Skip to main content

Advertisement

Log in

Dynamic two-stage beam training for energy-efficient millimeter-wave 5G cellular systems

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper proposes a polynomial-time protocol for energy-efficient link configuration between 28 GHz millimeter-wave 5G base station antennas and 28 GHz millimeter-wave mobile user antennas. According to the narrow beamwidth of 28 GHz millimeter-wave cellular radio communication links, the link configuration procedure needs to evaluate a lot of link search spaces. Therefore, evaluating an intensively large search space needs a lot of training signal wireless transmission, which dramatically increases the wireless communication power consumption. Therefore, our proposed algorithm reduces the number of training signal transmission, i.e., the number of search space evaluation, using a two-stage dynamic operation for energy-efficient link configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gilbert, J. M., Doan, C. H., Emami, S., & Shung, C. B. (2008). A 4-Gbps uncompressed wireless HD A/V transceiver chipset. IEEE Micro, 28(2), 56–64.

    Article  Google Scholar 

  2. Kim, J., Tian, Y., Molisch, A. F., & Mangold, S. (2011). Joint optimization of HD video coding rates and unicast flow control for IEEE 802.11ad relaying. In Proceedings of IEEE International Symposium on Personal Indoor Mobile Radio Communications (PIMRC), Toronto, Canada.

  3. Kim, J., Tian, Y., Mangold, S., & Molisch, A. F. (2013). Quality-aware coding and relaying for 60 GHz real-time wireless video broadcasting. In Proceedings of IEEE International Conference on Communications (ICC), Budapest, Hungary.

  4. Kim, J., Tian, Y., Mangold, S., & Molisch, A. F. (2013). Joint scalable coding and routing for 60 GHz real-time live HD video streaming applications. IEEE Transactions on Broadcasting, 59(3), 500–512.

    Article  Google Scholar 

  5. Kim, J., & Jeon, B. (2009). Optimal beaconing for 60 GHz millimeter wave. In Proceedings of IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, Nevada, USA.

  6. Kim, J., & Jeon, B. (2009). Demonstration of display sharing over multi-Gbps wireless video and audio network. In Proceedings of IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, Nevada, USA.

  7. Tiraspolsky, S., Jeon, B., Kim, J., Rubtsov, A., Flaksman, A., & Ermolayev, V. (2010). mmWave SVD-based beamformed MIMO communication systems. In Proceedings of IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, Nevada, USA.

  8. Baykas, T., Sum, C.-S., Lan, Z., Wang, J., Rahman, M. A., Harada, H., et al. (2011). IEEE 802.15.3c: The first IEEE wireless standard for data rates over 1 Gb/s. IEEE Communications Magazine, 49(7), 114–121.

    Article  Google Scholar 

  9. Perahia, E., Cordeiro, C., & Park, M. (2010). IEEE 802.11ad: Defining the next generation multi-Gbps Wi-Fi. In Proceedings of IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, Nevada, USA.

  10. Stallo, C., Cianca, E., Mukherjee, S., Rossi, T., Sanctis, M. D., & Ruggieri, M. (2013). UWB for multi-gigabit/s communications beyond 60 GHz. Telecommunication Systems, 52(1), 161–181.

    Article  Google Scholar 

  11. Ragoubi, K., Jin, M., Saha, G., & Yang, Y. (2013). Recent advances in UWB systems: Theory and applications. Telecommunication Systems, 52(2), 1131–1132.

    Google Scholar 

  12. Islam, S. M. R., Ameen, M. A., & Kwak, K. S. (2013). Channel estimation in ECMA-368-based UWB systems with unknown interference. Telecommunication Systems, 52(2), 1159–1169.

    Google Scholar 

  13. Azim, R., Islam, M. T., & Misran, N. (2012). Printed circular disc compact planar antenna for UWB applications. Telecommunication Systems, 52(2), 1171–1177.

  14. Zhou, B., Rhee, W., Kim, D., & Wang, Z. (2013). Reconfigurable FM-UWB transmitter design for robust short range communications. Telecommunication Systems, 52(2), 1133–1144.

    Google Scholar 

  15. Nardis, L. D., Fiorina, J., Panaitopol, D., & Benedetto, M. G. D. (2013). Combining UWB with time reversal for improved communication and positioning. Telecommunication Systems, 52(2), 1145–1158.

    Article  Google Scholar 

  16. Hung, H.-L. (2013). Interference cancellation for HNNPSO multiuser detection of UWB systems over multipath fading channel. Telecommunication Systems, 52(2), 1191–1203.

  17. Azar, Y., Wong, G. N., Wang, K., Mayzus, R., Schulz, J. K., Zhao, H., Gutierrez, Jr., F., Hwang, D. D., & Rappaport, T. S. (2013). 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city. In Proceedings of IEEE International Conference on Communications (ICC), Budapest, Hungary.

  18. Zhao, H., Mayzus, R., Sun, S., Samimi, M., Schulz, J. K., Azar, Y., Wang, K., Wong, G. N., Gutierrez, Jr., F., & Rappaport, T. S. (2013). 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York city. In Proceedings of IEEE International Conference on Communications (ICC), Budapest, Hungary.

  19. Samimi, M., Wang, K., Azar, Y., Wong, G.N., Mayzus, R., Zhao, H., Schulz, J. K., Sun, S., Gutierrez, F., & Rappaport, T. S. (2013). 28 GHz angle of arrival and angle of departure analysis for outdoor cellular communications using steerable beam antennas in New York city. In Proceedings of IEEE Vehicular Technology Conference (VTC), Dresden, Germany.

  20. Roh, W., Seol, J.-Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.

    Article  Google Scholar 

  21. Rappaport, T. S., Gutierrez, F, Jr, Ben-Dor, E., Murdock, J. N., Qiao, Y., & Tamir, J. I. (2013). Broadband millimeter wave propagation measurements and models using adaptive beam antennas for outdoor urban cellular communications. IEEE Transactions on Antenna and Propagation, 61(4), 1850–1859.

    Article  Google Scholar 

  22. Rappaport, T. S., Ben-Dor, E., Murdock, J. N., & Qiao, Y. (2012). 38 GHz and 60 GHz angle-dependent propagation for cellular & peer-to-peer wireless communications. In Proceedings of IEEE International Conference on Communications (ICC), Ottawa, Canada.

  23. Zotkiewicz, M., & Pióro, M. (2014). Exact approach to reliability of wireless mesh networks with directional antennas. Telecommunication Systems, 56(1), 201–211.

    Article  Google Scholar 

  24. Dai, F., & Wu, J. (2006). Efficient broadcasting in ad hoc wireless networks using directional antennas. IEEE Transactions on Parallel and Distributed Systems, 17(4), 335–347.

    Article  Google Scholar 

  25. ITU-R. (2012). Reference radiation patterns of omnidirectional, sectoral and other antennas in point-to-multipoint systems for use in sharing studies in the frequency range from 1 GHz to about 70 GHz. ITU-R F.1336-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-Nam Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Hong, SN. Dynamic two-stage beam training for energy-efficient millimeter-wave 5G cellular systems. Telecommun Syst 59, 111–122 (2015). https://doi.org/10.1007/s11235-014-9891-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-014-9891-6

Keywords

Navigation