OFDMA downlink. Telecommunications Systems, 36, 85–96.

    Article  Google Scholar 

  19. Liu, Y., Song, Q., Guo, L., & Wang, X. (2011). Efficient scheduling algorithms for mixed services in wireless OFDMA system. Telecommunications Systems. doi:10.1007/s11235-011-9476-6.

    Google Scholar 

  20. Broadband radio access HIPERLAN type 2; Physical layer. Sophia Antipolis Cedex (1999).

  21. McClellan, J. H., Schafer, R. W., & Yoder, M. A. (2003). Signal processing first. New York: Prentice Hall.

    Google Scholar 

  22. Matthew, N., & Sadiku, O. (2002). Optical and wireless communications next generation networks. Boca Raton: CRC Press.

    Google Scholar 

  23. Franz, J. H., & Jain, V. K. (2000). Optical communications components and systems. Oxford: Alpha Science.

    Google Scholar 

  24. Rajiv, R., & Kumar, N. S. (2002). Optical networks a practical perspective. San Mateo: Morgan Kaufmann.

    Google Scholar 

  25. Shieh, W., Bao, H., & Tang, Y. (2008). Coherent optical OFDM theory and design. Optics Express, 16, 841–859.

    Article  Google Scholar 

  26. Bulow, H., Buchali, F., & Klekamp, A. (2008). Electronic dispersion compensation. Journal of Lightwave Technology, 26, 158–167.

    Article  Google Scholar 

  27. Mynbaev, D. K., & Scheiner, L. L. (2001). Fiber-optic communications technology. New Jersey: Prentice Hall.

    Google Scholar 

  28. Goldflab, G. (2008). Digital signal processing techniques for coherent optical communication. Ph.D. thesis, University of Central Orlando, Florida, Department of Optics in the College of Optics and Photonics, Florida.

  29. Paré, C., Villeneuve, A., Bélanger, P. A., & Doran, N. J. (1996). Compensating for dispersion and the nonlinear Kerr effect without phase conjugation. Optics Letters, 21, 459–461.

    Article  Google Scholar 

  30. Killey, R. (2005). Dispersion and nonlinearity compensation using electronic predistortion techniques optical fibre. In The IEE seminar on communications and electronic signal processing.

    Google Scholar 

  31. Roberts, K., Li, C., Strawczynski, L., O’Sullivan, M., & Hardcastle, I. (2006). Electronic precompensation of optical nonlinearity. IEEE Photonics Technology Letters, 18, 403–405.

    Article  Google Scholar 

  32. Lowery, A. J. (2007). Fiber nonlinearity mitigation in optical links that use OFDM for dispersion compensation. IEEE Photonics Technology Letters, 19, 1556–1558.

    Article  Google Scholar 

  33. Lowery, A. J., Du, L. B. Y., & Armstrong, J. (2007). Performance of optical OFDM in ultralong-haul WDM lightwave systems. Journal of Lightwave Technology, 25, 131–138.

    Article  Google Scholar 

  34. Shieh, W., Yi, X., Ma, Y., & Tang, Y. (2007). Theoretical and experimental study of PMD-supported transmission using polarization diversity in coherent optical OFDM systems. Optics Express, 15, 9936–9947.

    Article  Google Scholar 

  35. Lowery, A. J., Wang, S., & Premaratne, M. (2007). Calculation of power limit due to fiber nonlinearity in optical OFDM systems. Optics Express, 15, 13282–13287.

    Article  Google Scholar 

  36. Lowery, A. J. (2007). Fiber nonlinearity pre and post compensation for long optical links using OFDM. Optics Express, 15, 12965–12970.

    Article  Google Scholar 

  37. Goebel, B., Fesl, B., Coelho, L. D., & Hanik, N. (2008). On the effect of FWM in coherent optical OFDM systems. In National fiber optic engineers conference, NFOEC.

    Google Scholar 

  38. Shokair, M., & Sakran, H. (2011). Performance of SDM/COFDM system in the presence of nonlinear power amplifier. Telecommunication systems. doi:10.1007/s11235-010-9393-0.

    Google Scholar 

  39. Al-kamali, F. S., Dessouky, M. I., Sallam, B. M., Shawki, F., & Abd El-Samie, F. E. (2011). Impact of the power amplifier on the performance of the single carrier frequency division multiple access system. Telecommunications Systems doi:10.1007/s11235-011-9439-y.

    Google Scholar 

  40. Ahmed, S., & Kawai, M. (2011). Interleaving effects on BER fairness and PAPR in OFDMA System. Telecommunication systems. doi:10.1007/s11235-011-9557-6.

    Google Scholar 

  41. Nazarathy, M., Khurgin, J., Weidenfeld, R., Meiman, Y., Cho, P., Noe, R., Shpantzer, I., & Karagodsky, V. (2008). Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links. Optics Express, 16, 15777–15810.

    Article  Google Scholar 

  42. Goebel, B., Hellerbrand, S., Haufe, N., & Hanik, N. (2009). PAPR reduction techniques for coherent optical OFDM transmission. In International conference on transparent optical networks, ICTON09.

    Google Scholar 

  43. Tang, Y., Shieh, W., & Krongold, B. S. (2010). Fiber nonlinearity mitigation in 428-Gb/s multiband coherent optical OFDM systems. In National fiber optic engineers conference, NFOEC.

    Google Scholar 

  44. Du, L. B. Y., & Lowery, A. J. (2011). Pilot-based XPM nonlinearity compensator for CO-OFDM systems. Optics Express, 19, B862–B867.

    Article  Google Scholar 

  45. Inan, B., Randel, S., Jansen, S. L., Lobato, A., Adhikari, S., & Hanik, N. (2010). Pilot-tone-based nonlinearity compensation for optical OFDM systems. In 36th European conference and exhibition on optical communication.

    Google Scholar 

  46. Mach, P., Bestak, R., & Becvar, Z. (2011). Optimization of association procedure in WiMAX networks with relay stations. Telecommunications Systems. doi:10.1007/s11235-011-9661-7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Yazgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazgan, A., Cavdar, I.H. Optimum link distance determination for a constant signal to noise ratio in M-ary PSK modulated coherent optical OFDM systems. Telecommun Syst 55, 461–470 (2014). https://doi.org/10.1007/s11235-013-9801-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9801-3

Keywords

Navigation