Skip to main content
Log in

Optimization methods for improving IP-level fast protection for local shared risk groups with Loop-Free Alternates

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Lately, demand for fast failure recovery in IP networks has become compelling. The Loop-Free Alternates (LFA) specification is a simple IP Fast ReRoute (IPFRR) scheme proposed by the IETF that does not require profound changes to the network infrastructure before deployment. However, this simplicity comes at a severe price, because LFA does not provide complete protection for all possible failure cases in a general topology. This is even more so if network components are prone to fail jointly. In this paper, we study an important network optimization problem arising in this context, the so called LFA graph extension problem, which asks for augmenting the topology with new links in an attempt to improve the LFA failure case coverage. Unfortunately, this problem is NP-complete. The main contributions of the paper are a novel extension of the bipartite graph model for the LFA graph extension problem to the multiple-failure case using the model of Shared Risk Groups, and a suite of accompanying heuristics to obtain approximate solutions. We also compare the performance of the algorithms in extensive numerical studies and we conclude that the optimum can be approximated well in most cases relevant to practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atlas, A., Kebler, R., Konstantynowicz, M., Enyedi, G., Császár, A., & Shand, M. (2011). An architecture for IP/LDP fast-reroute using maximally redundant trees. Internet draft.

  2. Atlas, A., & Zinin, A. (2008). Basic specification for IP fast reroute: Loop-Free Alternates. RFC 5286.

  3. Bryant, S., Filsfils, C., Previdi, S., & Shand, M. (2007). IP Fast Reroute using tunnels. Internet draft.

  4. Bryant, S., Shand, M., & Previdi, S. (2010). IP fast reroute using Not-via addresses. Internet draft.

  5. Callon, R. (1990). Use of OSI IS-IS for routing in TCP/IP and dual environments. RFC 1195.

  6. Čičic, T., Hansen, A. F., & Apeland, O. K. (2007). Redundant trees for fast IP recovery. In Broadnets (pp. 152–159).

    Google Scholar 

  7. Cisco Systems (2008). Cisco IOS XR routing configuration guide. Release 3.7.

  8. Császár, A., Enyedi, G., Hidell, M., Rétvári, G., & Sjödin, P. (2007). Converging the evolution of router architectures and IP networks. IEEE Network Magazine, Special Issue on Advances in Network Systems Architecture, 21(4), 8–14. doi:10.1109/MNET.2007.386464.

    Google Scholar 

  9. Enyedi, G., Rétvári, G., & Cinkler, T. (2007). A novel loop-free IP fast reroute algorithm. In EUNICE.

    Google Scholar 

  10. Enyedi, G., & Rétvári, R. (2010). Finding multiple maximally redundant trees in linear time. Periodica Polytechnica. Available online: http://opti.tmit.bme.hu/~enyedi/ipfrr/distMaxRedTree.pdf (to appear).

  11. Enyedi, G., Szilágyi, P., Rétvári, G., & Császár, A. (2009). IP fast ReRoute: lightweight Not-via without additional addresses. In INFOCOM mini-conf.

    Google Scholar 

  12. Fortz, B., Rexford, J., & Thorup, M. (2002). Traffic engineering with traditional IP routing protocols. IEEE Communications Magazine, 40(10), 118–124.

    Article  Google Scholar 

  13. Francois, P., & Bonaventure, O. (2005). An evaluation of IP-based fast reroute techniques. In ACM CoNEXT (pp. 244–245).

    Chapter  Google Scholar 

  14. Francois, P., Filsfils, C., Evans, J., & Bonaventure, O. (2005). Achieving sub-second IGP convergence in large IP networks. Computer Communication Review, 35(3), 35–44.

    Article  Google Scholar 

  15. Garey, M., & Johnson, D. (1990). Computers and intractability; a guide to the theory of NP-completeness. New York: Freeman.

    Google Scholar 

  16. Gjoka, M., Ram, V., & Yang, X. (2007). Evaluation of IP fast reroute proposals. In IEEE comsware.

    Google Scholar 

  17. Gomes, T., Simoes, C., & Fernandes, L. (2010). Resilient routing in optical networks using SRLG-disjoint path pairs of min-sum cost. Telecommunication Systems.

  18. Hewlett-Packard (2008) HP 6600 router series: QuickSpecs. Available online: http://h18000.www1.hp.com/products/quickspecs/13811_na/13811_na.PDF.

  19. Hock, D., Hartmann, M., Menth, M., Pióro, M., Tomaszewski, A., & Zukowski, C. (2011). Comparison of IP-based and explicit paths for one-to-one FastReroute in MPLS networks. Telecommunication Systems.

  20. Hokelek, I., Fecko, M., Gurung, P., Samtani, S., Cevher, S., & Sucec, J. (2008). Loop-free IP Fast Reroute using local and remote LFAPs. Internet draft.

  21. Juniper Networks (2009) JUNOS 9.6 Routing protocols configuration guide.

  22. Knight, S., Nguyen, H. X., Falkner, N., Bowden, R., & Roughan, M. The Internet Topology Zoo. http://www.topology-zoo.org.

  23. Kulaga, P., Sapiecha, P., & Sej, K. (2005). Approximation algorithm for the argument reduction problem. In Computer recognition systems: proceedings of the 4th international conference on computer recognition systems (CORES’05) (p. 243). Berlin: Springer.

    Chapter  Google Scholar 

  24. Kvalbein, A., Hansen, A. F., Čičic, T., Gjessing, S., & Lysne, O. (2009). Multiple routing configurations for fast IP network recovery. IEEE/ACM Transactions on Networking, 17(2), 473–486.

