Skip to main content

Advertisement

Log in

An energy-aware scheme for efficient spectrum utilization in a 5G mobile cognitive radio network architecture

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper proposes an energy-efficient delay-aware cooperative scheme, exploited for efficient resource management and maximum energy conservation in a 5G mobile cognitive radio network architecture. The proposed scheme is based on the comparison of the queuing delays of both the secondary nodes and the Radio Access Points, when delay sensitive transmission is requested, providing optimal TV White Spaces exploitation via a spectrum broker. The spectrum broker manages the process of the energy consumption of the 5G mobile communication systems, according to the proposed delay-aware cooperative scheme and the comparative evaluation of the queuing delays. The validity of the performance of the scheme is verified through extended simulation tests, carried out under controlled experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ericsson. (2013). Networked Society Essentials. Stockholm: Ericsson. Retrieved March 11, 2014 from http://www.ericsson.com/res/docs/2013/networked-society-essentials-booklet.pdf.

  2. Bangerter, B., Talwar, S., Arefi, R., & Stewart, K. (2014). Networks and devices for the 5G era. IEEE Communications Magazine, 52(2), 90–96.

    Article  Google Scholar 

  3. Wang, L. C., & Rangapillai, S. (2012). A survey on green 5G cellular networks. In Proceedings of the IEEE 2012 International Conference on Signal Processing and Communications (SPCOM).

  4. Patel, S., Chauhan, M., & Kapadiya, K. (2013). 5G: future mobile technology-vision 2020. International Journal of Computer Applications, 54, 6–10.

    Article  Google Scholar 

  5. Janevski, T. (2009). 5G mobile phone concept. In Proceedings of the 6th IEEE Consumer Communications and Networking Conference (CCNC).

  6. Bogucka, H., & Holland, O. (2013). Multi-layer approach to future green mobile communications. IEEE Intelligent Transportation Systems Magazine, 5(4), 28–37.

    Article  Google Scholar 

  7. Wang, C. X., Haider, F., Gao, X., You, X. H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wirelesscommunication networks. IEEE Communications Magazine, 52(2), 122–130.

    Article  Google Scholar 

  8. Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.

    Article  Google Scholar 

  9. Badoi, C. I., Prasad, N., Croitoru, V., & Prasad, R. (2011). 5G based on cognitive radio. Wireless Personal Communications, 57(3), 441–464.

    Article  Google Scholar 

  10. Bhushan, N., Li, J., Malladi, D., Gilmore, R., Brenner, D., Damnjanovic, A., et al. (2014). Network densification: The dominant theme for wireless evolution into 5G. IEEE Communications Magazine, 52(2), 82–89.

    Article  Google Scholar 

  11. Bourdena, A., Mavromoustakis, C. X., Kormentzas, G., Pallis, E., Mastorakis, G., & Yassein, M. B. (2014). A resource intensive traffic-aware scheme using energy-aware routing in cognitive radio networks. Future Generation Computer Systems. 10.1016/j.future.2014.02.013.

  12. Bourdena, A., Pallis, E., Kormentzas, G., & Mastorakis, G. (2013). Efficient radio resource management algorithms in opportunistic cognitive radio networks. Transactions on emerging telecommunications technologies. Weinheim: Wiley.

    Google Scholar 

  13. Bourdena, A., Pallis, E., Kormentzas, G., & Mastorakis, G. (2013). A prototype cognitive radio architecture for TVWS exploitation under the real time secondary spectrum market policy. Physical Communication, 10, 159–168.

    Article  Google Scholar 

  14. Goratti, L., Baldini, G., & Rabbachin, A. (2011). An urn occupancy approach for cognitive radio networks in DTVB white spaces. Multiple access communications. Telecommunication systems (pp. 24–38). Berlin: Springer.

    Chapter  Google Scholar 

  15. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46, 40–48.

    Article  Google Scholar 

  16. Bourdena, A., Pallis, E., Kormentzas, G., Skianis, H., & Mastorakis, G. (2012). QoS provisioning and policy management in a broker-based CR network architecture. In Proceedings of IEEE Globecom, Anaheim, CA.

  17. Pandit, S., & Singh, G. (2012). Throughput maximization with reduced data loss rate in cognitive radio network. Telecommunication Systems, 57, 209–215.

    Article  Google Scholar 

  18. Zhang, Y., & Leung, C. (2009). Cross-layer resource allocation for real-time services in OFDM-based cognitive radio systems. Telecommunication Systems, 42(1–2), 97–108.

    Article  Google Scholar 

  19. Bourdena, A., Pallis, E., Kormentzas, G., & Mastorakis, G. (2013). Radio resource management algorithms for efficient QoS provisioning over cognitive radio networks. In Proceedings of IEEE ICC, Budapest, Hungary.

  20. Guan, X., Wang, X., Ma, K., Liu, Z., & Han, Q. (2014). Spectrum leasing based on Nash bargaining solution in cognitive radio networks. Telecommunication Systems, 57, 313–325.

    Article  Google Scholar 

  21. Zhu, J., Wang, J., Luo, T., & Li, S. (2009). Adaptive transmission scheduling over fading channels for energy-efficient cognitive radio networks by reinforcement learning. Telecommunication Systems, 42(1–2), 123–138.

    Article  Google Scholar 

  22. Marin, R. C., & Dobre, C. (2013). Reaching for the clouds: contextually enhancing smartphones for energy efficiency. In Proceedings of the 2nd ACM Workshop on High Performance Mobile Opportunistic Systems (pp. 31–38). New York: ACM.