    Article  Google Scholar 

  25. Kwong, K. W., Gao, L., Guerin, R., & Zhang, Z. L. (2010). On the feasibility and efficacy of protection routing in IP networks. In INFOCOM 2010 (long version appears as tech. rep. 2009, University of Pennsylvania).

    Google Scholar 

  26. Lee, S., Yu, Y., Nelakuditi, S., Zhang, Z. L., & Chuah, C. N. (2004). Proactive vs reactive approaches to failure resilient routing. In INFOCOM.

    Google Scholar 

  27. LEMON—library for efficient modeling and optimization in networks (2009). http://lemon.cs.elte.hu/.

  28. Li, A., Francois, P., & Yang, X. (2007). On improving the efficiency and manageability of NotVia. In ACM CoNEXT.

    Google Scholar 

  29. Li, A., Yang, X., & Wetherall, D. (2009). SafeGuard: safe forwarding during route changes. In ACM CoNEXT (pp. 301–312).

    Chapter  Google Scholar 

  30. Lovász, L. (1975). On the ratio of optimal integral and fractional covers. Discrete Mathematics, 13(4), 383–390.

    Article  Google Scholar 

  31. Mahajan, R., Spring, N., Wetherall, D., & Anderson, T. (2002). Inferring link weights using end-to-end measurements. In ACM IMC (pp. 231–236).

    Google Scholar 

  32. Markopoulou, A., Iannaccone, G., Bhattacharyya, S., Chuah, C., Ganjali, Y., & Diot, C. (2008). Characterization of failures in an operational IP backbone network. IEEE/ACM Transactions on Networking, 16(4), 749–762.

    Article  Google Scholar 

  33. Mazbic-Kulma, B., & Sep, K. (2007). Some approximation algorithms for minimum vertex cover in a hypergraph. In M. Kurzynski, E. Puchala, M. Wozniak, & A. Zolnierek (Eds.), Advances in Soft Computing: Vol. 45. Computer Recognition Systems 2 (pp. 250–257). Berlin: Springer.

    Chapter  Google Scholar 

  34. Menth, M., Hartmann, M., & Hock, D. (2010). Routing optimization with IP Fast Reroute. Internet draft.

  35. Menth, M., Hartmann, M., Martin, R., Čičić, T., & Kvalbein, A. (2010). Loop-free alternates and not-via addresses: a proper combination for IP fast reroute? Computer Networks, 54(8), 1300–1315.

    Article  Google Scholar 

  36. Moy, J. (1998). OSPF version 2. RFC 2328.

  37. Nagy, M., & Rétvári, G. (2011). An evaluation of approximate network optimization methods for improving IP-level fast protection with loop-free alternates. In Proc. of the 4th international workshop on reliable networks design and modeling (RNDM).

    Google Scholar 

  38. Pan, P., Swallow, G., & Atlas, A. (2005). Fast reroute extensions to RSVP-TE for LSP tunnels. RFC 4090.

  39. Previdi, S. (2006). IP fast ReRoute technologies. APRICOT.

  40. Rétvári, G., Csikor, L., Tapolcai, J., Enyedi, G., & Császár, A. (2011). Optimizing IGP link costs for improving IP-level resilience. In Proc. international workshop on design of reliable communication networks (DRCN).

    Google Scholar 

  41. Rétvári, G., Tapolcai, J., Enyedi, G., & Császár, A. (2011). IP fast ReRoute: Loop Free Alternates revisited. In INFOCOM 2011 (pp. 2948–2956).

    Chapter  Google Scholar 

  42. Schollmeier, G., Charzinski, J., Kirstadter, A., Reichert, C., Schrodi, K., Glickman, Y., & Winkler, C. (2003). Improving the resilience in IP networks. In Workshop on high performance switching and routing (HPSR 2003) (pp. 91–96).

    Chapter  Google Scholar 

  43. Shand, M., & Bryant, S. (2010). IP Fast Reroute framework. RFC 5714.

  44. SNDlib: Survivable fixed telecommunication network design library. http://sndlib.zib.de.

  45. Sterbez, J., Cetinkaya, E., Hameed, M., Jabbar, A., Qian, S., & Rohrer, J. (2011). Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation and experimentation. Berlin: Springer.

    Google Scholar 

  46. Swallow, G., Bryant, S., & Andersson, L. (2007). Avoiding equal cost multipath treatment in MPLS networks. RFC 4928.

  47. Thorup, M., & Roughan, M. (2001). Avoiding ties in shortest path first routing (Technical Report). AT&T, Shannon Laboratory, Florham Park, NJ. http://www.research.att.com/~mthorup/PAPERS/ties_ospf.ps.

  48. Viet, H. T., Francois, P., Deville, Y., & Bonaventure, O. (2009). Implementation of a traffic engineering technique that preserves IP Fast Reroute in COMET. In Rencontres francophones sur les aspects algorithmiques des telecommunications (Algotel 2009).

    Google Scholar 

  49. Zhong, Z., Nelakuditi, S., Yu, Y., Lee, S., Wang, J., & Chuah, C. N. (2005). Failure inferencing based fast rerouting for handling transient link and node failures. In INFOCOM.

    Google Scholar 

Download references

Acknowledgements

The work was partially supported by the grant TÁMOP-4.2.2.B-10/1–2010-0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Máté Nagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, M., Tapolcai, J. & Rétvári, G. Optimization methods for improving IP-level fast protection for local shared risk groups with Loop-Free Alternates. Telecommun Syst 56, 103–119 (2014). https://doi.org/10.1007/s11235-013-9822-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-013-9822-y

Keywords

Navigation