  23. Marin, R. C., Dobre, C., & Xhafa, F. (2014). A methodology for assessing the predictable behaviour of mobile users in wireless networks. Concurrency and Computation: Practice and Experience, 26(5), 1215–1230.

    Article  Google Scholar 

  24. Dimitriou, C., Mavromoustakis, C. X., Mastorakis, G., & Pallis, E. (2013). On the performance response of delay-bounded energy-aware bandwidth allocation scheme in wireless networks. In Proceedings of IEEE ICC, Budapest, Hungary.

  25. Ericsson. (2013). Ericsson Mobility Report: On the Pulse of the Networked Society. Stockholm: Ericsson. Retrieved March 11, 2014, from http://www.ericsson.com/res/docs/2013/ericsson-mobility-report-june-2013.pdf.

  26. Cisco. (2013). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012–2017. USA: Cisco. Retrieved March 11, 2014 http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf.

  27. Ciobanu, R. I., & Dobre, C. (2012). Predicting encounters in opportunistic networks. In Proceedings of the 1st ACM workshop on High performance mobile opportunistic systems (pp. 9–14). New York: ACM.

  28. Bousia, A. (2014). Sharing the small cells for energy efficient networking: How much does it cost? In IEEE GLOBECOM, Austin, TX.

  29. Antonopoulos, A., & Verikoukis, C. (2014). Multi-player game theoretic MAC strategies for energy efficient data dissemination. IEEE Transactions on Wireless Communications, 13(2), 592–603.

    Article  Google Scholar 

  30. Ericsson. (2013). Technology for Good: Ericsson Sustainability and Corporate Responsibility Report 2012. Stockholm: Ericsson. Retrieved March 11, 2014 http://www.ericsson.com/res/thecompany/docs/corporate-responsibility/2012/2012_corporate_responsibility_and_sustainability_report.pdf.

  31. Mekikis, P. V., et al. (2014). Two-tier cellular random network planning for minimum deployment cost. In IEEE ICC, Sydney, Australia.

  32. Patil, S., Patil, V., & Bhat, P. (2012). A review on 5G technology. International Journal of Engineering and Innovative Technology (IJEIT), 1(1), 26–30.

    Google Scholar 

  33. Tudzarov, A., & Janevski, T. (2011). Protocols and algorithms for the next generation 5G mobile systems. Network Protocols and Algorithms, 3(1), 94–114.

    Article  Google Scholar 

  34. Singh, S., & Singh, P. (2012). Key concepts and network architecture for 5G mobile technology. International Journal of Scientific Research Engineering and Technology, 1(5), 165–170.

    Article  Google Scholar 

  35. Olsson, M., Cavdar, C., Frenger, P., Tombaz, S., Sabella, D., & Jantti, R. (2013). 5GrEEn: Towards Green 5G mobile networks. In Proceedings of the IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 212–216).

  36. Rowell, C., Han, S., Xu, Z., Li, G., & Pan, Z. (2014). Toward green and soft: A 5G perspective. IEEE Communications Magazine, 52(2), 66–73.

    Article  Google Scholar 

  37. Akhtar, S. (2008). Evolution of technologies, standards, and deployment of 2G–5G networks. White papers. Morrow: Clyton State University.

    Google Scholar 

  38. Oleshchuk, V., & Fensli, R. (2011). Remote patient monitoring within a future 5G infrastructure. Wireless Personal Communications, 57(3), 431–439.

    Article  Google Scholar 

  39. Mavromoustakis, C. X., Dimitriou, C. D., & Mastorakis, G. (2012). Using real-time backward traffic difference estimation for energy conservation in wireless devices. In Proceedings of the 4th International Conference on Advances in P2P Systems, Barcelona, Spain.

  40. Mavromoustakis, C. X., & Zerfiridis, K. G. (2010). On the diversity properties of wireless mobility with the user-centered temporal capacity awareness for EC in wireless devices. In Proceedings of the 6th IEEE International Conference on Wireless and Mobile Communications (ICWMC) (pp 367–372). Valencia, Spain.

  41. Mavromoustakis, C. X. (2008). On the impact of caching and a model for storage-capacity measurements for energy conservation in asymmetrical wireless devices. In Proceedings of the 16th IEEE International Conference on Software, Telecommunications and Computer Networks.

  42. Mavromoustakis, C. X. (2012). Mitigating file-sharing misbehavior with movement synchronization to increase end-to-end availability for delay sensitive streams in vehicular P2P devices. International Journal of Communication Systems, 26, 1599–1616.

    Article  Google Scholar 

  43. NS-2 Simulator. http://www.isi.edu/nsnam/ns/.

  44. Mavromoustakis, C. X., Mastorakis, G., Bourdena, A., & Pallis, E. (2014). Energy efficient resource sharing using a traffic-oriented routing scheme for cognitive radio networks. IET Networks Journal.

Download references

Acknowledgments

We would like to thank the reviewers for their valuable comments, which helped us to significantly improve the presentation of our paper and the quality of our research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Mastorakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavromoustakis, C.X., Bourdena, A., Mastorakis, G. et al. An energy-aware scheme for efficient spectrum utilization in a 5G mobile cognitive radio network architecture. Telecommun Syst 59, 63–75 (2015). https://doi.org/10.1007/s11235-014-9885-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9885-4

Keywords

Navigation